Definition 1

A function or a mapping from A to B, denoted by $f: A \rightarrow B$ is a relation from A to B in which every element from A appears exactly once as the first component of an ordered pair in the relation.

Notation

We write $f(a)=b$ when $(a, b) \in f$ where f is a function.
We say that b is the image of a under f, and a is a preimage of b.

Definition 1

A function or a mapping from A to B, denoted by $f: A \rightarrow B$ is a relation from A to B in which every element from A appears exactly once as the first component of an ordered pair in the relation.

Let $A=\{1,2,3,4\}$ and $B=\{2,4,5\}$.

Notation

We write $f(a)=b$ when $(a, b) \in f$ where f is a function.
We say that b is the image of a under f, and a is a preimage of b.

Definition 1

A function or a mapping from A to B, denoted by $f: A \rightarrow B$ is a relation from A to B in which every element from A appears exactly once as the first component of an ordered pair in the relation.

Let $A=\{1,2,3,4\}$ and $B=\{2,4,5\}$.
a) $R_{1}=\{(1,2),(2,4),(3,4),(4,5)\}$

Notation
We write $f(a)=b$ when $(a, b) \in f$ where f is a function
We say that b is the image of a under f, and a is a preimage of b.

Definition 1

A function or a mapping from A to B, denoted by $f: A \rightarrow B$ is a relation from A to B in which every element from A appears exactly once as the first component of an ordered pair in the relation.

Let $A=\{1,2,3,4\}$ and $B=\{2,4,5\}$.
a) $R_{1}=\{(1,2),(2,4),(3,4),(4,5)\} \quad$ A function from A to B
b) $R_{2}=\{(1,2),(2,4),(2,5),(4,5)\}$
$R_{3}=\{(1,2),(2,4),(4,5)\}$
d) $R_{4}=A \times B$

Notation

We write $f(a)=b$ when $(a, b) \in f$ where f is a function.
We say that b is the image of a under f, and a is a preimage of b.

Definition 1

A function or a mapping from A to B, denoted by $f: A \rightarrow B$ is a relation from A to B in which every element from A appears exactly once as the first component of an ordered pair in the relation.

Let $A=\{1,2,3,4\}$ and $B=\{2,4,5\}$.
a) $R_{1}=\{(1,2),(2,4),(3,4),(4,5)\} \quad$ A function from A to B
b) $R_{2}=\{(1,2),(2,4),(2,5),(4,5)\}$
c) $R_{3}=$
d) $R_{4}=$
Notation

We write $f(a)=b$ when $(a, b) \in f$ where f is a function.
We say that b is the image of a under f, and a is a preimage of b.

Definition 1

A function or a mapping from A to B, denoted by $f: A \rightarrow B$ is a relation from A to B in which every element from A appears exactly once as the first component of an ordered pair in the relation.

Let $A=\{1,2,3,4\}$ and $B=\{2,4,5\}$.
a) $R_{1}=\{(1,2),(2,4),(3,4),(4,5)\} \quad$ A function from A to B
b) $R_{2}=\{(1,2),(2,4),(2,5),(4,5)\}$

Not a function

Notation

We write $f(a)=b$ when $(a, b) \in f$ where f is a function.
We say that b is the image of a under f, and a is a preimage of b.

Definition 1

A function or a mapping from A to B, denoted by $f: A \rightarrow B$ is a relation from A to B in which every element from A appears exactly once as the first component of an ordered pair in the relation.

Let $A=\{1,2,3,4\}$ and $B=\{2,4,5\}$.
a) $R_{1}=\{(1,2),(2,4),(3,4),(4,5)\} \quad$ A function from A to B
b) $R_{2}=\{(1,2),(2,4),(2,5),(4,5)\}$

Not a function
c) $R_{3}=\{(1,2),(2,4),(4,5)\}$

Definition 1

A function or a mapping from A to B, denoted by $f: A \rightarrow B$ is a relation from A to B in which every element from A appears exactly once as the first component of an ordered pair in the relation.

Let $A=\{1,2,3,4\}$ and $B=\{2,4,5\}$.
a) $R_{1}=\{(1,2),(2,4),(3,4),(4,5)\} \quad$ A function from A to B
b) $R_{2}=\{(1,2),(2,4),(2,5),(4,5)\}$
c) $R_{3}=\{(1,2),(2,4),(4,5)\}$

Not a function
Not a function from A to B

Notation

We write $f(a)=b$ when $(a, b) \in f$ where f is a function.
We say that b is the image of a under f, and a is a preimage of b.

Definition 1

A function or a mapping from A to B, denoted by $f: A \rightarrow B$ is a relation from A to B in which every element from A appears exactly once as the first component of an ordered pair in the relation.

Let $A=\{1,2,3,4\}$ and $B=\{2,4,5\}$.
a) $R_{1}=\{(1,2),(2,4),(3,4),(4,5)\}$
b) $R_{2}=\{(1,2),(2,4),(2,5),(4,5)\}$

A function from A to B
c) $R_{3}=\{(1,2),(2,4),(4,5)\} \quad$ A function from $\{1,2,4\}$ to B
\square
We write $f(a)=b$ when $(a, b) \in f$ where f is a function We say that b is the image of a under f, and a is a preimage of b.

Definition 1

A function or a mapping from A to B, denoted by $f: A \rightarrow B$ is a relation from A to B in which every element from A appears exactly once as the first component of an ordered pair in the relation.

Let $A=\{1,2,3,4\}$ and $B=\{2,4,5\}$.
a) $R_{1}=\{(1,2),(2,4),(3,4),(4,5)\}$
b) $R_{2}=\{(1,2),(2,4),(2,5),(4,5)\}$

A function from A to B
c) $R_{3}=\{(1,2),(2,4),(4,5)\}$

A function from $\{1,2,4\}$ to B
d) $R_{4}=A \times B$

We write $f(a)=b$ when $(a, b) \in f$ where f is a function We say that b is the image of a under f, and a is a preimage of b.

Definition 1

A function or a mapping from A to B, denoted by $f: A \rightarrow B$ is a relation from A to B in which every element from A appears exactly once as the first component of an ordered pair in the relation.

Let $A=\{1,2,3,4\}$ and $B=\{2,4,5\}$.
a) $R_{1}=\{(1,2),(2,4),(3,4),(4,5)\}$
b) $R_{2}=\{(1,2),(2,4),(2,5),(4,5)\}$

A function from A to B
c) $R_{3}=\{(1,2),(2,4),(4,5)\}$

A function from $\{1,2,4\}$ to B
d) $R_{4}=A \times B$

Not a function

We write $f(a)=b$ when $(a, b) \in f$ where f is a function We say that b is the image of a under f, and a is a preimage of b.

Definition 1

A function or a mapping from A to B, denoted by $f: A \rightarrow B$ is a relation from A to B in which every element from A appears exactly once as the first component of an ordered pair in the relation.

Let $A=\{1,2,3,4\}$ and $B=\{2,4,5\}$.
a) $R_{1}=\{(1,2),(2,4),(3,4),(4,5)\}$
b) $R_{2}=\{(1,2),(2,4),(2,5),(4,5)\}$

A function from A to B
c) $R_{3}=\{(1,2),(2,4),(4,5)\}$

A function from $\{1,2,4\}$ to B
d) $R_{4}=A \times B$

Not a function

Notation

We write $f(a)=b$ when $(a, b) \in f$ where f is a function.
We say that b is the image of a under f, and a is a preimage of b.

Notation

Let $f: A \rightarrow B$ be a function from A to B. The set A is called the domain of f, and the set B is called the codomain of f. The set $f(A)=\{f(x) \mid x \in A\}$ is called the range of f.

a) The domain of f is $\{1,2,3,4\}$

The codomain of f is $\{v, w, x, y, z\}$

Notation

Let $f: A \rightarrow B$ be a function from A to B. The set A is called the domain of f, and the set B is called the codomain of f. The set $f(A)=\{f(x) \mid x \in A\}$ is called the range of f.

Let $A=\{1,2,3,4\}$ and $B=\{v, w, x, y, z\}$.
Let $f: A \rightarrow B$ be $f=\{(1, w),(2, y),(3, y),(4, z)\}$.
a) The domain of f is $\{1,2,3,4\}$

The codomain of f is $\{v, w, x, y, z\}$
The range of f is

Notation

Let $f: A \rightarrow B$ be a function from A to B. The set A is called the domain of f, and the set B is called the codomain of f. The set $f(A)=\{f(x) \mid x \in A\}$ is called the range of f.

Let $A=\{1,2,3,4\}$ and $B=\{v, w, x, y, z\}$. Let $f: A \rightarrow B$ be $f=\{(1, w),(2, y),(3, y),(4, z)\}$.
a) The domain of f is $\{1,2,3,4\}$.

Notation

Let $f: A \rightarrow B$ be a function from A to B. The set A is called the domain of f, and the set B is called the codomain of f. The set $f(A)=\{f(x) \mid x \in A\}$ is called the range of f.

Let $A=\{1,2,3,4\}$ and $B=\{v, w, x, y, z\}$. Let $f: A \rightarrow B$ be $f=\{(1, w),(2, y),(3, y),(4, z)\}$.
a) The domain of f is $\{1,2,3,4\}$.
b) The codomain of f is $\{v, w, x, y, z\}$.

Notation

Let $f: A \rightarrow B$ be a function from A to B. The set A is called the domain of f, and the set B is called the codomain of f. The set $f(A)=\{f(x) \mid x \in A\}$ is called the range of f.

Let $A=\{1,2,3,4\}$ and $B=\{v, w, x, y, z\}$. Let $f: A \rightarrow B$ be $f=\{(1, w),(2, y),(3, y),(4, z)\}$.
a) The domain of f is $\{1,2,3,4\}$.
b) The codomain of f is $\{v, w, x, y, z\}$.

$$
\begin{aligned}
f(A) & =f(\{1,2,3,4\}) \\
& =\{f(1), f(2), f(3), f(4)\} \\
& =\{w, y, y, z\}=\{w, y, z\}
\end{aligned}
$$

Let $P=\{$ Justin, Britney, Joey, Christina, Jessica, Kevin, Kelly, Nick, Sarah $\}$ and let $S=\{$ man, woman $\}$.

Christina

Nick
Sarah

Let $P=\{$ Justin, Britney, Joey, Christina, Jessica, Kevin, Kelly, Nick, Sarah $\}$ and let $S=\{$ man, woman $\}$.

Let Gender : $P \rightarrow S$ be

Theorem 2

For any sets A and B, the number of functions from A to B is $|B|^{|A|}$
Proof. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$. A function f assigns each element a_{i} of A an element $b_{j}=f\left(a_{i}\right)$ of B; there are m possibilities for each element of A, hence by the rule of product, we have $\underbrace{m \cdot m \cdot \cdots \cdot m}=m^{n}=|B|^{|A|}$ possible functions. \square

Let $A=\{1,2,3,4\}$ and $B=\{v, w, x, y, z\}$
a) There are ? relations from A to B.
b) There are ? functions from A to B.

Theorem 2

For any sets A and B, the number of functions from A to B is $|B|^{|A|}$
Proof. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$. A function f assigns each element a_{i} of A an element $b_{j}=f\left(a_{i}\right)$ of B; there are m possibilities for each element of A, hence by the rule of product, we have $\underbrace{m \cdot m \cdot \ldots \cdot m}_{n}=m^{n}=|B|^{|A|}$ possible functions. \square

Let $A=\{1,2,3,4\}$ and $B=\{v, w, x, y, z\}$
a) There are ? relations from A to B.
b) There are ? functions from A to B.

Theorem 2

For any sets A and B, the number of functions from A to B is $|B|^{|A|}$
Proof. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$. A function f assigns each element a_{i} of A an element $b_{j}=f\left(a_{i}\right)$ of B; there are m possibilities for each element of A, hence by the rule of product, we have $\underbrace{m \cdot m \cdot \ldots \cdot m}_{n}=m^{n}=|B|^{|A|}$ possible functions. \square

Let $A=\{1,2,3,4\}$ and $B=\{v, w, x, y, z\}$.
a) There are ? relations from A to B.
b) There are ? functions from A to B.

Theorem 2

For any sets A and B, the number of functions from A to B is $|B|^{|A|}$
Proof. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$. A function f assigns each element a_{i} of A an element $b_{j}=f\left(a_{i}\right)$ of B; there are m possibilities for each element of A, hence by the rule of product, we have $\underbrace{m \cdot m \cdot \ldots \cdot m}_{n}=m^{n}=|B|^{|A|}$ possible functions. \square

Let $A=\{1,2,3,4\}$ and $B=\{v, w, x, y, z\}$.
a) There are $2^{|A||B|}=2^{20}=1,048,576$ relations from A to B.
b) There are ? functions from A to B.

Theorem 2

For any sets A and B, the number of functions from A to B is $|B|^{|A|}$
Proof. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$. A function f assigns each element a_{i} of A an element $b_{j}=f\left(a_{i}\right)$ of B; there are m possibilities for each element of A, hence by the rule of product, we have $\underbrace{m \cdot m \cdot \ldots \cdot m}_{n}=m^{n}=|B|^{|A|}$ possible functions. \square

Let $A=\{1,2,3,4\}$ and $B=\{v, w, x, y, z\}$.
a) There are $2^{|A||B|}=2^{20}=1,048,576$ relations from A to B.
b) There are ? functions from A to B.

Theorem 2

For any sets A and B, the number of functions from A to B is $|B|^{|A|}$
Proof. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$. A function f assigns each element a_{i} of A an element $b_{j}=f\left(a_{i}\right)$ of B; there are m possibilities for each element of A, hence by the rule of product, we have $\underbrace{m \cdot m \cdot \ldots \cdot m}_{n}=m^{n}=|B|^{|A|}$ possible functions. \square

Let $A=\{1,2,3,4\}$ and $B=\{v, w, x, y, z\}$.
a) There are $2^{|A||B|}=2^{20}=1,048,576$ relations from A to B.
b) There are $|B|^{|A|}=5^{4}=625$ functions from A to B.

Definition 3

A function $f: A \rightarrow B$ is one-to-one or injective if each element of B appears at most once as the image of an element of A.
A function $f: A \rightarrow B$ is onto or surjective if $f(A)=B$, that is, each element of B appears at least once as the image of an element of A.

Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a function defined as $f(x)=3 x+7$.

$$
(-3,-2),(-2,1),(-1,4),(0,7),(1,10),(2,13),
$$

a) f is injective

Definition 3

A function $f: A \rightarrow B$ is one-to-one or injective if each element of B appears at most once as the image of an element of A.
A function $f: A \rightarrow B$ is onto or surjective if $f(A)=B$, that is, each element of B appears at least once as the image of an element of A.

Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a function defined as $f(x)=3 x+7$.

b) f is not surjective

For $b=2$ there is no a such that $f(a)=b$, that is, $2=3 a+7$ holds for $a=-\frac{5}{3}$ which is not in \mathbb{Z}.

Definition 3

A function $f: A \rightarrow B$ is one-to-one or injective if each element of B appears at most once as the image of an element of A.
A function $f: A \rightarrow B$ is onto or surjective if $f(A)=B$, that is, each element of B appears at least once as the image of an element of A.

Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a function defined as $f(x)=3 x+7$.
$f=\{\ldots,(-3,-2),(-2,1),(-1,4),(0,7),(1,10),(2,13), \ldots\}$
a) f is injective

Definition 3

A function $f: A \rightarrow B$ is one-to-one or injective if each element of B appears at most once as the image of an element of A.
A function $f: A \rightarrow B$ is onto or surjective if $f(A)=B$, that is, each element of B appears at least once as the image of an element of A.

Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a function defined as $f(x)=3 x+7$.
$f=\{\ldots,(-3,-2),(-2,1),(-1,4),(0,7),(1,10),(2,13), \ldots\}$
a) f is injective

Suppose otherwise, i.e., $f(x)=f(y)$ for $x \neq y$

$$
f(x)=f(y) \Longrightarrow 3 x+7=3 y+7 \Longrightarrow 3 x=3 y \Longrightarrow x=y
$$

Definition 3

A function $f: A \rightarrow B$ is one-to-one or injective if each element of B appears at most once as the image of an element of A.
A function $f: A \rightarrow B$ is onto or surjective if $f(A)=B$, that is, each element of B appears at least once as the image of an element of A.

Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a function defined as $f(x)=3 x+7$.
$f=\{\ldots,(-3,-2),(-2,1),(-1,4),(0,7),(1,10),(2,13), \ldots\}$
a) f is injective

Suppose otherwise, i.e., $f(x)=f(y)$ for $x \neq y$

$$
f(x)=f(y) \Longrightarrow 3 x+7=3 y+7 \Longrightarrow 3 x=3 y \Longrightarrow x=y
$$

b) f is not surjective
holds for $a=-\frac{5}{3}$ which is not in \mathbb{Z}.

Definition 3

A function $f: A \rightarrow B$ is one-to-one or injective if each element of B appears at most once as the image of an element of A.
A function $f: A \rightarrow B$ is onto or surjective if $f(A)=B$, that is, each element of B appears at least once as the image of an element of A.

Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a function defined as $f(x)=3 x+7$.
$f=\{\ldots,(-3,-2),(-2,1),(-1,4),(0,7),(1,10),(2,13), \ldots\}$
a) f is injective

Suppose otherwise, i.e., $f(x)=f(y)$ for $x \neq y$

$$
f(x)=f(y) \Longrightarrow 3 x+7=3 y+7 \Longrightarrow 3 x=3 y \Longrightarrow x=y
$$

b) f is not surjective

For $b=2$ there is no a such that $f(a)=b$, that is, $2=3 a+7$ holds for $a=-\frac{5}{3}$ which is not in \mathbb{Z}.

Theorem 4

For any finite sets A and B, the number of one-to-one functions from A to B is $\frac{|B|!}{(|B|-|A|)!}=P(|B|,|A|)$

Proof. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$. A one-to-one function f assigns each element a_{i} of A a distinct element $b_{i}=f\left(a_{i}\right)$ of B; for a_{1} there are m choices, for a_{2} there are $m-1$ choices,.... for a_{n} there are $(m-(n-1))$ choices.

Hence by the rule of product, we have

injective functions from A to B

Theorem 4

For any finite sets A and B, the number of one-to-one functions from A to B is $\frac{|B|!}{(|B|-|A|)!}=P(|B|,|A|)$

Proof. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$. A one-to-one function f assigns each element a_{i} of A a distinct element $b_{j}=f\left(a_{i}\right)$ of B; for a_{1} there are m choices, for a_{2} there are $m-1$ choices, for a_{n} there are $(m-(n-1))$ choices.

Hence by the rule of product, we have

$$
\underbrace{m(m-1) \ldots(m-(n-1))}_{n}=\frac{m!}{(m-n)!}=\frac{|B|!}{(|B|-|A|)!}=P(|B|,|A|)
$$

injective functions from A to B.

Formal notation (optional - good for proofs)

A relation f from A to B is a function if

$$
\begin{gathered}
\forall x \in A \exists y \in B[(x, y) \in f] \\
\forall x \in A \forall y, z \in B[(x, y) \in f \wedge(x, z) \in f \Longrightarrow y=z]
\end{gathered}
$$

A function $f: A \rightarrow B$ is injective if

$$
\forall x, y \in A[f(x)=f(y) \Longrightarrow x=y]
$$

A function $f: A \rightarrow B$ is surjective if

$$
\forall y \in B \exists x \in A[f(x)=y]
$$

