Maximum Flow Problems IV.

Review: $G = (V, E)$; edge capacity u; (s, t)-flow x; Max-Flow Min-Cut Theorem

1 Implementation and complexity

To find an x-augmenting path \Rightarrow an auxiliary graph $G(x)$ defined as:

$$V(G(x)) = V$$
$$E(G(x)) = \{vw \mid vw \in E \text{ and } x_{vw} < u_{vw} \text{ or } wv \in E \text{ and } x_{wv} > 0 \}$$

By definition, any st-path in $G(x)$ is x-augmenting (any path in $G(x)$ is x-increasing).

Conversely, any x-augmenting path is an st-path in $G(x)$.

Augmenting Path algorithm:

1. Initialize $x = 0$
2. find an st-path P in $G(x)$;
3. if P exists \Rightarrow augment x along P and go to 2.
4. else return x (a maximum flow)

Possibly exponential number of iterations

Starting with $x = 0$, alternately use augmenting paths s, a, b, t and s, b, a, t, both of x-width one $\Rightarrow 2 \times M$ iterations to reach maximum flow (M can be exponentially large)

Rule: (Edmonds-Karp) Always choose an augmenting path with smallest number of edges

Theorem 1. [Edmonds-Karp 1972] If each augmentation uses a shortest augmenting path, then there are at most $|V| \cdot |E|$ augmentations before a maximum flow is found.

Complexity of the Augmenting Path algorithm: $O(|V| \cdot |E|^2)$
- construction of an auxiliary graph $G(x)$ in $O(|E|)$
- finding an st-path in $G(x)$ with smallest # of edges \Rightarrow by Breadth-First search $O(|E|)$
- augmenting x in $O(|V|)$ time (the path has always $\prec |V|$ edges)
- repeating $|V| \cdot |E|$ times

2 Sample Application

Transportation problem (special case: Maximum matching in bipartite graphs)

Theorem 2. (König’s Theorem) For a bipartite graph G, the maximum size of a matching equals the minimum size of a vertex cover.

... consequence of the Max-Flow Min-Cut Theorem