
Maximum Flow Problems IV.

Review: G = (V,E); edge capacity u; (s, t)-flow x; Max-Flow Min-Cut Theorem

1 Implementation and complexity

To find an x-augmenting path ⇒ an auxiliary graph G(x) defined as:

V (G(x)) = V E(G(x)) =

{
vw

∣∣∣∣ vw ∈ E and xvw < uvw
or

wv ∈ E and xwv > 0

}
By definition, any st-path in G(x) is x-augmenting (any path in G(x) is x-increasing)

Conversely, any x-augmenting path is an st-path in G(x).

Augmenting Path algorithm:

1. Initialize x = 0

2. find an st-path P in G(x);

3. if P exists ⇒ augment x along P
and go to 2.

4. else return x (a maximum flow)

Possibly exponential number of iterations
. . . see the example on the right →

ts

1 Mcapacity:

a

b

Starting with x = 0, alternately use augmenting paths s, a, b, t and s, b, a, t, both of
x-width one ⇒ 2×M iterations to reach maximum flow (M can be exponentially large)

Rule: (Edmonds-Karp) Always choose an augmenting path with smallest number of edges

Theorem 1. [Edmonds-Karp 1972] If each augmentation uses a shortest augmenting
path, then there are at most |V | · |E| augmentations before a maximum flow is found.

Complexity of the Augmenting Path algorithm: O(|V | · |E|2)
– construction of an auxiliary graph G(x) in O(|E|)
– finding an st-path in G(x) with smallest # of edges ⇒ by Breadth-First search O(|E|)
– augmenting x in O(|V |) time (the path has always < |V | edges)
– repeating |V | · |E| times

2 Sample Application

Transportation problem (special case: Maximum matching in bipartite graphs)

Theorem 2. (Kőnig’s Theorem) For a bipartite graph G, the maximum size of a matching
equals the minimum size of a vertex cover.

. . . consequence of the Max-Flow Min-Cut Theorem

1

