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Abstract Determining the complexity of the colouring problem on A&é graphs is
one of long-standing open problems in algorithmic graplotheOne of the reasons
behind this is that AT-free graphs are not necessarily perfalike many popular
subclasses of AT-free graphs such as interval graphs ooegparability graphs. In
this paper, we resolve the smallest open case of this prolaacthpresent the first
polynomial time algorithm for the 3-colouring problem on-K€e graphs.
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1 Introduction

In theCOLOURING problem, we are asked to colour the vertices of a given gragth w
the smallest possible number of colours so that no two adjaestices receive the
same colour. If such a colouring withcolours exists, the graph kscolourable.

The COLOURING problem is one of the most studied problems on graphs. It is
also one of the first problems known to K€-hard [10]. In other words, it is unlikely
that there is a polynomial time algorithm for solving thisplem. This is true even in
very special cases such as in planar graphs [9], line grdfisregular graphs [7] or
if the number of colourk is fixed and at least three [9] (known as k€ OLOURING
problem). On the other hand, f&r< 2 the problem is polynomially solvable, as is
the general problem for many structured classes of graptts as interval graphs
[11], chordal graphs [11], comparability graphs [11], andrengenerally for perfect
graphs [12]. In these cases, the special structure of tlsseddn question allows for
polynomial algorithms.
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Fig. 1.1 The triangular strip of ordek.
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We study the colouring problem in the classAStfree graphs, i.e., graphs with
no asteroidal triple (a triple of vertices such that between any two vertices ef th
triple there is a path disjoint from the closed neighbourchefthe third vertex). This
class is a generalization of interval and co-comparaligliaphs as well as some non-
perfect graphs such as the complements of triangle-frgghgrénlike other standard
optimization problems such asDEPENDENT SETOr CLIQUE whose complexity on
AT-free graphs is known (the former is solvable in polynaditirae, while the latter
is NP-hard [3]), the complexity oEOLOURING is not known on AT-free graphs.

As a first step towards resolving this, we propose in this pagmlynomial time
algorithm for 3€OLOURING of AT-free graphs. We prove the following theorem.

Theorem 1.1 Thereis an O(n’m) time algorithm to decide, given an AT-free graph
G with n verticesand m edges, whether or not G is 3-colourable and to also construct
a 3-colouring of G if it exists.

We show this in three stages:

(1) we reduce the problem to AT-free graphs with no inducedndinds (Fig. 1.2a),

(2) we show how to decompose every AT-free graph with no iedutiamond and
no Ky (Fig. 1.2b) into triangular strips (Fig. 1.1) using stablgsets, and

(3) we prove that we are allowed to contract minimal stabfesstors without chan-
ging the answer to the problem.

This reduces the problem to graphs whose each block is atri@nstrip or has
at most two vertices; all such graphs are easily seen to b@dgu@ble. If at any
stage we encounterky,, a complete subgraph on four vertices, we declare the graph
not 3-colourable. A sketch of an algorithm resulting fronmstts presented below
as Algorithm 1. (Note thaG/s denotes the graph we obtain fraBby contracting
(identifying) the vertices o§into a single vertex.)

a) b) C) / d) \

Fig. 1.2 a) diamondb) K4, ) 5-cycle,d) 5-wheel.
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Input: An AT-free graphG.
Output: A 3-colouring of G or “G is not 3-colourable”.

1 if GcontainK, then
return “G is not 3-colourable”

/* Now G contains no K4 */
3 if G contains adjacent verticesv with [N(u) NN(v)| > 2 then
Recursively find a 3-colouring 68/ nu)nn(v)-
/* Now G contains no induced diamond and no K4 */

5 if G contains a minimal stable separaBwith |S > 2 then
Recursively find a 3-colouring @/s.

/* Now each block of G isa triangular strip or has at most 2 vertices */

7 Construct a 3-colouring d&.

Algorithm 1: Find a 3-colouring of an AT-free graph

Note that, in this algorithm, once Line 5 is reached, the yiaguaranteed to be
3-colourable. This follows from the fact that AT-free graphith no induced diamond
and noK, are 3-colourable (we prove this as Theorem 1.3). Conselyuenbbtain
a decision algorithm, one can modify the procedure in Aldponi 1 to announce that
“G s 3-colourable” once Line 5 is reached.

In light of this algorithm, we remark that there are also othen-perfect classes
of graphs, such as the graphs with no induced path on five jX% ¢19] vertices, for
which 3-COLOURING is known to be polynomially solvable even thougbLOUR-
ING is NP-complete [16]. (In fact, in the former cade COLOURING for every fixed
k is polynomially solvable [14].) In these cases, we are dgslnable to reduce
the problem to 2SATISFIABILITY which is solvable in polynomial time [1]. Our
approach for AT-free graphs differs from this in that it el focuses on efficient
decompositions of AT-free graphs to graphs for which@:OURING can be decided
in polynomial time. This is akin to and largely inspired by ttelebrated decomposi-
tion of perfect graphs [4] even though this decompositioesioot (as of yet) yield a
polynomial time algorithm focoLOURING of perfect graphs; note that, however, a
recent progress towards this goal has been made [23].

In the following sections, we examine the main ingredieatthe proof of cor-
rectness of our algorithm which are summarized in the fdahowwo theorems.

Theorem 1.2 Let G be an AT-free graph with at least three vertices and with no
induced diamond and no Ky4. Then either

(i) Gisatriangular strip, or
(if) G contains a stable cutset.

Theorem 1.3 Every AT-free graph G with no induced diamond and no K, is 3-
colourable. Moreover, if G containsa minimal stable separator S, then there exists a
3-colouring of G in which all vertices of S have the same colour.
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Afterwards, in the subsequent two sections, we explain émgintation details
needed to guarantee the running ti@@?m). In particular, we prove some interest-
ing properties of minimal stable separators of AT-free gmap

In the final section, we discuss some generalizations aret cdses of AT-free
graphs with polynomial complexity of theoLOURING problem.

2 Notation

In this paper, a graph is always simple, undirected, andéssp

For a vertexv of a graphG, we denote byNg(v) the set of vertices adjacent to
vin G, and writeNg[v] = Ng(v) U {v}. We drop the indexG and writeN(v) and
N[v] whenever it is clear from the context. F¥rC V(G), we write G[X] for the
subgraph ofG induced byX, and writeG — X for the subgraph oG induced by
V(G)\ X. AsetX CV(G) is stable, if G[X] contains no edges. As usul}, denotes
the complete graph (i.e., the graph with all possible edges)ertices, andliamond
is the (unique) graph on 4 vertices with 5 edges (see Fig. 1.2)

We say that a patP of a graphG is missed by a vertexx if no vertex ofP is
adjacent tox. A triple of verticesx,y,z of a graphG is asteroidal if between any two
vertices of the triple there exists a path missed by the trértex.

We write G/ s for the graph we obtain fro® by contracting (i.e., identifying) all
vertices ofSinto a single vertex (while supressing parallel edges aoddp That is,

V(G/s) = (V(G) \ S U{s} wheres ¢V (G),
E(G/s) = {xye E(G) ‘ x,ygzs} U{W ‘ Xy€E(G)AXESAYE S}.

A setSC V(G) disconnectsverticesa, b in G if aandb are in different connected
components oG — S. We say thaSis acutset of G if it disconnects some vertices
a,b. We say thaSis aminimal separator of G if there exist verticea andb such that
Sdisconnects andb, but no proper subset &disconnects them. Autpoint of G
is a vertexv such that{v} is a cutset. Ablock of G is a maximal connected induced
subgraph of5 having no cutpoints.

Note that a minimal separator is not necessarily an inalugitse minimal cutset.
For example, consider the 4-cy@eb, c,d with a pendant edgée. The set{b,d} is
a minimal separator, since it disconneatfom c while no proper subset df,d}
disconnects from c. However,{b,d} is not an inclusion-wise minimal cutset since
{d} C {b,d} is also a cutset.

Further note that we sometimes all@to be disconnected; in that case, any set
SCV(G) is a cutset ofs unlessSincludes all but at most one connected component
K of G andSnV(K) is not a cutset oK. In particular, the empty set is a cutset®f
and it is also a minimal separator @f On the other hand, a non-empty Sat V(G)
is a minimal separator @ if and only if it is a minimal separator of some connected
component ofs. Indeed, ifS+£ 0 disconnects some vertices and no proper subset
of Sdisconnect, b, then there is a connected componiérdf G that contains both
andb. This implies thaSNV (K) is a minimal separator d{. In fact, SC V(K) by
the minimality ofS. The converse is immediate.

For a complete terminology, see [11,24].
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3 Removing diamonds

In this section, we explain how to reduce the problem to thee ad AT-free graphs
with no induced diamonds. We show that if we have a diamotl ire., we have ad-
jacent verticesi, v such that their common neighbourhood contains two noncadja
vertices, then we can contract any maximalSet pair-wise non-adjacent common
neighbours ofi, v and the resulting graph remains AT-free. It is also 3-caibig if
and only ifG is, since in any 3-colouring db all vertices ofS must have the same
colour. Thus we show the following.

Theorem 3.1 If u,v are adjacent vertices of an AT-free graph G and Sis a maximal
stable set in N(u) "N(v), then G/s is AT-free. Moverover, G is 3-colourable if and
onlyif G/sis.

To prove this, we use a more general tool that allows contg&pecific sets
in G without creating asteroidal triples. We say that a S€t V(G) is externally
connected in G, if for eachx € V(G) with N[x N S= 0, the setSis contained in a
(single) connected component®f- Nx].

Lemma 3.2 Let G bean AT-freegraph and SC V(G) be an externally connected set
in G. Then G/sis AT-free.

Proof. Let sdenote the vertex d&/s to which we contracted the vertices &fand
suppose tha/s contains an asteroidal triplex,y,z}. Let P be a path inG/s from
y to z missed byx. If sis not onP, thenP is also a path irG, and if x = s, then
every vertex ofSmissesP in G. So, suppose thatbelongs tdP and is not one of the
endpoints of. Letu,Vv be the two neighbours afon P. By the construction o6/,
there exist vertices,b € S, such thatua,vb € E(G). Sincexs ¢ E(G/s), we have
Ne[X|NS= 0, and sinceS is externally connected i, we conclude thaa andb,
and hencey andv are in the same connected componer@efNg[x]. Consequently,
there is a path is from y andz missed byx. Similarly, if sis one of the endpoints of
P, sayy = s, then we conclude that there exists a pat@imissed by betweerz and
each vertex ofs. This proves that i§ is not one ofx,y,z, thenx,y,z is an asteroidal
triple of G, and otherwise, if say= s, thena,y, zis an asteroidal triple d& for every
a € S But this is a contradiction, sind@ is AT-free. Thus the claim is proved. O

From this lemma, we immediately obtain a proof of Theorema. Well as two
other corollaries that we shall make use of later.

Lemma 3.3 If GisAT-freeand G[g is connected, then G/s is AT-free.
Proof. By Lemma 3.2, it suffices to show th&is externally connected. This is

obvious, sincesinduces a connected subgraptG@r- N[x] for N[x] N S= 0. O

Lemma 3.4 If GisAT-freeand Sisa minimal separator, then G/sis AT-free.
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Proof. Again, it suffices to show theis externally connected. Considee V(G)
with N[X|NS= 0, and leK denote the connected componenGof Sthat contains.
SinceSis a minimal separator, there is a connected compdfeof G — Sdifferent
from K such that each vertex &has a neighbour iK’. Therefore GV (K’')U S is
connected, and s& belongs to a connected component@®#f N[x], since clearly
N[x] N (V(K")US) = 0. This proves thabis externally connected.

The claim now follows from Lemma 3.2. O

Proof of Theorem 3.1. For the first part of the claim, it again suffices to prove that
Sis externally connected. Consider V(G) with N[x] N S= 0. Thereforex is not
adjacent to any vertex &implying thatSuU {x} is a stable set. By the maximality
of S, x is non-adjacent to one af,v. By symmetry, suppose that ¢ E(G). Then
Su{u} is in a connected component 6f— N[X] sinceG[SU {u}] is connected. So,
we conclude thais indeed externally connected.

For the second part of the claim, e the vertex 06/ to which we contracted
S. If we have a 3-colouring 0B/, then we can extend this colouring@fby colour-
ing all vertices ofSwith the colour ofs. Conversely, if we have a 3-colouring Gf
thenu,v have different colours in this colouring, and hence, altices of S must
have the same colour. So, we use this colousfamd colour all other vertices G/s
as inG. This clearly yields a 3-colouring @/s. O

4 Structural decomposition

In this section, we prove Theorem 1.2 asserting that everjréd graph with no
induced diamond and ¢, decomposes into triangular strips via stable cutsets.

Thetriangular strip of orderk is the graph formed by taking three disjoint paths
PL=vivi,. ... v P2=v2\3,... 2, P®=v}\3 ...\ and adding a triangle on
vi V2 V2 for eachi = 1...k. In other words, the triangular strip of ordkris the
cartesian product of an induced pathlovertices and a triangle. (See Fig. 1.1 for an
illustration.) We say that the triangles, v2,v3 andvi, v2, v of the triangular strip of
orderk are theend-triangles.

We say thaiG is a triangular strip ifG is isomorphic to the triangular strip of
orderk for somek. Clearly, every triangular strip is AT-free and containsmduced
diamond oK. Note also that triangular strips have no stable cutsetsther words,
the two conditions of Theorem 1.2 are mutually exclusive.

LetG be an AT-free graph with/(G)| > 3, no induced diamond, and KQ. First,
we observe that it suffices to prove Theorem 1.2 for 2-comubgtaphss, since any
cutpoint (and also the empty seifis disconnected) forms a stable cutseGof

SinceG contains no diamond and 1K, no two triangles ofs share an edge. We
show that, actually, no two triangles share a vertex pra{@és 2-connected.

Lemma 4.1 Let G be a 2-connected AT-free graph with no induced diamond and no
K4. Then every vertex of G isin at most onetriangle.

Proof. Let x be a vertex that belongs to two different triangles, namelyjangle
x,a,b and a trianglex,u,v. Clearly, {u,v}n{a,b} = 0, since otherwise,u,v,a,b
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induces a diamond orlg in G. For the same reason, there is no edge between the
verticesu,v anda, b.

SinceG is 2-connected — x is connected, and hence, there is a path between
the verticesu,v anda,b in G — x. Let P be a shortest such path. Without loss of
generalityP is a path fronu to a. Lety be the second vertex dh(afteru). Clearly,
yv ¢ E(G) andxy ¢ E(G), since otherwisg, Vv, u,x induces a diamond ork. Also,

y is non-adjacent to at least oneab, since otherwisg,a,b,x induces a diamond.
In particularyb ¢ E(G), since otherwisga ¢ E(G) andu,y, b is a shorter path from
u,vto a,b contradicting the minimality oP.

We now show thafy,v,b} is an asteroidal triple o6. Indeed,v,x;b is a path
from v to b missed byy, andv,u,y is a path fromv to y missed byb. Finally, P’ =
P\ {u}u{b} is a path fromy to b missed by, sincevy ¢ E(G) andv has no neighbour
onP\ {u,y} by the minimality ofP. O

By the above lemma, every vertex @fis in at most one triangle. If some vertex
vis in no triangle, theM(v) is a stable cutset @& unlessv/ (G) = N[v] in which case
Vv is a cutpoint becauds is assumed to have at least three vertices.

This implies that we may assume that every verte® @ in exactly one triangle.
In other wordsG contains a triangular strip (of order 1). We show that byrigka
maximal such strip, we either get the whole gr&pbr find a stable cutset i@, thus
proving Theorem 1.2. To simplify the proof of this, we need thllowing lemma.

Lemma4.2 Let G be an AT-free graph with no induced diamond and no K4, and
let H be a (not necessarily induced) subgraph of G isomorphic to a triangular strip.
Then

(i) Hisinducedin G, and

(if) novertex of H hasa neighbour in G—V (H) except for end-triangles of H.

Proof. Letv‘j fori=1,2,3andj=1...kfor somek be the vertices dfi. Suppose that
H is notinduced irG, and Ietv‘jvij', be an edge dB notinH such thag < j’ andj’ —

is smallest possible. By symmetry, we asslfre 1, andi € {1,2}. Clearly,j # |'.

First, we observe that; is non-adjacent tqu% andv?/, otherwisev'j,vjl,,vj%,v?,

induces a diamond d€4 in G. This also implieg’ — j > 2. By the choice of, j’ and

the fact thatj’ — j > 2, we conclude that, is non-adjacent te?, ;,v3 ,, ... ,v]?’,, and

V3., is non-adjacent to},. By the same token/’, is non-adjacent o ; andv?, ;.

We show tha1{v‘j,v]?’+l,vj%} is an asteroidal triple i®. Indeed, the patl, ,v},,vj% is

missed by?, ;, and the path?, V3. ,,..., V3, v is missed by, Finally, V4 is non-

adjacent to at least one o, v? otherwisev!,v2,v?,v4 induces a diamond d¢, in G.

. i
If v?vj% ¢ E(G), then the path,,v3,v? , is missed by/J?,. Otherwiseyiv?, ¢ E(G) in

) Ry
which case/}, v}, vj, 1,3, ; is a path (or walk) missed byf,. This proves (i).

For (ii), letx ¢ V(H) be a vertex adjacent tq for somei € {1,2,3} and some
j €{2...k—1}. By symmetry, we may assume- 1. Then, clearlyxis non-adjacent
to bothvZ andv?, since otherwisa, vi,v#,v3 induces a diamond d¢4 in G.

First, suppose thatis also adjacent tajlﬂ. Thenx is non-adjacent to boty?

j+1
. . l 2 . .
and vj3+l, since otherW|se<,v-Jrl,ijrl,v?+l induces a diamond or K4. But now

J
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{x,v3 T JJrl} is an asteroidal triple iiG. Indeed, the patk, J,vJ3 is missed bval,

the pathv?,v3, | v = is missed by, and the patv?,;, v}, ;,x is missed byw?. So,
we may as,sum):evJJrl ¢ E(G), and by symmetry, alsm/j{l ZE(G).
Suppose thax is non-adjacent to botk? ; andv?_ ;. Then {x,v¢,,,v* ;} is

an asteroidal triple ifG. Indeed, the path,v{,v? VJZJrl is mlssed by? ,, the path

Ve, 1, V2, V5V is missed by, and the path/? l,vj3,vj,x is missed by?, ;. Sox
has at least one neighbour amorfgl, i_1- By the same tokerx has at least one
neighbour among?, ;,v7 ;. Clearly,x cannot be adjacent to bot, ;,v¥ , or to

2
both ijlav? 1, since we get an induced diamond@won x,le, J+17V]°’+1* or on

x,vJ l,VJZ l,v3 1- S0, by symmetry, we may assume tid@s adjacent tos? 7, and

V%, and non-adjacenttgf , andv?, ;. Butthen{x,v} ;,v¥ ,}isan asteroidal triple

in G. Indeed, the patk, V%, ;,v?, ; is missed by? ;, the path/?, ;,v?,v?_, is missed

by x, and the path’_;,v7 ;,xis missed by?, ;. That concludes the proof of (ii). O
Now, we are finally ready to prove Theorem 1.2.

Proof of Theorem 1.2. As remarked in the discussion above, we may assumexhat
is 2-connected, and contains a triangle (triangular strip)

Let H be the largest triangular strip induced@ If V(H) =V (G), thenG is a
triangular strip, and we are done. Otherwise, there exiserexv e V(G) \V(H)
adjacentto a vertex ¢i. By Lemma 4.2y is adjacent to a vertexof an end-triangle
of H; let a,b be the other two vertices of this triangle. Cleaxy, vb ¢ E(G) since
otherwisev, a,b, cinduces a diamond d¢4 in G.

First, we note thall(b) \ {a} andN(a) \ {b} are stable sets, since otherwéser b
is in two triangles which is not possible by Lemma 4.1. TherefalsoN(a) " N(v)
andN(b) " N(v) are stable sets dB, sincea,b ¢ N(v). Moreover, we prove that
there are no edges between the two sets. Suppose othemddetac N(a) NN(v)
andw € N(b) "N(v) be adjacent. We observe thauit V(H), thenu belongs to a
triangle inH and the triangle, v, w. But these triangles are different sincg V (H),
contradicting Lemma 4.1. Hence¢ V (H), and by the same tokew,¢ V (H). Thus
GV (H) U {u,v,w}] contains a spanning triangular strip which is, by Lemma 4.2,
induced inG. This, however, contradicts the maximalitytdf

Now, suppose that there are no edges betwé@) \ {a} andN(a) "N(v). In
other wordsS= (N(b) \ {a}) U(N(a) "N(v)) is a stable set. We show thatis a
stable cutset of separating fromv. Suppose otherwise, and Rbe a shortest path
in G—Sfromatov. Letzbe the second vertex éh(aftera). SinceN(a)NN(v) C S,
we concludev ¢ E(G). Also, zc ¢ E(G), since otherwisa, b,c, zinduces a diamond
or K4 in G. By the same tokerzb ¢ E(G). This implies thaf b, v, z} is an asteroidal
triple in G. Indeed, the patk c,b is missed by, the pathz,a,b is missed by, and
P\ {a} is a path fronzto v missed byb, since all neighbours dfexcept foraare inS.

By the same token, if there are no edges betweéé) \ {b} andN(b) "N(v),
we conclude tha contains a stable cutset. So, we may now assume that thete exi
x € N(a) "N(v) adjacent to somg € N(b) \ {a}, andxX' € N(b) "N(v) adjacent to
somey € N(a) \ {b}. We show that this is impossible. Clearlyy’ ¢ N(v), since
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there are no edges betwelfa) " N(v) andN(b) " N(v). Also, y is non-adjacent
to a,c, X, since otherwisd is in two triangles which is impossible by Lemma 4.1.
By the same tokeny' is non-adjacent td, c,x while x is non-adjacent td,c and

X' is non-adjacent ta, c. In particular, this shows thatx',y,y are distinct vertices
different froma, b, ¢, v. We now show tha contains an asteroidal triple.

Suppose thayy ¢ E(G). Then{y,y',v} is an asteroidal triple o&. Indeed, the
pathy,x,v is missed byy, the pathy’,x,v is missed byy, and the patty,b,a,y
is missed byv. Hence, we may assumg’ € E(G) in which case{x,c,x'} is an
asteroidal triple of5. Indeed, the patk, a, cis missed by, the pathc, b, X is missed
by x, and the patlx,y,y’, X is missed byc.

That concludes the proof. O

5 Proof of Theorem 1.3

The proof is by induction oV (G)|. Let G be an AT-free graph with no induced
diamond and nd&,. If G has at most 2 vertices, the claim is trivially satisfied.

Therefore, we may assuné(G)| > 3. If G has a stable cutset, then by (possibly)
removing some of its vertices, we can find a minimal stablass#pr inG. So, if G
has no minimal stable separator, then it must be, by Theor@palriangular strip
with verticesv‘j fori=1,2,3andj = 1...k for somek. We obtain a 3-colouring of
G by assigning eacbij the colour((i + j) mod 3 + 1.

So, we may assume th@ contains a minimal stable separa®if Sis empty,
thenG is disconnected and we obtain a 3-colouringdby independently colouring
its connected components by inductionSlfhas one element, théb has a cutpoint
and we obtain a 3-colouring @& by 3-colouring its blocks by induction, and permut-
ing the colours in blocks so that they match on cutpoints.dtihlzases, all vertices
in Shave the same colour. So, we may asslie 2.

To prove the claim, it now suffices to show that for every catee component
K of G— S there exists a 3-colouring @[V (K) U § in which all vertices ofShave
the same colour.

LetK be a (fixed) connected component®f- S. Let S denote the set of vertices
of Swith at least one neighbour K. If S # S, thenS is a minimal stable separator in
G =G—(S\S). By induction, there exists a 3-colouring@f in which all vertices
of S have the same colour. By restricting this colouriny'tt<) U Sand colouring the
vertices ofS\ S with the common colour of the vertices 8f we obtain the required
3-colouring. (Note that the vertices 8f S are isolated irG[V (K)US.)

Hence, we may assume that every verte$bés a neighbour iK. Further, since
Sis a minimal separator, there exists a connected compdfienit G — S different
from K such that each vertex &also has a neighbour i¢’. Let G’ denote the graph
GV (K)UV (K") US| /v k), and letx denote the vertex d' to which we contracted
V(K’). By Lemma 3.3G' is AT-free. Moreover(G’ contains no induced diamond or
K4, since any such subgraph is eithe@ror containg, butx belongs to no triangle of
G'. Also, Sis a minimal separator i6'. Hence, ifG' has fewer vertices tha@, then,
by induction, there exists a 3-colouring@f in which all vertices oS have the same
colour. This colouring when restricted (K ) U Syields the required 3-colouring.
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It follows that we may assume th@t— Shas exactly two connected components,
one of which isK, the other consists of a single vertexand every vertex o8 is
adjacent toc and has a neighbour K.

Now, letS* be a smallest subset 8tuch that J,cs N(u) = U esN(u). Suppose
that S* contains three distinct verticasv,w. By the minimality of S*, there exist
verticesu’,v,w such that’ € N(u) \ (N(v) UN(w)), V' € N(v) \ (N(u) UN(w)) and
w e N(w) \ (N(u)UN(v)). Clearly,u’,V,w € V(K) sinceSis a stable set and v,w
are adjacent ta. Suppose thatV' ¢ E(G). Then{u',V,x} is an asteroidal triple if®.
Indeed, the path’,u,x is missed by, the pathv,v,x is missed by, andx misses
any path inK betweeny’ andv'. Hence, we must concludév € E(G), and by the
same tokeny'w ,vVw' € E(G). However, then{u,v,w} is an asteroidal triple i&.
Indeed, the path,u’,V,vis missed by, the pathu, u',w,w is missed by, and the
pathv,v,w',w is missed by. Hence, we conclud’| < 2.

If S*# S we consider the grap@’ = G — (S\ S). Clearly, S* is a minimal
separator i/, and hence, there exists, by induction, a 3-colourin@oin which
all vertices ofS* have the same colour. We extend this colouringtby assigning
the vertices o5\ S* the common colour of the vertices §f. By the definition ofS*,
this gives the required 3-colouring.

Hence, we may assume thatonsists of exactly two verticasandv. We let
A= N(u)\N(v), B=(N(u)nN(v)) \ {x}, andC = N(v) \ N(u). By the minimality
of S*, we haveA # 0 andC # 0. Moreover, each vertex € A is adjacent to every
vertexc € C, since otherwisda,c,x} is an asteroidal triple of. Indeed, the path
a,u,x is missed byc, the pathc, v, x is missed bya, and any path betweemandc in
K is missed by. Further,Ais a stable set i, since any adjacert a’ € Ayield an
induced diamond, a, &, c for anyc € C. By the same tokeI is a stable set. Finally,
Bis a stable set, since any adjacbrtf € B yield an induced diamonil b/, u,vin G.

Suppose that there s B adjacent to soma € A, and letc € C. We show that
N(b)\ {u} € N(c). Suppose otherwise and e N(b) \ {u} be such thatc ¢ E(G).
Clearly,bc ¢ E(G) since otherwise, a, b, c induces a diamond i6. Also, wu,wa ¢
E(G) since otherwisav,a,b,u induces a diamond d4 in G. Finally, wx ¢ E(G),
sincew is not one ofu,v andx is only adjacent ta,v. It follows that {w,x,c} is
an asteroidal triple iiG. Indeed, the path, b, a, ¢ is missed by, the pathc,a, u,x is
missed byw, and the path, u,b,wis missed by. This proves thal(b) \ {u} C N(c).

Now, by induction, there exists a 3-colouring®f b in which u andv have the
same colour. We extend this colouring@by assigning the colour ofc. Clearly,
b andu have different colours in this colouring, since otherwise v have the same
colour, impossible sincev is an edge irG — b. Also, b has colour different from its
other neighbours, sindé(b) \ {u} C N(c). So, this gives the required 3-colouring.

It follows that we may assume that there are no edges betheewB. In other
words,AUB is a stable set. It is also a minimal separatoGH¥ (K) U {u,v}] that
disconnects from v, sinceu,a,c,v andu,b,v are paths fronu to v for eacha € A,
b€ B, andc € C. So, by induction, there is a 3-colouring®fV (K) U {u,v}] in which
all vertices ofAUB have the same colour.lB+ 0, then recolouring with the colour
of vyields the required 3-colouring. Thus, we may ass@ae0.

Now, suppose that there ésc A with N(a) C CU{u}. If |A] > 2, then{u,v} is
a minimal separator i — a, and hence, there exists, by induction, a 3-colouring
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of G—a in which u,v have the same colour. Recall thidta’) > CU {u} for all
a € A. So, by assigning the colour of any vertex i\ {a}, we obtain the required
3-colouring. Hence, we may assurie= {a}, and we observe th& is a minimal
separator ofc — u that disconnecta from v. By induction, there is a 3-colouring
of G —u in which all vertices ofC have the same colour. To obtain the required
3-colouring, we colouu with the colour ofv and recoloua with the colour different
from the colour ofu and the common colour of the vertices@f

Hence, we may assume that there exigts N(a) \ (CU {u}) for somea € A,
and by symmetry, we also hazes N(c) \ (AU {v}) for somec € C. We show that in
this caseG contains an asteroidal triple. Cleany,andz are both different from and
non-adjacentto all af, v, x. If wc € E(G) orwz e E(G), then{w, u, v} is an asteroidal
triple. Indeed, the pat,a, u is missed by, the pathw,c,vorw,z c,vis missed by,
and the pathu, x, v is missed byw. So,wc,wz ¢ E(G), and by symmetryza & E(G).
But now {z,w,x} is an asteroidal triple. Indeed, the patla, c,zis missed by, the
pathw, a,u,x is missed by, and the patlz, c,v,x is missed byw.

That concludes the proof. O

6 Minimal separators

In this section, we focus on some properties of minimal stakparators of AT-free
graphs. These properties will be used in the next sectiorotsteuct an efficient
implementation of Algorithm 1 as promised by Theorem 1.1.

As remarked in Section 4, if the neighbourhood of some vertisxa stable set,
then eitheN(x) is a stable cutset @, orx is a cutpoint ofG, or |V (G)| < 2. It turns
out that a partial converse of this is also true as shown ifidth@ving lemma.

Lemma6.1 If Sis a minimal stable separator of an AT-free graph G, then there
existsa vertex x € V(G) with N(x) 2 S.

Proof. Let She a counterexample to the claim and3ebe a smallest subset Sfor
which there is no vertex with N(x) O S*. Clearly,|S*| > 2.

First, suppose thd&*| = 2. Hence S* = {X,y} for some verticex,y. SinceSis
a minimal separator, there are connected componens of G — Ssuch that each
vertex ofShas a neighbour in bot® andK’. In particular, we have € N(x) NV (K)
andv € N(x) NV (K’). Clearly,uy,vy ¢ E(G) by the minimality ofS*. This implies
that{u,v,y} is an asteroidal triple 0B. Indeed, the path,x,v is missed byy. Also,
sinceSis a minimal separator, we have a p&im GV (K)U{y}] fromytou, and a
pathP"in G|V (K")U{y}] fromytov. Clearly,P is missed by andP’ is missed byu.

Therefore, we may assuni®| > 3, and we lek, y,z be any three vertices & .
By the minimality ofS", there exist verticea, b, c such thaN(a) 2 S*\ {x}, N(b) 2
S*\ {y}, andN(c) O S*\ {z}, and als@x, by,cz¢ E(G). But this implies tha{x,y, z}
is an asteroidal triple o6. Indeed, the patlx, c,y is missed byz, the pathy,a,z is
missed by, and the patlz, b, x is missed byy.

That concludes the proof. O

We further need the following two observations.
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Lemma6.2 If Sisa stable cutset of a connected graph G, and S D Sisa stable set,
then S isalso a stable cutset of G.

Proof. SinceSis a cutset ofG, let K,K’ be two different connected components of
G — S Recall thatG is connected; thus there exist vertiees V (K), b € V(K’) with
neighbours irs. This implies thag,b ¢ S, sinceS is a stable set containirg) Now,

if G— S is connected, there exists a p&tin G — S betweera andb, and clearlyP

is also a path i — S, sinceSC S. But this is impossible, sinca b are in different
connected components@f- S. Hence, we must conclude tHiiis a cutset ofs. O

Lemma 6.3 Aset SCV(G) isaminimal separator of a graph G with |§ > 2 if and
only if there exists a block B of G such that Sisa minimal separator of B.

Proof. Let She a minimal separator @ with |S > 2. This implies that there exist
connected componerits K’ of G — Ssuch that each vertex Bhas both a neighbour
in K and inK’. Thus, for each distinet y € S, there exist two internally vertex disjoint
pathsP, P’ betweenx andy, namely the shortest path betweeandy in G|V (K) U
{x,y}] —xy and inG[V (K’) U {x,y}] — Xy, respectively. In particulaG[PUP'] is a
2-connected subgraph & and hence, it belongs to a block@f Consequently, this
block contains botlx andy as well as a vertex df and a vertex oK',

Since|S| > 2, this proves that there exists a bloBkof G with SC V(B) and
such tha¥ (B) NV (K) # 0, andV (B) NV (K’) # 0. Considera € V(B) NV (K) and
b e V(B) NV (K’). Firstly, note thatS disconnects, b in B, since if there is a path
in B— S betweena andb, then this is also a path i& — S betweena, b which is
impossible sincac V(K), be V(K’) andK,K’ are connected components®f- S.

Secondly, suppose that a proper sulBatf S disconnects, b in B. Consider
x € S\ S, and recall thak has both a neighbour il and a neighbour iiK’. Thus,
there exists a path betweera andxin GV (K) U{x}] and a patt?’ betweerx andb
in GV (K")U{x}]. We claim that bottP andP’ completely lie inB. This follows easily
from the observation that if two vertices belongBpthen any path between them
also belongs t®. Thus,PUP is a path betweea andb in B— S, contradicting the
assumption tha® disconnectafrombin B. So,Sis indeed a minimal separatorBf

Conversely, suppose th&tis a minimal separator of a blodk of G. That is,
there are vertices, b in B such thatSdisconnects, b in B and no proper subset &f
disconnects, b in B. Clearly,Sdisconnects, b in G, since every path betweenb in
G — Sis also a path i3 — S. For this recall that if the endpoints of a path belon@to
then the whole path belongsBo Further, if a proper subsgt of Sdisconnects, bin
G, thenS does not disconneet b in B because of the minimality & Consequently,
there is a path iB — S betweera andb which is also a path i — S, contradicting
the assumption th& disconnects, bin G. So,Sis indeed a minimal separator Gf

Finally, observe thgt§ > 1, sinceB is connected. Moreover, 8= {v} for some
vertexv, thenv is a cutpoint ofB, since{v} separates from b in B. But this is
impossible, since, by definition, no vertex®fs a cutpoint oB. Thus,|§ > 2.

That concludes the proof. O
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7 Thealgorithm

Finally, we are ready to prove Theorem 1.1. To do this, we stawAlgorithm 1 is
correctand can be implemented to run in ti@@?’m) on a given an AT-free grap®
with n vertices andn edges. The correctness follows easily from Theorems 132, 1.
3.1 and Lemma 3.4. We therefore focus on the detai®(@fm) implementation.

First, we note that the complexity is easily seen to be patyiat) since all the
tests in Algorithm 1 are polynomial, including the test imei5 which follows from
[2]. Also, the algorithm makes at mostrecursive calls, since each call reduces the
graph by at least one vertex. Further, contracting a setrbefaecursive call and
extending the colouring t& from the contracted graph is easily implementable in
time O(n+ m). Thus to get the running tim@®(n’m), it suffices to explain how to
implement each test of the algorithm in tirf@énm).

The test in Line 3 has a direct implementation of complegitym); we try each
edgeuv of G and construcN(u) NN(v) by exploring the neighbourhoods ofaindv
in time O(n).

For Line 7, ifG is a triangular strip, we 3-colous in time O(m) by iteratively
removing triangles on vertices of degree 3lis not a triangular strip, but the blocks
of G are triangular strips or have at most two vertices, we cansthe block-cutpoint
decomposition of5 in time O(n-+ m) by the standard algorithm of [21]. Then we 3-
colour all blocks in timeD(n+ m) by applying the previous argument to each block.
Finally, using the block-cutpoint tree &, we obtain in timeD(n) a 3-colouring ofG
by combining the 3-colourings of the blocks by (possibly)rpeting the colours so
they match on the cutpoints &. This yields arO(n+ m) implementation of Line 7.

For the test in Line 1, we do the following. If we execute Lintofthe first time,
we test ifG contains &Ky in time O(n?) = O(nm) by trying all possible pairs of
disjoint edges o06. If we reach Line 1 by recursion 8/s, andsis the vertex of/s
to which we contracte8, then we only test if the neighbourhoodgifi G/s contains
atriangle. This requires oni®(nm) time by trying each vertex-edge pair@f and it
is enough to verify thaG/s contains nd4, since before contracting the graphG
was assumed to contain Kq (we reached at least Line 3 before the recursive call).

It remains to show how to implement the test in Line 5 in ti@@m). By Lemma
6.3, it suffices to check every blo&kof G for a minimal stable separator. By Lemma
6.1, if such a separat&of B exists, it is also a stable cutset®fand hence, there is a
vertexx with Ng(x) 2 S. Also, |V (B)| > 3, sinceSdisconnects at least two vertices in
B, and|S > 2 by Lemma 6.3. ThusB is 2-connected, and also contains no diamond
and noKy, sinceG does (we reached Line 5) and sir®&s an induced subgraph &
ConsequentlyNg(x) contains, by Lemma 4.1, at most two maximal stable sets one
of which containsS. But then this set is also a stable cutseBdfy Lemma 6.2.

Thus, we proceed as follows. First, we compute the blockaint decomposition
of G in time O(n+ m), again by the algorithm of [21]. Then we try each vertex
x € V(G) and each blocIB of G that contains and has at least three vertices. For
each such choice, we tesNg(x) or Ng(x) \ {u} or Ng(x) \ {v} is a stable cutset &
whereuv (if exists) is the unique edge B[Ng(x)]. This can be accomplished in time
O(|V(B)|+|E(B)|) by the standard graph search. Sifi¢€B)| > 3 andB is a block
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of G, we havelV (B)| < |[E(B)|, and hence, summing over all choiceBofields the
complexityO(m). Thus, over all choices of the complexity i<O(nm).

If a stable cutse$ of some blockB is found, we reduce it to a minimal stable
separator oB by iteratively removing vertices & and testing if the resulting set is
a still a cutset oB. Again,O(nm) time, since it suffices to test each vertexSaince.
By Lemma 6.3, the resulting s8tis a minimal separator @& and satisfiesS > 2.

8 Concluding remarks

In this paper, we have shown how to find in polynomial time aRaring of a given
AT-free graph if one exists. To this end, we used a nice strattiecomposition of
AT-free graphs without diamonds. Note that similar strugtvesults are also known
for other restrictions of AT-free graphs [6,13].

For the more general case, we have recently learned thabHdiltler et al.
announced that for every fixdd the k-COLOURING problem on AT-free graphs is
also solvable in polynomial time [18]. Their result is yeti® published. This leaves
open only the case of thBOLOURING problem on AT-free graphs where the number
of colours is unbounded.

We remark that there are special cases of AT-free graphs ichwie can solve
COLOURINGIn polynomial time, for instance, in interval, co-compailigyg and more
generally in perfect AT-free graphs [12]. This is also troe dome non-perfect AT-
free graphs. For instance,® is the complement of a triangle-free graph, then any
colour class in a colouring @ has at most two vertices. Therefore, to find an optimal
colouring ofG we need to pack as many stable sets of size twoGrde possible. This
is solvable in polynomial time [8,17], since it is preciséhg problem oMAXIMUM
MATCHING on the complement d&.

What about AT-free graphs that are not complements of thafrge graphs ?

It turns out that every connected AT-free graph decompasesdomplements of

triangle-free graphs by means of star cutsets, i.e., cutseting a vertex adjacent to
all other vertices of the cutset. This can be seen as folldvesconnected AT-free

graph contains a stable set of size three, then the closgtibmirhood of at least
one of the three vertices disconnects the other two, thties;losed neighbourhood
of one of the three vertices is a star cutset.

Theorem 8.1 If G isa connected AT-free graph, at least one of the following istrue:

(i) Gisthecomplement of a triangle-free graph.
(if) G containsa star cutset.

Note the similarity with Theorem 1.2. This tells us that talfanpolynomial time
algorithm for colouring AT-free graphs, it suffices to find ayto combine colourings
of AT-free graphs through star cutsets. Recall that thisssible in perfect graphs [5].

Finally, we remark that there exists a similar decompasitibanother subclass of
AT-free graphs, namely for AT-free graphs with no inducedydles. The following
theorem is from [6]. Athick 5-cycleis any graph we obtain by substituting complete
graphs (of arbitrary sizes) for the vertices of a 5-cyclg(Bi2c), and &hick 5-wheel
is obtained by substituting complete graphs for the vestafea 5-wheel (Fig. 1.2d).



3-colouring AT-free graphs in polynomial time 15

Theorem 8.2 [6] If G is a connected AT-free graph with no induced 4-cycle, then at
least one of the following istrue:

(i) Gisaninterval graph.
(if) Gisathick 5-cycle or a thick 5-whedl.
(iii) G containsa clique cutset.

Observe that the complement of every thick 5-cycle (thickHeel) is triangle-
free. Also, recall that we can optimally colour interval gina in polynomial time [11]
and it is possible to find all clique cutsets also in polyndrtilae by the algorithm
of Tarjan [22]. Further, to get a colouring of a graph with @eé cutset, it suffices
to colour the pieces individually and then permute the cdaun the pieces so that
they match on the cutset. Thus it follows that tt@L OURING problem is solvable in
polynomial time on AT-free graphs with no induced 4-cycles.
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