A function or a mapping from A to B, denoted by $f : A \rightarrow B$ is a relation from A to B in which every element from A appears exactly once as the first component of an ordered pair in the relation.

Let
$$A = \{1, 2, 3, 4\}$$
 and $B = \{2, 4, 5\}$.
a) $R_1 = \{(1, 2), (2, 4), (3, 4), (4, 5)\}$ A function from A to B
b) $R_2 = \{(1, 2), (2, 4), (2, 5), (4, 5)\}$ Not a function
c) $R_3 = \{(1, 2), (2, 4), (4, 5)\}$
d) $R_4 = A \times B$ Not a function

Notation

A function or a mapping from A to B, denoted by $f : A \rightarrow B$ is a relation from A to B in which every element from A appears exactly once as the first component of an ordered pair in the relation.

Let
$$A = \{1, 2, 3, 4\}$$
 and $B = \{2, 4, 5\}$.
a) $R_1 = \{(1, 2), (2, 4), (3, 4), (4, 5)\}$ A function from A to B
b) $R_2 = \{(1, 2), (2, 4), (2, 5), (4, 5)\}$ Not a function
c) $R_3 = \{(1, 2), (2, 4), (4, 5)\}$
d) $R_4 = A \times B$ Not a function

Notation

A function or a mapping from A to B, denoted by $f : A \rightarrow B$ is a relation from A to B in which every element from A appears exactly once as the first component of an ordered pair in the relation.

Let
$$A = \{1, 2, 3, 4\}$$
 and $B = \{2, 4, 5\}$.
a) $R_1 = \{(1, 2), (2, 4), (3, 4), (4, 5)\}$ A function from A to B
b) $R_2 = \{(1, 2), (2, 4), (2, 5), (4, 5)\}$ Not a function
c) $R_3 = \{(1, 2), (2, 4), (4, 5)\}$
d) $R_4 = A \times B$ Not a function

Notation

A function or a mapping from A to B, denoted by $f : A \rightarrow B$ is a relation from A to B in which every element from A appears exactly once as the first component of an ordered pair in the relation.

Let
$$A = \{1, 2, 3, 4\}$$
 and $B = \{2, 4, 5\}$.
a) $R_1 = \{(1, 2), (2, 4), (3, 4), (4, 5)\}$ A function from A to B
b) $R_2 = \{(1, 2), (2, 4), (2, 5), (4, 5)\}$ Not a function
c) $R_3 = \{(1, 2), (2, 4), (4, 5)\}$
d) $R_4 = A \times B$ Not a function

Notation

A function or a mapping from A to B, denoted by $f : A \rightarrow B$ is a relation from A to B in which every element from A appears exactly once as the first component of an ordered pair in the relation.

Let
$$A = \{1, 2, 3, 4\}$$
 and $B = \{2, 4, 5\}$.
a) $R_1 = \{(1, 2), (2, 4), (3, 4), (4, 5)\}$ A function from A to B
b) $R_2 = \{(1, 2), (2, 4), (2, 5), (4, 5)\}$
c) $R_3 = \{(1, 2), (2, 4), (4, 5)\}$
d) $R_4 = A \times B$ Not a function

Notation

A function or a mapping from A to B, denoted by $f : A \rightarrow B$ is a relation from A to B in which every element from A appears exactly once as the first component of an ordered pair in the relation.

Let
$$A = \{1, 2, 3, 4\}$$
 and $B = \{2, 4, 5\}$.
a) $R_1 = \{(1, 2), (2, 4), (3, 4), (4, 5)\}$ A function from A to B
b) $R_2 = \{(1, 2), (2, 4), (2, 5), (4, 5)\}$ Not a function
c) $R_3 = \{(1, 2), (2, 4), (4, 5)\}$
d) $R_4 = A \times B$ Not a function

Notation

A function or a mapping from A to B, denoted by $f : A \rightarrow B$ is a relation from A to B in which every element from A appears exactly once as the first component of an ordered pair in the relation.

Let
$$A = \{1, 2, 3, 4\}$$
 and $B = \{2, 4, 5\}$.
a) $R_1 = \{(1, 2), (2, 4), (3, 4), (4, 5)\}$ A function from A to B
b) $R_2 = \{(1, 2), (2, 4), (2, 5), (4, 5)\}$ Not a function
c) $R_3 = \{(1, 2), (2, 4), (4, 5)\}$
d) $R_4 = A \times B$ Not a function

Notation

A function or a mapping from A to B, denoted by $f : A \rightarrow B$ is a relation from A to B in which every element from A appears exactly once as the first component of an ordered pair in the relation.

Let
$$A = \{1, 2, 3, 4\}$$
 and $B = \{2, 4, 5\}$.
a) $R_1 = \{(1, 2), (2, 4), (3, 4), (4, 5)\}$ A function from A to B
b) $R_2 = \{(1, 2), (2, 4), (2, 5), (4, 5)\}$ Not a function
c) $R_3 = \{(1, 2), (2, 4), (4, 5)\}$ Not a function from A to B
d) $R_4 = A \times B$ Not a function

Notation

A function or a mapping from A to B, denoted by $f : A \rightarrow B$ is a relation from A to B in which every element from A appears exactly once as the first component of an ordered pair in the relation.

Let
$$A = \{1, 2, 3, 4\}$$
 and $B = \{2, 4, 5\}$.
a) $R_1 = \{(1, 2), (2, 4), (3, 4), (4, 5)\}$ A function from A to B
b) $R_2 = \{(1, 2), (2, 4), (2, 5), (4, 5)\}$ Not a function
c) $R_3 = \{(1, 2), (2, 4), (4, 5)\}$ A function from $\{1, 2, 4\}$ to B
d) $R_4 = A \times B$ Not a function

Notation

A function or a mapping from A to B, denoted by $f : A \rightarrow B$ is a relation from A to B in which every element from A appears exactly once as the first component of an ordered pair in the relation.

Let
$$A = \{1, 2, 3, 4\}$$
 and $B = \{2, 4, 5\}$.
a) $R_1 = \{(1, 2), (2, 4), (3, 4), (4, 5)\}$ A function from A to B
b) $R_2 = \{(1, 2), (2, 4), (2, 5), (4, 5)\}$ Not a function
c) $R_3 = \{(1, 2), (2, 4), (4, 5)\}$ A function from $\{1, 2, 4\}$ to B
d) $R_4 = A \times B$ Note a function

Notation

A function or a mapping from A to B, denoted by $f : A \rightarrow B$ is a relation from A to B in which every element from A appears exactly once as the first component of an ordered pair in the relation.

Let
$$A = \{1, 2, 3, 4\}$$
 and $B = \{2, 4, 5\}$.
a) $R_1 = \{(1, 2), (2, 4), (3, 4), (4, 5)\}$ A function from A to B
b) $R_2 = \{(1, 2), (2, 4), (2, 5), (4, 5)\}$ Not a function
c) $R_3 = \{(1, 2), (2, 4), (4, 5)\}$ A function from $\{1, 2, 4\}$ to B
d) $R_4 = A \times B$ Not a function

Notation

A function or a mapping from A to B, denoted by $f : A \rightarrow B$ is a relation from A to B in which every element from A appears exactly once as the first component of an ordered pair in the relation.

Let
$$A = \{1, 2, 3, 4\}$$
 and $B = \{2, 4, 5\}$.
a) $R_1 = \{(1, 2), (2, 4), (3, 4), (4, 5)\}$ A function from A to B
b) $R_2 = \{(1, 2), (2, 4), (2, 5), (4, 5)\}$ Not a function
c) $R_3 = \{(1, 2), (2, 4), (4, 5)\}$ A function from $\{1, 2, 4\}$ to B
d) $R_4 = A \times B$ Not a function

Notation

We write f(a) = b when $(a, b) \in f$ where f is a function. We say that b is the *image* of a under f, and a is a *preimage* of b.

Image: A math a math

Let $f : A \to B$ be a function from A to B. The set A is called the *domain* of f, and the set B is called the *codomain* of f. The set $f(A) = \{f(x) \mid x \in A\}$ is called the *range* of f.

Let $A = \{1, 2, 3, 4\}$ and $B = \{v, w, x, y, z\}$. Let $f : A \to B$ be $f = \{(1, w), (2, y), (3, y), (4, z)\}$.

a) The domain of f is {1,2,3,4}.
b) The codomain of f is {v, w, x, y, z}.
c) The range of f is

f(A) = f({1,2,3,4})
= {f(1), f(2), f(3), f(4)}
= {w, y, y, z} = {w, y, z}.

* (四) * * (日) * * (日)

Let $f : A \to B$ be a function from A to B. The set A is called the *domain* of f, and the set B is called the *codomain* of f. The set $f(A) = \{f(x) \mid x \in A\}$ is called the *range* of f.

Let
$$A = \{1, 2, 3, 4\}$$
 and $B = \{v, w, x, y, z\}$.
Let $f : A \to B$ be $f = \{(1, w), (2, y), (3, y), (4, z)\}$.

a) The domain of f is {1, 2, 3, 4}.
b) The codomain of f is {v, w, x, y, z}
c) The range of f is

f(A) = f({1, 2, 3, 4})
= {f(1), f(2), f(3), f(4)}
= {w, y, y, z} = {w, y, z}

Let $f : A \to B$ be a function from A to B. The set A is called the *domain* of f, and the set B is called the *codomain* of f. The set $f(A) = \{f(x) \mid x \in A\}$ is called the *range* of f.

Let
$$A = \{1, 2, 3, 4\}$$
 and $B = \{v, w, x, y, z\}$.
Let $f : A \rightarrow B$ be $f = \{(1, w), (2, y), (3, y), (4, z)\}$.

a) The domain of f is {1,2,3,4}.
b) The codomain of f is {v, w, x, y, z}.
c) The range of f is

f(A) = f({1,2,3,4})
= {f(1), f(2), f(3), f(4)}
= {w, y, y, z} = {w, y, z}

Let $f : A \to B$ be a function from A to B. The set A is called the *domain* of f, and the set B is called the *codomain* of f. The set $f(A) = \{f(x) \mid x \in A\}$ is called the *range* of f.

Let
$$A = \{1, 2, 3, 4\}$$
 and $B = \{v, w, x, y, z\}$.
Let $f : A \to B$ be $f = \{(1, w), (2, y), (3, y), (4, z)\}$.

Let $f : A \to B$ be a function from A to B. The set A is called the *domain* of f, and the set B is called the *codomain* of f. The set $f(A) = \{f(x) \mid x \in A\}$ is called the *range* of f.

Let
$$A = \{1, 2, 3, 4\}$$
 and $B = \{v, w, x, y, z\}$.
Let $f : A \to B$ be $f = \{(1, w), (2, y), (3, y), (4, z)\}$.

Let $P = \{Justin, Britney, Joey, Christina, Jessica, Kevin, Kelly, Nick, Sarah\}$ and let $S = \{man, woman\}$.

Let *Gender* : $P \rightarrow S$ be

Let $P = \{Justin, Britney, Joey, Christina, Jessica, Kevin, Kelly, Nick, Sarah\}$ and let $S = \{man, woman\}$.

Let Gender : $P \rightarrow S$ be

For any sets A and B, the number of functions from A to B is $|B|^{|A|}$

Proof. Let $A = \{a_1, a_2, ..., a_n\}$ and $B = \{b_1, b_2, ..., b_m\}$. A function f assigns each element a_i of A an element $b_j = f(a_i)$ of B; there are m possibilities for each element of A, hence by the rule of product, we have $\underbrace{m \cdot m \cdot \ldots \cdot m}_{n} = m^n = |B|^{|A|}$ possible functions.

- Let $A = \{1, 2, 3, 4\}$ and $B = \{v, w, x, y, z\}$.
- a) There are ? relations from A to B.
- b) There are ? functions from A to B.

For any sets A and B, the number of functions from A to B is $|B|^{|A|}$

Proof. Let $A = \{a_1, a_2, ..., a_n\}$ and $B = \{b_1, b_2, ..., b_m\}$. A function f assigns each element a_i of A an element $b_j = f(a_i)$ of B; there are m possibilities for each element of A, hence by the rule of product, we have $\underbrace{m \cdot m \cdot \ldots \cdot m}_{n} = m^n = |B|^{|A|}$ possible functions. \Box

Let $A = \{1, 2, 3, 4\}$ and $B = \{v, w, x, y, z\}$. a) There are ? relations from A to B. b) There are ? functions from A to B.

For any sets A and B, the number of functions from A to B is $|B|^{|A|}$

Proof. Let $A = \{a_1, a_2, ..., a_n\}$ and $B = \{b_1, b_2, ..., b_m\}$. A function f assigns each element a_i of A an element $b_j = f(a_i)$ of B; there are m possibilities for each element of A, hence by the rule of product, we have $\underbrace{m \cdot m \cdot \ldots \cdot m}_{n} = m^n = |B|^{|A|}$ possible functions. \Box

Let
$$A = \{1, 2, 3, 4\}$$
 and $B = \{v, w, x, y, z\}$.
a) There are ? relations from A to B.

For any sets A and B, the number of functions from A to B is $|B|^{|A|}$

Proof. Let $A = \{a_1, a_2, ..., a_n\}$ and $B = \{b_1, b_2, ..., b_m\}$. A function f assigns each element a_i of A an element $b_j = f(a_i)$ of B; there are m possibilities for each element of A, hence by the rule of product, we have $\underbrace{m \cdot m \cdot ... \cdot m}_{n} = m^n = |B|^{|A|}$ possible functions. \Box

Let
$$A = \{1, 2, 3, 4\}$$
 and $B = \{v, w, x, y, z\}$.
a) There are $2^{|A||B|} = 2^{20} = 1,048,576$ relations from A to B.
b) There are ? functions from A to B.

For any sets A and B, the number of functions from A to B is $|B|^{|A|}$

Proof. Let $A = \{a_1, a_2, ..., a_n\}$ and $B = \{b_1, b_2, ..., b_m\}$. A function f assigns each element a_i of A an element $b_j = f(a_i)$ of B; there are m possibilities for each element of A, hence by the rule of product, we have $\underbrace{m \cdot m \cdot \ldots \cdot m}_{n} = m^n = |B|^{|A|}$ possible functions. \Box

Let
$$A = \{1, 2, 3, 4\}$$
 and $B = \{v, w, x, y, z\}$.
a) There are $2^{|A||B|} = 2^{20} = 1,048,576$ relations from A to B.
b) There are ? functions from A to B.

For any sets A and B, the number of functions from A to B is $|B|^{|A|}$

Proof. Let $A = \{a_1, a_2, ..., a_n\}$ and $B = \{b_1, b_2, ..., b_m\}$. A function f assigns each element a_i of A an element $b_j = f(a_i)$ of B; there are m possibilities for each element of A, hence by the rule of product, we have $\underbrace{m \cdot m \cdot \ldots \cdot m}_{n} = m^n = |B|^{|A|}$ possible functions. \Box

Let
$$A = \{1, 2, 3, 4\}$$
 and $B = \{v, w, x, y, z\}$.
a) There are $2^{|A||B|} = 2^{20} = 1,048,576$ relations from A to B.
b) There are $|B|^{|A|} = 5^4 = 625$ functions from A to B.

A function $f : A \to B$ is one-to-one or injective if each element of B appears at most once as the image of an element of A. A function $f : A \to B$ is onto or surjective if f(A) = B, that is, each element of B appears at least once as the image of an element of A.

Let $f : \mathbb{Z} \to \mathbb{Z}$ be a function defined as f(x) = 3x + 7.

 $f = \{\ldots, (-3, -2), (-2, 1), (-1, 4), (0, 7), (1, 10), (2, 13), \ldots\}$

a) f is injective

Suppose otherwise, i.e., f(x) = f(y) for $x \neq y$ $f(x) = f(y) \Longrightarrow 3x + 7 = 3y + 7 \Longrightarrow 3x = 3y \Longrightarrow x = y$

b) f is not surjective

A function $f : A \to B$ is one-to-one or injective if each element of B appears at most once as the image of an element of A. A function $f : A \to B$ is onto or surjective if f(A) = B, that is, each element of B appears at least once as the image of an element of A.

Let $f : \mathbb{Z} \to \mathbb{Z}$ be a function defined as f(x) = 3x + 7.

 $f = \{\dots, (-3, -2), (-2, 1), (-1, 4), (0, 7), (1, 10), (2, 13), \dots\}$

a) f is injective

Suppose otherwise, i.e., f(x) = f(y) for $x \neq y$ $f(x) = f(y) \Longrightarrow 3x + 7 = 3y + 7 \Longrightarrow 3x = 3y \Longrightarrow x = y$

b) f is not surjective

A function $f : A \to B$ is one-to-one or injective if each element of B appears at most once as the image of an element of A. A function $f : A \to B$ is onto or surjective if f(A) = B, that is, each element of B appears at least once as the image of an element of A.

Let $f : \mathbb{Z} \to \mathbb{Z}$ be a function defined as f(x) = 3x + 7.

$$f = \{\ldots, (-3, -2), (-2, 1), (-1, 4), (0, 7), (1, 10), (2, 13), \ldots\}$$

a) f is injective

Suppose otherwise, i.e., f(x) = f(y) for $x \neq y$ $f(x) = f(y) \Longrightarrow 3x + 7 = 3y + 7 \Longrightarrow 3x = 3y \Longrightarrow x = y$

f is not surjective

A function $f : A \to B$ is one-to-one or injective if each element of B appears at most once as the image of an element of A. A function $f : A \to B$ is onto or surjective if f(A) = B, that is, each element of B appears at least once as the image of an element of A.

Let $f : \mathbb{Z} \to \mathbb{Z}$ be a function defined as f(x) = 3x + 7.

$$f = \{\ldots, (-3, -2), (-2, 1), (-1, 4), (0, 7), (1, 10), (2, 13), \ldots\}$$

a) f is injective

Suppose otherwise, i.e., f(x) = f(y) for $x \neq y$ $f(x) = f(y) \Longrightarrow 3x + 7 = 3y + 7 \Longrightarrow 3x = 3y \Longrightarrow x = y$

b) f is not surjective

A function $f : A \to B$ is one-to-one or injective if each element of B appears at most once as the image of an element of A. A function $f : A \to B$ is onto or surjective if f(A) = B, that is, each element of B appears at least once as the image of an element of A.

Let $f : \mathbb{Z} \to \mathbb{Z}$ be a function defined as f(x) = 3x + 7.

$$f = \{\ldots, (-3, -2), (-2, 1), (-1, 4), (0, 7), (1, 10), (2, 13), \ldots\}$$

a) f is injective

Suppose otherwise, i.e., f(x) = f(y) for $x \neq y$ $f(x) = f(y) \implies 3x + 7 = 3y + 7 \implies 3x = 3y \implies x = y$ b) f is not surjective

A function $f : A \to B$ is one-to-one or injective if each element of B appears at most once as the image of an element of A. A function $f : A \to B$ is onto or surjective if f(A) = B, that is, each element of B appears at least once as the image of an element of A.

Let $f : \mathbb{Z} \to \mathbb{Z}$ be a function defined as f(x) = 3x + 7.

$$f = \{\ldots, (-3, -2), (-2, 1), (-1, 4), (0, 7), (1, 10), (2, 13), \ldots\}$$

a) f is injective

Suppose otherwise, i.e., f(x) = f(y) for $x \neq y$ $f(x) = f(y) \implies 3x + 7 = 3y + 7 \implies 3x = 3y \implies x = y$ b) f is not surjective

For any finite sets A and B, the number of one-to-one functions from A to B is $\frac{|B|!}{(|B|-|A|)!} = P(|B|, |A|)$

Proof. Let $A = \{a_1, a_2, ..., a_n\}$ and $B = \{b_1, b_2, ..., b_m\}$. A one-to-one function f assigns each element a_i of A a distinct element $b_j = f(a_i)$ of B; for a_1 there are m choices, for a_2 there are m - 1 choices,..., for a_n there are (m - (n - 1)) choices.

Hence by the rule of product, we have

$$\underbrace{m(m-1)\dots(m-(n-1))}_{n} = \frac{m!}{(m-n)!} = \frac{|B|!}{(|B|-|A|)!} = P(|B|,|A|)$$

injective functions from A to B.

For any finite sets A and B, the number of one-to-one functions from A to B is $\frac{|B|!}{(|B|-|A|)!} = P(|B|, |A|)$

Proof. Let $A = \{a_1, a_2, ..., a_n\}$ and $B = \{b_1, b_2, ..., b_m\}$. A one-to-one function f assigns each element a_i of A a distinct element $b_j = f(a_i)$ of B; for a_1 there are m choices, for a_2 there are m - 1 choices,..., for a_n there are (m - (n - 1)) choices.

Hence by the rule of product, we have

$$\underbrace{m(m-1)\dots(m-(n-1))}_{n} = \frac{m!}{(m-n)!} = \frac{|B|!}{(|B|-|A|)!} = P(|B|,|A|)$$

injective functions from A to B.

Formal notation (optional - good for proofs)

A relation f from A to B is a function if $\forall x \in A \exists y \in B [(x, y) \in f]$ $\forall x \in A \forall y, z \in B [(x, y) \in f \land (x, z) \in f \Longrightarrow y = z]$

A function $f : A \rightarrow B$ is injective if $\forall x, y \in A [f(x) = f(y) \Longrightarrow x = y]$

A function $f : A \to B$ is surjective if $\forall y \in B \ \exists x \in A \ [f(x) = y \]$