SHENGYANG SUN

University of Toronto ssy@cs.toronto.edu (+1) 647-879-4235

EDUCATION

University of Toronto (Department of Computer Science)TPhD Candidate, Advised by Roger GrosseT

Tsinghua University (Department of Electronic Engineering) Bachelor of Engineering

RESEARCH INTERESTS

Machine Learning, Bayesian methods, Continual Learning

My research focuses on machine learning, especially the combination between Bayesian methods and deep neural networks. I aim to leverage probabilistic methods to improve the quality, reliability and efficiency of machine learning systems. Specifically, I investigate how to provide uncertainty estimation in probabilistic models and exploit the uncertainty to improve the robustness and guide exploration. Furthermore, I am interested in improving the learning efficiency and out-of-distribution generalization of intelligent systems, such as in continual learning and meta-learning. I am enthusiastic at both fundamental and applied research for solving realistic problems.

PUBLICATIONS

Google Scholar

Peer-reviewed Conference Publications

- 1. **Shengyang Sun**, Daniele Calandriello, Huiyi Hu, Ang Li, Michalis Titsias. Informationtheoretic Online Memory Selection for Continual Learning. ICLR2022.
- Jimmy Ba, Murat A Erdogdu, Marzyeh Ghassemi, Shengyang Sun, Taiji Suzuki, Denny Wu, Tianzong Zhang. Understanding the Variance Collapse of SVGD in High Dimensions. ICLR 2022.
- 3. **Shengyang Sun**, Jiaxin Shi, Andrew Gordon Wilson, Roger Grosse. Scalable Variational Gaussian Processes via Harmonic Kernel Decomposition. ICML 2021.
- 4. Chaoqi Wang*, **Shengyang Sun***, Roger Grosse. Beyond Marginal Uncertainty: How Accurately can Bayesian Regression Models Estimate Posterior Predictive Correlations? AISTATS 2021 [Oral Presentation].
- 5. Jun Yang*, **Shengyang Sun***, Daniel Roy. Fast-rate PAC-Bayes Generalization Bounds via Shifted Rademacher Processes. NeurIPS 2019.
- 6. **Shengyang Sun***, Guodong Zhang*, Jiaxin Shi*, Roger Grosse. Functional variational Bayesian neural networks. ICLR 2019.
- 7. James Lucas, **Shengyang Sun**, Richard Zemel, Roger Grosse. Aggregated Momentum: Stability Through Passive Damping. ICLR 2019.
- 8. **Shengyang Sun**, Guodong Zhang, Chaoqi Wang, Wenyuan Zeng, Jiaman Li, and Roger Grosse. Differentiable compositional kernel learning for Gaussian processes. ICML 2018.
- 9. Guodong Zhang*, **Shengyang Sun***, Roger Grosse. (2017). Natural Gradient as Stochastic Variational Inference. ICML 2018.
- 10. Jiaxin Shi, **Shengyang Sun**, Jun Zhu. (2017). A Spectral Approach to Gradient Estimation for Implicit Distributions. ICML 2018.

Toronto, ON, Canada Sept. 2017 – present

Beijing, China Sept. 2013 – Jul. 2017

Personal Page

- Jiaxin Shi*, Shengyang Sun*, Jun Zhu. (2017). Kernel Implicit Variational Inference. ICLR 2018.
- 12. **Shengyang Sun**, Changyou Chan and Lawrence Carin. (2016). Learning Structured Weight Uncertainty in Bayesian Neural Networks. AISTATS 2017.

Preprints and Workshops

- 1. **Shengyang Sun***, Jiaxin Shi*, Roger Grosse. Neural Networks as Inter-domain Inducing Points. AABI 2021 Symposium.
- 2. Jiaxin Shi, Jianfei Chen, Jun Zhu, **Shengyang Sun**, Yucen Luo, Yihong Gu, Yuhao Zhou. ZhuSuan: A library for Bayesian deep learning. https://arxiv.org/abs/1709.05870.

Note: * represents equal contribution.

AWARDS

•	Top Reviewers	NeurIPS2020, ICLR2021
٠	Borealis AI Global Fellowship Award	2019
٠	Connaught New Researcher Award	2017
٠	Connaught International Scholarship (University-wide 20)	2017-2022
•	First Class Undergraduate Scholarship	2014, 2015, 2016

EXPERIENCE

DeepMind	London, UK
Research Scientist Intern, Advisor: Michalis Titsias	Jun. 2021 - Oct. 2021

• A challenging problem in task-free continual learning is the online selection of a representative replay memory from data streams. During the internship, I developed information-theoretic algorithms to tackle the online memory selection problem in task-free and data imbalanced continual learning.

Google AI	Beijing, China		
Research Intern, Advisor: Chong Wang	Jun. 2018 - Sept. 2018		
• I studied how modern neural networks perform in terms of calibration, which terr how well the model's predictive probabilities are aligned to the underlying ground truth. I proposed approaches to increase the calibration of powerly networks			
truth. I proposed approaches to increase the canoration	of neural networks.		
Duke University	Durham, USA		
Research Scholar, Advisor: Lawrence Carin	Jul. 2016 – Aug. 2016		
• I proposed an efficient variational posterior that captures the correlations between			
individual weights for Bayesian neural networks. I dem variational posterior lead to more accurate posterior app	onstrated that the structured proximations.		
_			
TALKS			

@ Tsinghua University, 2021

(a) Tsinghua University, 2018

(a) Google Toronto, 2018

@ AI TIME, 2021

•	Information-theoretic	Online Memory	Selection
---	-----------------------	---------------	-----------

- Harmonic variational Gaussian processes
- Kernel Implicit Variational Inference
- Functional variational Bayesian neural networks