Maximum Flow Problems

Directed Graph (Network) \(G = (V, E) \)
i.e., edges in \(E \) are ordered pairs from \(V \times V \)

Walk = sequence \((v_0, v_1, \ldots, v_m) \)
where \(v_i \) is in \(E \) for all \(i \in \{1, \ldots, m\} \)

Path = a walk \((v_0, v_1, \ldots, v_m) \) where all \(v_i \) are distinct

\(st \)-path = a path \(v_0, v_1, \ldots, v_m \) with \(v_0 = s \) and \(v_m = t \)

\((s, t) \)-connectivity = \(\exists \) an \(st \)-path

For \(A \subseteq V \), the cut \(\delta(A) \) is the set of edges \(\delta(A) = \{vw \in E \mid v \in A, w \in V \setminus A\} \)

Denote \(\overline{A} = V \setminus A \)

\(\delta(A) \) and \(\delta(\overline{A}) \) are not the same
- \(\delta(A) \) edges going out of \(A \)
- \(\delta(\overline{A}) \) edges coming into \(A \)

A cut is proper if \(\emptyset \neq A \neq V \).

\(G \) is connected if for all \(s, t \in V \), there \(\exists \) an \(st \)-path.

Theorem 1. \(G \) is connected \(\iff \forall A \subseteq V, \emptyset \neq A \neq V, \text{ we have } \delta(A) \neq \emptyset \)

\((s, t) \)-cut \(\delta(A) \) if \(s \in A \) and \(t \in \overline{A} \).

Theorem 2. \(\exists \) an \(st \)-path \(\iff \forall A \subseteq V, s \in A, t \notin A, \text{ we have } \delta(A) \neq \emptyset \)

\((s, t) \)-edge-connectivity = maximum number of edge disjoint \(st \)-paths

\((s, t) \)-vertex-connectivity = maximum number of internally vertex disjoint \(st \)-paths

(i.e., vertex disjoint except for sharing \(s \) and \(t \))

1 Edge capacities

Edge capacity \(u : E \to \mathbb{R}_{\geq 0} \)

important note: capacity \(\neq \) cost
cost \(\sim \) length, reliability, cost (lease, toll), revenue can be negative
capacity \(\sim \) thickness (pipe, cable), maximum throughput always non-negative

Question: Given a capacitated network and two nodes \(s, t \)
what is the largest collection \(\{P_1, \ldots, P_k\} \) of \(st \)-paths (not necessarily distinct) such that for each edge \(e \in E \), the number of paths \(P_i \) containing \(e \) is at most \(u_e \) (capacity of \(e \))?

Answer: Maximum flow