CS137 Discrete Mathematics and its Applications 2

Coursework 3

Due by Monday 25 February 2013 at 12noon
Submit with an appropriate coversheet to a collection box in CS0.06

Attempt to solve ALL SEVEN of the following problems.
Submit a solution to THREE of the seven problems, ONE from EACH GROUP.

Group 1

1. (a) Draw all pairwise non-isomorphic connected graphs with 4 edges.
 (b) A cycle is Hamiltonian if it contains all vertices of the graph. Find an Euler circuit
 and a Hamiltonian cycle in the following graphs. If it does not exist, explain why.

2. A walk with endpoints u, v is a uv-walk. A path with endpoints u, v is a uv-path.
 Let G be a graph. Prove that
 (a) G contains a uv-walk if and only if G contains a uv-path.
 (b) G contains a closed walk of odd length if and only if G contains a cycle of odd length.

Group 2

1. Reconstruct the trees from their Prüfer codes: $(3, 3, 5, 5, 6, 6), (1, 5, 1, 5, 9, 8, 2), (1, 5, 2, 2, 1, 5, 5)$
 Let i be a positive integer. What tree has the Prüfer code
 (a) (i, i, \ldots, i) ?
 (b) $(i - 2, i - 3, \ldots, 1)$?

2. Let T be a tree with n vertices, k leaves, and no vertex of degree 2.
 (a) Prove that $k \geq (n + 2)/2$.
 (b) What does T look like if $k = (n + 2)/2$?
3. Let G be a graph with n vertices, m edges, and k connected components. Prove that

$$n - k \leq m \leq \binom{n - k + 1}{2}$$

Group 3

1. Let G be a graph m edges and chromatic number $\chi(G) = k$. Prove that $m \geq \binom{k}{2}$.

2. Let G be a graph with $n \geq 11$ vertices. Prove that G and \overline{G} cannot be both planar.
 (Hint: use Euler’s formula)