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Abstract

We introduce a special decomposition, the so-called split-minors, of the reduced
clique graphs of chordal graphs. Using this notion, we characterize asteroidal sets
in chordal graphs and clique trees with minimum number of leaves.

Keywords: chordal graph, asteroidal set, split-minor, leafage, polynomial time

1 Introduction

In this paper, graph is always simple, undirected and loopless.

For a vertex v of a graph G, we denote by N(v) the neighbourhood of v in
G, i.e., the set of vertices u such that uv ∈ E(G); we denote by N [v] the set
N(v)∪{v}. For a set X ⊆ V (G), we denote by G[X] the graph induced on X,
i.e., graph G[X] = (X, E∩X×X), and denote by G−X the graph G[V (G)\X].
A complete subgraph or a clique of G is a (not necessarily maximal) set of
pairwise adjacent vertices of G. (For a complete terminology, see [5].)

A set A of vertices of a graph G is asteroidal, if for each vertex v of A, the
set A \ {v} belongs to one connected component of G − N [v].
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The asteroidal number a(G) of G is the size of a largest asteroidal set of G.
Computing a(G) is NP -hard already in planar graphs [3], but it is efficiently
solvable in chordal graphs [3] (and other structured classes of graphs).

The leafage l(G) of a connected chordal graph G is the least number of
leaves in a clique tree of G. If G is disconnected, l(G) is defined as the
maximum leafage over all connected components of G. While testing l(G) ≤ k
for k ∈ {2, 3} is polynomial [4], the complexity of computing l(G) is not known.

In this paper, we introduce a notion of a split-minor of the reduced clique
graph of a chordal graph (Section 3). This novel tool allows us to obtain a
total decomposition of the reduced clique graph well suited for algorithmic
use. We apply this tool (Section 4) to characterize asteroidal sets of chordal
graphs, and give a partial condition for the leafage.

2 The reduced clique graph

Let G be a connected chordal graph. A clique tree of G is any tree T whose
vertices are the maximal cliques of G such that for every two maximal cliques
C, C ′, each clique on the path from C to C ′ in T contains C ∩ C ′.

Two cliques C, C ′ of G form a separating pair, if every path from a vertex
of C \ C ′ to a vertex of C ′ \ C contains a vertex of C ∩ C ′.

The reduced clique graph Cr(G) of G is a graph whose vertices are the
maximal cliques of G, and whose edges CC ′ are between cliques C, C ′ forming
separating pairs. In addition, each edge CC ′ of Cr(G) is labeled by C ∩ C ′.

The following is a fundamental result about reduced clique graphs.

Theorem 2.1 [1] Every clique tree of G is a maximum weight spanning tree

of Cr(G) where the weight of each edge CC ′ is defined as |C ∩ C ′|. Moreover,

the reduced clique graph Cr(G) is precisely the union of all clique trees of G.

If G is disconnected, the reduced clique graph Cr(G) of G is defined as the
disjoint union of the reduced clique graphs of its connected components.

3 Split-minors

Let H be a graph, and let e be an edge of H . By H/e we denote the graph
obtained from H by contracting the edge e to a new vertex ve (i.e., removing x
and y, adding ve, and connecting all neighbours of x and neighbours of y to ve).

Let X ∪ Y be a partition of V (H). We say that X ∪ Y is a split of H if
every vertex of X with a neighbour in Y has the same neighbourhood in Y .

We say that a graph H ′ is a split-minor of H , if H ′ can be obtained from
H by performing a sequence of the following three operations:



(S1) if v is an isolated vertex, remove v.

(S2) if e is an edge, contract e.

(S3) if X ∪ Y is a split, remove all edges between X and Y .

Now, suppose that H has labeled edges. We say that an edge e = xy of
H is permissible, if for every triangle x, y, z, the edges xz and yz have the
same label. If e is a permissible edge of H , we denote by H/e the graph with
labeled edges obtained by contracting e to a new vertex ve and assigning labels
as follows: for every neighbour z of ve, the edge vez is labeled using the label
of xz if xz ∈ E(H), or using the label of yz if yz ∈ E(H), and all other edges
are labeled using the same label they have in H . We say that a split X ∪ Y
of H is permissible, if all edges between X and Y have the same label.

We say that a graph H ′ with labeled edges is a labeled split-minor of H if
H ′ can be obtained from H by a sequence of the following operations:

(L1) if v is an isolated vertex, remove v.

(L2) if e is a permissible edge, contract e.

(L3) if X ∪ Y is a permissible split, remove all edges between X and Y .

If e = CC ′ is an edge of Cr(G), we denote by G//e the graph obtained from
G by adding all possible edges between the vertices of C and C ′.

Theorem 3.1 If H ′ is a labeled split-minor of H = Cr(G), then there exists

a graph G′ such that H ′ = Cr(G
′).

Proof. (Sketch) By induction. Let H ′ be the graph obtained from Cr(G) by
one of the three operations. Suppose we apply (L1) to a vertex C of Cr(G).
Then C forms a connected component of G, and hence, Cr(G − C) = H ′.
Suppose we apply (L3) to a split X ∪Y . Then we let VX ⊆ V (G), respectively
VY ⊆ V (G), be the union of all maximal cliques that are elements of X,
respectively Y . (Note that VX ∩ VY 6= ∅.) We let G′ be the disjoint union of
G[VX ] and G[VY ], and it follows that Cr(G

′) = H ′. Finally, suppose we apply
(L2) to an edge e = CC ′. Then it is not difficult to show that Cr(G//e) = H ′.2

An edge e of H is maximal, resp. minimal, if there is no edge e′ in H whose
label strictly contains (%), resp. is strictly contained ($) in, the label of e.

Observation 3.2 Every maximal edge of Cr(G) is permissible, and every mi-

nimal edge of Cr(G) is an edge between sets X, Y of a permissible split X ∪Y .

As a consequence of this observation we obtain the following theorem.

Theorem 3.3 (Split-minor decomposition) Every reduced clique graph is

totally decomposable with respect to (L1),(L3) and also with respect to (L2).



4 Applications

A vertex v of H is S-dominated, if S is a subset of the label of every edge
incident to v. An edge e = xy with label S is good, if e is permissible in H ,
and no vertex of H is S-dominated unless at least one of x, y is S-dominated.

We say that H ′ is a good split-minor of H , if H ′ can be obtained from H
by a sequence of operations (L1),(L3), and the following:

(L2′) if e is a good edge, contract e.

Theorem 4.1 If H ′ is a good split-minor of Cr(G), and G′ is the graph from

Theorem 3.1 such that H ′ = Cr(G
′), then a(G′) ≤ a(G).

Proof. (Sketch) By induction. The case of (L1) and (L3) is easy to handle.
Suppose that Cr(G

′) is obtained by contracting a good edge e = CC ′ using
(L2′). Let S = C∩C ′. Then G′ = G//e is obtained from G by making C∪C ′ a
clique. Let A be a largest asteroidal set of G′. Suppose that A is not asteroidal
in G. We may assume |A| ≥ 3. Hence, there exist a1, a2, a3 ∈ A such that
a1 and a3 are in different connected components of G − NG[a2]. Since A is
asteroidal in G′, we deduce S ⊆ NG[a2], and there is no other vertex a ∈ A
with S ⊆ NG[a]. Hence, we let C∗ be a maximal clique that contains {a2}∪S.
It now follows that both CC∗ and C ′C∗ are edges of Cr(G) with label S.

Next, we let A′ = A \ {a2} and observe that A′ is asteroidal in both G′

and G. After that, we deduce that both C and C ′ are not S-dominated, and
hence, since e is a good edge, C∗ is also not S-dominated. Therefore, there
exists a maximal clique C∗∗ such that C∗C∗∗ is an edge of Cr(G) with label
S∗ 6⊇ S. We let a′′

2
be any vertex of C∗∗ \ C∗, and let A′′ = A′ ∪ {a′′

2
}.

Finally, we show that A′′ is an asteroidal set of both G′ and G. 2

A k-star is a graph obtained by taking a vertex with k neighbours forming
an independent set. A labeled k-star is a k-star whose edges are labeled.

Theorem 4.2 a(G) < k iff no labeled k-star is a good split-minor of Cr(G).

Proof. (Sketch) If a labeled k-star Cr(G
′) is a good split-minor of Cr(G), it is

not difficult to show that the label of no edge of Cr(G
′) is contained in another

edge. Hence, a(G′) = k, and by Theorem 4.1, we deduce a(G) ≥ k.

Now, let A = {a1, . . . , ak} be an asteroidal set of G. Let C1, . . . , Ck be
maximal cliques of G containing a1, . . . , ak, respectively. Let T be a clique tree
of G, and T ′ be the subtree of T formed by taking all paths between C1, . . . , Ck.
Since A is asteroidal, C1, . . . , Ck are leaves of T ′. Let T be chosen so that T ′

is smallest possible. Let CiC
′

i be the (unique) edge incident to Ci in T ′.



We observe that removal of any minimal edge of T yields two trees whose
vertices form a permissible split of Cr(G). Hence, by minimality of T ′, we can
remove or contract all edges whose label does not appear on T ′. Finally, we
contract all edges of T ′ other than CiC

′

i
, and obtain a k-star. 2

Corollary 4.3 If Cr(G) ∼= Cr(G
′) as labeled graphs, then a(G′) = a(G).

For the leafage of chordal graphs, we have the following similar statement
(proof omitted). We say that a vertex v of H is S-bounded, if v is incident to
an edge labeled with S, and the label of every other edge incident to v is a
subset (⊆) of S. An edge e = xy with label S is nice, if e is maximal in H
and no vertex of H is S-bounded unless at least one of x, y is S-bounded.

We say that H ′ is a nice split-minor of H , if H ′ can be obtained from H
by a sequence of operations (L1),(L3), and the following:

(L2′′) if e is a nice edge, contract e.

Theorem 4.4 If Cr(G
′) is a nice split-minor of Cr(G), then l(G′) ≤ l(G).

Unfortunately, we do not have a characterization of l(G) similar to Theo-
rem 4.2, since the minimal forbidden split-minors for the leafage are not easy
to describe. However, we can describe other conditions that allow computing
the leafage of G from its reduced clique graph. (More in [2].)

We close by noting that the restrictions introduced in the operations (L2′)
and (L2′′) still allow for a total decomposition of reduced clique graphs.

Theorem 4.5 Every reduced clique graph is totally decomposable with respect

to (L2′) and also with respect to (L2′′).
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