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2005

In recent years, there has been considerable research exploring connections between
propositional proof systems, theories of bounded arithmetic, and complexity classes. We
know that NC' corresponds to G and that P corresponds to G%, but no proof system
corresponding to a complexity class between NC! and P has been defined.

In this work, we construct a proof system G'L*, which corresponds to L. Connections
to the theory VL (Zambella’s X5 — rec) are also considered. GL* is defined by restricting
cuts in the system G7. The first restriction is syntactic: the cut formulas have to be
YCNF(2), which is a new class of formulas. Unfortunately that is not enough; the free
variables in cut formulas must be restricted to parameter variables. We prove that GL*

corresponds to V' L by translating theorems of V' L into tautologies with small GL* proof.
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Chapter 1

Introduction

One of the important areas in computer science is computational complexity. In this
area, we are interested in determining the difficulty of computing a function. The main
goal is to determine which functions can be computed in a reasonable amount of time and
space. Functions are divided into complexity classes, and these classes form a hierarchy.

Researchers want to prove that inclusions in this hierarchy are proper.

This problem has proved to be hard. So to help find another way to solve this problem,
Parikh [16] proposed bounded arithmetic. Since that time, much research has gone into
bounded arithmetic, but the work by Buss has had the largest effect. In his dissertation
[4, 5], he introduced the bounded arithmetic hierarchy S; C Ty C S2 C TZ C ..., and
showed a number of conservation results. Later, Buss was able to show a connection

between the polynomial hierarchy (PH) and the bounded arithmetic hierarchy [1].

The third area we consider is propositional proof complexity. In [12], Krajicek and
Pudlak introduced the proof systems G, G5, .... They were able to show a connection
between the bounded arithmetic hierarchy and these proof systems. This was accom-
plished by showing that 7% proves that G; is sound and that G; simulates T¢. Later, in
[11], the proof system G was defined by restricting G; to treelike proofs. G} was shown

to correspond to S% in the same way G; corresponds T%.
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This work provides a good framework. We have a well-defined method of connecting
complexity classes, theories of bounded arithmetic, and propositional proof systems, but
a few problems arise when searching for connections to smaller complexity classes. The
main problem is with the strength of the functions in the language of Si. We cannot
multiply two binary number in AC?, but the language has this function. The other
problem is the translation used in the simulation. The strength of the language forces

the translation to be more complicated than is necessary.

To solve these complications some researchers have explored second order theories.
In the second order setting, the main hierarchy consist of the theories V°, V1, . ... There
is a natural isomorphism, called the RSUV isomorphism, between S% and V* for 7 < 1.
So the connection between G} and S% can be translated to a connection between G and
V. In [17], Zambella independently proved the results that are in [1], but his proofs were

in the second order setting.

The theory V? is an important base theory. We know V? corresponds to AC? [7]
and bounded depth Frege [11]. Since many complexity classes have problems that are
complete for the class under AC? reductions, it is possible to construct theories that
correspond to those complexity classes by adding a single axiom. For example, VTCY,

VNC!, and VL are constructed this way.

In [8], Cook and Morioka defined the second order theory VNC!. As well, they
developed the proof system Gf, which is defined slightly different than it is in [11]. They
showed that $F theorems of V NC* could be translated into a family of tautologies that
have small G} proofs. That is, G simulates VNC!. They also showed that the G}

witnessing problem is complete for NC*'. This shows the three-way connection between

VNC', G§, and NC".

In [17], Zambella defined V L, which he called f-rec. He gave an informal argument
that showed that V' L corresponds to L. However, the point of the paper was not to

examine V'L so little else is known about it. In particular, there is no known proof system
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that corresponds to VL. A possible reason is that the axiom ¥Z-rec does not describe a
total function in L since the output can be found in L only under an assumption, which
is part of the axiom. The translation of this axiom would give a family of tautologies
that do not belong to a class of formulas that can be evaluated in L.

In this work, we will define GL*, a proof system that corresponds to VL and L. We
reformulate the ¥ -rec axiom to get a new theory VL', which is equivalent to V' L. Then
we prove tautologies of V' L can be translated into a family of tautologies with small GL*
proofs using a V' L' proof of the theorem.

The rest of the document is organized as follows as follows. The next chapter defines
the complexity class L and the corresponding function class F'L, and a recursive definition
of FL is given. Chapter 3 defines the theories VL and V'L, which are the main theories
used in this work. Chapter 4 defines the proof system G'L*, the main contribution of the
thesis. Chapter 5 shows the connection between the V L and GL*, which shows that GL*

has the complexity we want it to have.



Chapter 2

Log Space Computation

2.1 The Complexity Classes L and F'L

Before we can define theories and propositional proof systems that corresponds to log
space computation, we must know what we mean by log space computation. We cannot
use a standard single tape Turing Machine 7'M because, in general, the amount of space
the T'M would be allowed to use is smaller than the size of the input. So we will use a
slight modification of the standard T'M. We will use a T'M with 2 tapes: a read only
input tape and a read-write right-infinite work tape. The work tape alphabet is {0, 1},
and initially the work tape is 000.... We use this convention so the contents of the work
tape can be easily represented by a binary string. There are two kinds of inputs: number
and (binary) string. Number inputs are natural numbers and will be input in unary.
We will use lower case letter a, b, c,... to represent number variables. String inputs will
represented as binary strings where the rightmost symbol of the string is 1 or a single 0 if
the string is all zeros. We can think of a string as a finite subset of the natural numbers.
On the input tape, inputs will be separated by a blank symbol L. For example, if the
input is (3,4,001010101, 1001) the input tape will be 1111J11111J00101010111001. From

now on, we assume all M follow these conventions. Let M be a TM. Then M(zZ, X)



CHAPTER 2. L0OG SPACE COMPUTATION 5

will denote the output of the machine M as a boolean value.

Formally, a TM is a quadruple M = (Q, qaccept; Greject, 0), Where @ = {qo, ..., gm} is a
set of states with gy as the initial state, gaccept, Greject € @ are the accepting and rejecting
states, respectively, and ¢ is the transition function (with the condition that § does not
write on the input tape). The function § is undefined for the states gaccept a0d Greject
since M halts when it enters those states. M (%, X ) is true if M halts in the ggecepr State
on input (Z, X ). We define s, (Z, X ) as the number of squares visited by the work-tape

head during the computation with input (Z, X ). Now we are ready to define L and FL.

Definition 2.1.1. A relation R(#, X) is in L if and only if there exists a TM M such
that M(Z,X) < R(Z,X), and sy (&, X) < O(logo(3. 7 + 3 |X|)).

To define the corresponding set of functions, we use the general definition given in
[7]-

—

Definition 2.1.2. Let C be a class of relations. A number function f(Z, X) is in FIC
if the graph of f, f(Z, )?) = z, is a relation in C and f(a_c',)z) < p(Z, \X\) for some
polynomial p.

A string function F(Z, )2) is in F'C if the bit-graph of F, F(Z, )?)(z), is a relation in

C and |F(Z, X)| < p(&,|X|) for some polynomial p.

FL, the class of functions computable in log space, is defined this way.

2.2 The Language Lp;

In this section, we define a language Lry. This language is defined so that we have an
alternate method of showing a function is in F'L. This method will be useful when we
start proving connections between our theory of bounded arithmetic and F'L.

The language extends £%. There is at least one function symbol in Lgy for every

function in F'L. The given recursive scheme is based on a scheme in [13]. The p-bounded
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number recursion is equivalent to the log-bounded string recursion given in [13]. The
other schemes come from the definition of Lpaco in [7]. In the next definition, we define

the set of function symbols in Lr; and give their intended meaning.

Definition 2.2.1. The language Lpy, is the smallest language satisfying

1. £% U {pd, min} is a subset of Lr; and have defining axioms B1-B14, L1, and L2,

(see section 3.1 for these axioms) , and the axioms

pd(0) = 0 (2.2.1)
pd(z+1) =z (2.2.2)
min(z,y) =2z < (z=zANz<y)V(iz=yAy<x) (2.2.3)

2. For every open formula a(i,Z, X) over Lpy, and term t(Z, X) over L%, there is a

string function F,; in Lz, with bit defining axiom

Fou(7,X)(i) <= i<t(@X)Aa(i,7,X) (2.2.4)

3. For every open formula a(z,#, X) over Lr;, and term ¢(Z, X) over £2, there is a

number function f,; in Lr;, with defining axioms

fa,t(fai) S t(f: X) (225)
z<t@X)Na(z @, X) = a(fas(@ X), 7, X) (2.2.6)
2 < far(@,X) = —a(z, 7, X) (2.2.7)

4. For every number function ¢(Z, X) and h(y, Z, X, p) in Ly, and term ¢(y, Z, X ) over

L%, there is a number function fy,(y, Z, X) with defining axioms
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Font (0,2, X) = min(g(, X), (7, X)) (2.2.8)

—

fons(y +1,7,X) = min(h(y, 7, X, f(y, 7, X)), (7, X)) (2.2.9)

The last scheme is called p-bounded number recursion. It is not difficult to see every
function in Lpy, is in F'L. The only point we should note is that the intermediate values
in the recursion are bounded by a polynomial in the size of the input. This means, if we
store intermediate values in binary, the space used is bounded by the log of the size of
the input. So the recursion can be simulated in log space. We now show every function
in F'L has at least one function symbol in Lry that corresponds to it. The idea behind
the proof is that the transition from one configuration of a 7'M to another configuration
can be done in AC?, and, since the contents of the work tape are not too large, we can

simulate the computation of the 7'M using the number recursion.

Theorem 2.2.2. Let R(Z, X') be a relation in L. Then there is an open formula o over

the language Lpy, such that R(Z, X) <= «(Z, X).

Proof. Let M = (Q, Qaccept; Greject; 0) be the TM that accepts R with sp(Z, )Z") < ¢ X
10g2(>" Z+ 3| X|) + ¢. The first thing to do is to define number functions ns(s, v;, vy,),
wt(s, vi, vy), and it(s, v;, vy,), which give the parts of the tuple output by J. Let s be the
number of the current state, v; be the symbol on the square currently being read by the
head of the input tape, and v,, be the symbol on the square currently being read by the
head of the work tape. Then ns(s,v;, v,) is meant to be the next state, as defined by §.
The function wt(s, v;, v,,) and it(s, v;, v,) are meant to represent the action taken by the

work tape and input tape, respectively. More specifically,
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0, 0 was written;
1, 1 was written;
wt(s,v;,Vw) = 2, the head moved to the left;

3, the head moved to the right;

4, no action was taken.
\

The function #t(s, v;, v,) has a similar meaning, except it can never have the value 0
or 1 since the input tape is read-only. For all these functions, if s is a halting state no

actions is to be taken.

All these functions are easy to define. Therefore ns will be the only one defined

explicitly. Let ¢(Z, X) be the constant term |Q|. Let

,3((], S, Uiavw) —syn /\ (8 = S,/\UZ' = ’U;/\’Uw = U:U — q = qn)\/(s = H/\q = 3)’
(8' 0],V ) EQXEr X Ew

where 6(s', v}, vl,) = (qn, in, w,) for some i, and w, and Xy and Xy are the alphabets for

the input tape and work tape, respectively. Then the function ns is the same as fz;.
The rest of the proof is dependent on how a configuration is represented. Configu-
rations will be represented by numbers. The number is interpreted as a 4-tuple. If the
current configuration is (w, py, p;, s), the content of the work tape is the binary represen-
tation of w, the work-tape head is on the p,th square of the work tape, the input-tape
head is on the p;th square of the input tape, and the current state is ¢,. Let n be
the size of the input. Then the number of squares used on the work tape is bounded by
¢1 Xloga(n)+cy. Thisimplies w < gerxloga(n)te2 — 9e2 s pet - Algo, p,, < logs(w) < 292 xn,
pi < n, and s < |Q|. Putting all of this together, we know a number representing any
configuration of M is less then a polynomial in n. Let (%, X ) be a term that bounds
this polynomial. We will use ¢ as the bounding term when we use the p-bounded number

recursion. Now to define the functions we will use.

Now we can define init(Z, X), which returns the initial configuration of M with the
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given input. This is simple because the work tape is empty with the head in the first
position. The initial state is ¢y and the head of the input tape is at position 0. Note
there is no mention of Z or X ; 80 init(¥, vecX) is a constant function, which is obviously
in Lrr.

Next we need to define next_config({w, pw, pi, s), T, X") For this we let

7(<w,,p{w,pg,8,>a<wapw,pi,8>af))2) <~ s = ns(s,vi(pi,f,)z),bit(pw,w))

—

)

)

)=4 = py=p, ANw=u'

) =0 = py = pl, ANw = set(py,w')
)

=1 = py =D, N set(py,w) =w'

This formula simply looks at the possible outputs of the transition function and makes
sure the configuration changes appropriately. Then it is easy to see that next_con fig({w, py, p;, ),
is fy:((w, pw, Dis 8), T, X ). With these two functions, we can define fini newt_config (M, Z, X ),
which gives the configuration of machine M with input (Z, X) at time m. It is well known
that any T'M that has logarithmic space bounds and that halts on every input will halt
in polynomial time: there is only a polynomial number of possible configuration. Let

t'(x) be a term that bounds the runtime of M. Then we get
R(f, X) — <finit,newt_config,t (tl (f, )?)1 f, X));i = qaccept,

where (a)1

mn 18 the inverse of the tupling function: it returns the mth element of the

n-tuple represented by a. This works because it essentially runs the 7'M until it halts

and then checks if it is in the accept state. O

7, X

)
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By the previous theorem and the definition of F'L, we get the following corollary.
Corollary 2.2.3. The function symbols in Lry, represent precisely the functions in F'L.

Proof. Let F(Z, X) be a function in F'L. Then the bit-graph of F' is in L. By theorem
2.2.2, there is an open formula a(i, #, X) in Lx;, such that F(Z, X)(i) < a(i, 7, X).
We also know there is a polynomial bound on |F(Z, X)|, so it follows there is a term

t(Z, X ) such that F' = Fppe,. A similar argument can be made for number functions. 0O



Chapter 3

Bounded Arithmetic

In this chapter, we introduce the theories of bounded arithmetic we will use. These
are second order theories, as was mentioned in the introduction. Many theories are
constructed by adding an axiom to the theory V° so we will take a quick look at this

theory.

3.1 V' and Its Properties

V0 is defined over the language £%. The language includes the functions + and x, which
have their usual meaning, and the constants 0 and 1. The language also includes two
functions string. The first is the size of a string, |X|, and the second accesses the bits
of the sting; X (i) is true if the the ith bit of X is 1. V? is axiomatized by the following

axioms:

11
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Bl.z+1#0 B8 (z<yAy<z) = x=y

B2 z+1=y+1 = 2=y B9.0+1=1

B3. z+0=2z B10. 0< ¢

B z+(y+1)=(x+y)+1 Bll.z<yAy<z = z<z

B5 2x0=0 B12. z<yVvy<z

B6. zx(y+1)=(zxxy)+z Bl3. z<y < z<y+1

Bl. zr<z+y Bl4. 2 #0 = Jy<z(y+1=1x)

Ll. X(y) = y < |X| L2. y+1=|X| = X(y)

SE — COMP: 3Z < yVi < y(Z(i) <= ¢(i, 7, X)), where ¢ is £5.

The axioms B1 — B14, L1, and L2 are known as the 2-BASIC axioms. These axioms

define the functions and relations in £%. This theory has been extensively studied. We

will mention a few properties of VV? that will be used later.

Theorem 3.1.1 ([7] Theorem 2.11). V° proves the following schemes:

$¥ —IND : [¢p(0) AV2(p(2) = d(z+1))] = Vzo(2)

and

55 — MIN : [32¢(2)] = Fz[d(2) AVy < 276(y)],

where ¢ is any S§ formula.

Researchers are often interested in determining whether or not a theory is finitely
axiomatizable. For some theories, this is an important open problem, but for V0, it is
known that it is finitely axiomatizable [9].

The final property we are interested in is that V° corresponds to AC°. To make this

connection, we are interested in finding what functions are definable in the theory.

Definition 3.1.2. Let ® be a set of formulas over a language £, and let 7" be a theory

over the same language. Then a string function F(Z, X ) is ®-definable in 7T if there exists
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a formula ¢ in ® such that
oz, X)Y) = F@#@X)=Y
and
T+VIVXAY $(Z, X,Y).
A similar definition exists for number functions.

Essentially, this definition says that 7" proves the function is total and has a unique
output. Using this definition we can state the connection between V° and AC°® more

formally.

Theorem 3.1.3 ([7] Theorem 2.26). A function is ©2 definable in VO if and only if
it is in FACO.

3.2 The Theory VL and VL

3.2.1 Definition of VL and VL

In this section, we define two theories that correspond to F'L. The first is V L, which is

the same as X5-rec [18]. The main axiom of V'L is the X — rec axiom:

Ve <ady <aX(z,y)] = 3Z,Vw < bz < aZ(w, z)
AVw < WV < aVy < a[Z(w,z) AN Z(w+ 1,y) = X(z,y)].

(3.2.1)

In this formula, Z is a path in the directed graph with a nodes and edge relation X. The
formula says that if every node has out-degree at least 1, then there is a path of length

b. If Z(w,x) is true, then z is the wth node in the path. We now define VL.
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Definition 3.2.1. VL is the theory axiomatized by the axioms of V? plus the X — rec

axiom.

Since V' is finitely axiomatizable, and V' L has only one more axiom than V°, we get

the following corollary.
Corollary 3.2.2. V'L is finitely axiomatizable.

Since V'L in an extension of V°, V'L proves everything that V° proves, including the
Y8 — MIN and ©f — IND formulas.
One drawback of the X — rec axiom is that we do not know where the path starts.

To get around this problem, we show, as in [18], that V' L proves the following scheme:

Vw < Vz < ady < ap(w, z,y)] = 3Z,Vw < b3z < aZ(w, )
ANVw < Wz < aVy < alZ(w,2) N Z(w+1,y) = o(w,z,y)],

(3.2.2)

where ¢ is a X formula. This formula says there exists a path, as in the X — rec axiom,
but, in this formula, the graph can change after every step. To get a path that starts
at a particular node s, we make every edge go to s for the first step; then we continue
with the original graph. After removing the first node in that path, we have a path in

the original graph that starts at s.
Theorem 3.2.3. VL proves Formula 3.2.2

Proof. We define

Y((x, w), (Y, 2)) =syn (W, z,y) AN(w <bAz=w+1)V(w=>bA2z=0)|.

This formula gives the edge relation of a graph in which the nodes are pairs. The first

element in the pair is a node in the original formula. The second element represents its
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position in a path of the original formula. So an edge from (8,4) to (3,5) means, if 8 is
the 4th node in a path in the original formula, then 3 is a potential 5th node. When we
have reached the end of the path, we start over; that is, we go from (8, b) to say (3,0).
Using X — rec, we can find a path Z of length 20 4+ 1 in the graph of . We now
find a continuous sub-path of Z that has the form (z1,0) ... (x,b). One of the first b+ 1
nodes in the path must have the form (z1,0): there are only b+ 1 possible values for the
second element. Then the following b elements complete the path. We can define a path
in the original formula as Z'(i,x) <= x = ;. This Z’ witnesses Formula 3.2.2, and

the proof is complete. O

Our goal is to show that V L corresponds to F'L in the same way V° corresponds to
AC®. We will use the method that was used in [7] to show that V° corresponds to ACP.
The idea is to define a universal theory V'L that has a function symbol for every function
in F'L. Once we show this theory is a conservative extension of V L, we use a second
order version of the Herbrand Theorem to show a function is £ definable in V'L if and
only if it is in Lgy.

V'L is defined over the language Lpz. This ensures there is a function symbol for
every function in F'L. As for the axioms, V'L has the defining axioms for every function
in F'L, and a modified version of the 2 — BASIC axioms. B14 is removed because of the
existential quantifier. This is OK since there is a predecessor function pd in L, with
the two defining axioms 2.2.1 and 2.2.2, which can be used to prove B14. Now we define

VL.

Definition 3.2.4. VL is the theory over the language L£r;, with axioms B1-B13; 2.2.1;
2.2.2; L1; L2; axiom 2.2.4 for each string function F,; in Lp; axioms 2.2.5, 2.2.6, and
2.2.7 for each number function f,; in Lrr; and axioms 2.2.8 and 2.2.9 for each number

function fg4 in Lpr.

Since L 4co0 is contained in Ly, we can see V' L is an extension of V0 | and therefore
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VL proves the 2 — BASIC and ¥¥ — COM P axioms (see [7]). To show that VL proves
the X — rec axiom, we define a number function zmin(a, X), which returns the index of
the first bit in X that is set to 1 or a, whichever is smaller. The function is defined as

follows:

zmin(a, X) =1 <= (i<a = X)) AVj <i=X(j).

It is easy to see this function is in Lpy, since it has a LJ definition. Now define

path(a,b, s, X) as

path(a,0,s,X) =s
(3.2.3)

path(a,b+1,s,X) = xmin(a’X[path(a,b,s,X)}),

where XU(j) <= X(i,7). The function path finds a path that starts at node s in the
graph with edge relation X and a nodes; then the next node is found by searching for
the first node that is adjacent to the current node. If no such node exists, the next node
is a, and we continue as before. The value of path(a,b, s, X) is x when z is the bth node

in that path. Then we can witness the X — rec axiom with

PATH(a,b, X)(w,z) <= z<aAw <bAz = path(a,w,0,X).

The variables a,b, and X are the free variables in the X — rec axiom, and the string
output by PATH is the Z the axiom says exists. This shows that V'L is an extension of
V L. So now we want to show this extension is conservative.

Let OPEN(L) be the set of formulas over the language £ that do not have any

quantifiers, number or string.
Theorem 3.2.5. VL is a conservative extension of V L.

Proof. We have already shown VL is an extension of VL. We now want to prove the
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extension is conservative. This is done by showing that every function in Lpy, is ¥58
definable in V'L and its defining axioms can be proved from the X2 definition. Then it

follows that V'L is a conservative extension of V L.

We will actually prove something stronger. Let 7" be a theory over the language £ that
is a conservative extension of VL. Suppose that £ contains all the functions necessary
to define f € Lpy or F € Lpy, and that T proves OPEN(L) — COMP. Let T+ be the
theory over the language £+ that extends 7" with an axiom defining the new function.
Then T+ is a conservative extension of 7, and T+ proves OPEN(L+) — COMP. This

proof is done by induction on the number of functions needed to define the new function.

For the base case the function is pd, min, or in £%. In this case, the theory T is VL,
and it is easy to see that the function can be § defined since it is an AC? function, and

that VL proves OPEN(L+) — COMP

For the inductive step, let o be an open formula over the language £, and let ¢ be a

term over £%. We look at two cases based on the definition of Ly, (see Definition 2.2.1).

In the first case, we add f =, fo to £ and the defining axiom

fO0=2 < VI <zma(Z)AN[(a(z) Az <t)Vz=1]

to T to get the theory T+ over the language £+4. We show that T+ is a conservative
extension of T'. Since T proves the OPEN(L)—MIN formulas, which can be proved from
the OPEN(L) — COMP axioms, T proves that there exists a unique output for f, the
minimum value satisfying « or ¢ if no such value exists. Therefore 7'+ is a conservative

extension of 7.

So now we want to show T+ - OPEN(L+) — COMP. Let a be any open formula
over the language £. We proceed by induction on the number of occurrences of f in a.
For the base case, suppose a does not mention f. Then T+ proves comprehension for

—

this formula since T proves OPEN (L) — COM P. For the inductive step, let f(5,5) be a
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term in o, where § are number terms that do not mention f and S are string terms that

—. —,

do not mention f. Let o/(z) be o with f(5,5) replaced by z; that is a =4, &/(f(5,5)).

Since « is open, it is easy to see
T+t z=f(35) = a0 < do(2)]

So by induction, T+ proves comprehension for o'. Since T+ proves that 3z, z = f(5, S )

we know 7'+ proves comprehension for a.

For the second case, we add the function F,; to £ and add the defining axiom
FO)(i) < a(i)Ni<t.

Since T proves OPEN(L) — COMP, T proves there exists a unique output for F;
therefore the extended theory is a conservative extension of T'. It is also easy to see the
new theory proves OPEN(L+) — COMP; the same argument as in the previous case
can be carried out, except the number variable z becomes a string variable Z.

For the final case, we want to add a function f =, fs4+ Where g,h € Land tis a
term over L£%. This covers the last method of constructing functions in Definition 2.2.1.
Let

Bw,i,§) =gym i <t AJ < EA[R(w,d) =5V (j < h(w,i) Aj =1)].

The formula gives us the next value for f defined by Formula 2.2.9. By the previous case
and by Lemma 3.2.7 (see below), we can assume F' =, Fj .,y and path are in L. If

they are not, we can add them. Let the defining axiom for f be
f(i) =2z < path(t,i,9(), F()) = 2.

Since T proves g, F', and path have an output, the same goes for f. Also, by an argument

similar to the previous cases, the new theory proves OPEN (L+) — COMP. O]
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Corollary 3.2.6. (1) Every function in FL can be ©8 defined in VL, and its defining

azioms proved. (2) Every function X8-definable in VL is in FL.

Proof. (1) follows directly from the previous theorem. To prove (2), let 37 < tA(Z) be
a X8 formula provable in V L. Then it is provable in V'L since V'L is an extension of V' L.
Since VL is universal, we know from the Herbrand Theorem there must be a function
F in Ly such that VL proves A(F()) (see [7] Theorem 2.19). This means the function
YB_defined by 37 < tA(Z) is F, which is in FL. O

So all that is left to do is prove that path is £ definable in V L and the theory with
path proves open comprehension with the new language.

Lemma 3.2.7. Let £ = L% U {path}, and let T be the theory over the language L with

the axioms of VL and the defining axiom

path(a,b,s,X) =2z <= 3Z,Vi < a[Z(0,i) <= i=s]
AVj < BVi < alZ(j+1,i) <= Tk < a(Z(j,k) Ai = zmin(a, ZM)]
N Z(b, z).
(3.2.4)

Then T is a conservative extension of VL and T+ OPEN(L) — COMP.

Proof. To show that T is a conservative extension of V'L, it suffices to show that VL

Az, ¢(z, w, T, X ), where ¢ is the ©F formula that defines path. The first step is to prove

3ZVi < a[Z(0,i) <= i = 3] (3.2.5)

AVj < BV < a[Z(j+1,7) < 3k < a(Z(j, k) Ai=zmin(a, ZM))]
Let

w(wai,ja S,(Z,X) :Syn[w =0 = ] = 8]
(3.2.6)

A0 <w = j=azmin(a, X)]
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Then existence follows from ¥f — COM P with this formula and Formula 3.2.2.

Suppose Z; and Z, both witness Formula 3.2.5. We want to show that Vi < bVj <
a,Z,(i,j) <= Z5(i,7). This is done by induction on i. The base case is easy. Vj <
a,71(0,7) <= Z5(0,j) is true; otherwise s # s, which is not possible. As the inductive
hypothesis, suppose Vj < a,Z:(i,j) <= Z5(i,j). If Z1(i + 1,7) is true, then there
exists a j/ < a such that Z,(i, ') and j = amin(a, XVU'1). By the induction hypothesis,
Zs(i, j'") is true, which implies Z5(i, j) since xmin has a unique output. Doing the same
argument in other direction implies Vj < a, Z1(i + 1,j) <= Z2(i +1,7). Since VL
proves 8 — IND, the induction can be done in VL.

The next step is to prove that, for any witness Z to 3.2.5, Vw < b,3z < a, Z(w, 2).
This would imply a unique z for ¢. This is true since our construction of Z that shows
existence showed that it also satisfies Formula 3.2.2. This means path is ©2 definable in

V'L and T is a conservative extension of V' L. To prove that 7' proves OPEN (L)—COMP,

we can carry out the same argument at in Theorem 3.2.5. U

Before we move on, we should note that VL proves ¥ (Lpr) — COM P. This follows

from the next lemma.

Lemma 3.2.8. For every S8 (Lr1) formula ¢ there is an OPEN(Lpy) formula o such
that
VLF ¢ < .

Proof. The proof is done by induction on the number of quantifiers in ¢. If there are

none, then we are done. For the inductive step, suppose

O =syn 32 < 1Y(2).

By induction there exists an open formula 3 such that VL  ¥(z) <= fB(z). Let

f=fst Then T+ ¢ <= B(f()). The construction for other connectives is left to the
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reader. O

3.2.2 VL and VTC"

In this section, we want to show that V'L is an extension of VT'C? [15], which corresponds
to TC®. To show that VL extends this theory, it suffices to show that VL proves its
axioms. Because this theory is axiomatized by the axiom of V° plus the NUMONES

axiom (see below), all that is left to show is that V L proves that axiom.

Lemma 3.2.9. VL proves the following formula:

NUMONES :VX3Y, $,(X,Y) A ¢5(X,Y),

where

91X, Y) =gy Vi < | X3 < [X[[Y (G 5) AY(0,0)]

and

$2(X,Y) =gpn Vi < | XV < [X|[(Y (i, ))AX (D) = Y(itL j+D)AY ()A-X () = Y (i+1,7))]

Proof. Define

o ((i1,p1), (i2,p2), X) =syn t2 =11 + LA (X (i) = pa=p1 +1)A (=X () = p2=p1).

Then VL proves that there exists a path of length |X| that starts at node (0,0) in the

graph with edge relation ¢. It is easy to observe this path satisfies NUMONES. O

This lemma implies V'L is an extension of VT'C?. Since VTC° proves

X —PHP:|Vz<ady <aX(y,2)] = [Ty <adz <adz < 21(X(y,21) A X(y, 22))],
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we get the following corollary.
Corollary 3.2.10. VL proves the X8 (Lr1) — PHP
Proof. VL prove X — PHP scheme and the 2(L;) — COMP scheme. O

This will be useful later on. This also implies V' L can define string multiplication and

prove its basic properties.



Chapter 4

Propositional Proof Complexity

In propositional proof complexity, we are interested in finding lower bounds on the size
of proofs in proof systems. As it turns out, there are connections with computational

complexity and bounded arithmetic.

4.1 The Proof System G and Its Fragments

The first proof systems correspond to small complexity classes such as AC? and NC".
Frege systems are known to correspond to NC' [7]. There was a need to find a way to
extend Frege to find proof systems that correspond to larger complexity classes. One
method is to add an extension rule, which gives extended Frege. Another method is
to move to the quantified propositional calculus. In [12], Krajicek and Pudlak defined a
proof system G for the quantified propositional calculus, and they examined its fragments.
Later G* was defined by restricting G to treelike proofs.

We will work with the definition of G given in [14, 8], which is slightly different than
the definition in [12]. The set X§ = ITIJ will be the set of all quantifier free propositional
formulas. Then XY is the set of formulas of the form 3z, A(Z, %), where A € II] ,, and II]
is the set of formulas of the form VZ, A(Z, Z), where A € X7 ,. Note that this definition

only allows formulas that are in prenex form; that is the formula has all quantifiers in

23
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front then a quantifier free part. Also note that free variables will be denoted by x and
bound variables are denoted by z. The notation Z is used to denote the free variables
Z1,%9,...,Ty,, for some n. The same for Z with bound variables.

The proof system G is an extension of Gentzen’s sequent calculus PK, which is LK
for the propositional calculus (see [6] for a description of PK). The axiom schemes are
the same: A — A, for any atomic formula A; 0 —; and — 1. The rules of inference

include the rules of PK plus four quantifier rules:

lof A(z), I - A L right ' - A A(B)
AR, T 5 A YT A 3A()
['— A A(z) ) A(B),I' —- A
: -righ
Voleft — A, VzZA(2) v-right VzA(z), T — A

where x does not appear in the bottom sequent of the J-left and V-right rules, and B
is a 3¢ formula that does not mention any z-variable. For any formula in T or A, the
formula in the upper sequent is the direct ancestor of the corresponding formula in the
lower sequent. The formula A(B) and A(z) are direct ancestors of the formula 3zA(z)
in the appropriate rule. The direct ancestor relation is defined similarly for every other
rule. The ancestor relation is the transitive closure of the direct ancestor relation.

The proof system G} is the proof system G* with cuts restricted to X formulas.
Suppose 7 is a proof in one of these proof systems. Then a variable x; is a parameter

variable if it appears in the final sequent.

4.2 Y.CNF(2) Formulas

The fragments G}, and G} were shown to correspond to NC! and P, respectively [8, 11].
This means that, in our proof system, cut formulas should be restricted to some subset

of the X{ formulas. As well, the formulas should somehow relate to L.
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To this end, we look at CNF(2) formulas. A formula is a CNF(2) formula if it is
a C'NF formula and no variable appears more than twice in the formula. The problem
SAT(2) is given a CNF(2) formula determine whether or not it is satisfiable. In [10],
Johannsen showed that SAT(2) is L-complete.

The class of formulas C NF'(2) is not the class we are looking for. Notice that SAT
is N P-complete, but G} corresponds to NC'. The reason is a formula can be evaluated
in NC'. We will work with this idea, and we will develop a class of formulas where

evaluating a formula is L-complete.

Definition 4.2.1. The set of formulas XCNF'(2) is the smallest set:

1. containing ¢,

—

2. containing every formula 32, ¢(Z, £) where (1) ¢ is a quantifier-free CNF formula
Nir, C; and (2) existence of a z-literal [ in C; and Cj, 7 # j, implies existence of

an z-variable x such that z € C; and -z € C; or vice versa, and

3. closed under substitution of X! formulas that contain only z-variables for z-variables.

There is a problem when we parse these formulas. There is an ambiguity when
a formula with principal connective V replaces an z-variable. We cannot tell if two
variables were replaced or just one. To remove this ambiguity, we assume some parsing
information is given. In particular, we assume we know which V’s separate elements in
a clause and which are part of a formula that replaced a free variable.

The problem EVAL(XCNF(2)) is, given a XCN F(2) formula and an assignment to

the free variables, does the formula evaluate to true.
Lemma 4.2.2. EVAL(XCNF(2)) is L-complete.

Proof. We begin by showing that the problem is L-hard. Let SAT(2)~ be the same

problem as SAT(2) except the formula does not contain any pure literals. A pure literal
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is a literal that appears positively, but not negatively, or vice versa. This problem is
L-complete [10]. Let F(#) be a CNF(2) formula with no pure literals. This means no
literal can appear more than once; otherwise its negation could not appear, and it would
be a pure literal. This means that 32, F(?) is a SCNF(2) formula, and F'(Z) is satisfiable
if and only if 32, F'(Z) evaluates to true, by definition. This means EVAL(XCNF(2)) is
L-hard.

So now we prove EVAL(XCNF(2)) isin L. Let 32, F(Z, Z) be a XCNF(2) formula
that has form 2 from the definition. Given an assignment to the free variables, we are able
to simplify F' in the obvious way to get F'. Then we claim that F’ is a CNF'(2) formula.
To prove the claim, note that a literal will appear at most once in " by property (2); this
means a variable will appear at most twice. Also, F' is a CNF formula by property (1).
We can now check the satisfiability of F’. For the next case, suppose 7 is substituted by
é, where the Bs are X{ formulas. Then we simply evaluate the Bs, which can be done
in NC', and do as in the first case. The final case is if F' does not have any quantifiers.

Then the formula can be evaluated in NC'. O

4.3 The Proof System GL*

Since L is between NC' and P, we want to find a proof system between G}, and G?. This

proof system will be GL*, and is defined as follows.

Definition 4.3.1. GL* is the propositional proof system G* with cuts restricted to
Y. CNF(2) formulas in which no cut formula that is not ¢ contains a non-parameter free

variable.

Recall a parameter variable, with respect to a proof, are those that appear in the
final sequent of the proof. Note that GL* extends G since every cut formula in Gf is
Y4, which is a valid cut formula in GL*, and G7 extends GL* since every cut in GL* is a

valid cut in G7. This means our proof system corresponds to a complexity class between
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NC" and P. Later we show that it corresponds to L.

4.3.1 Justifying the Restrictions

Before we continue, we should examine the definition of GL* to try to understand the
reason for the restrictions. Intuitively, restricting cuts to YXC'NF(2) formulas is under-
standable since evaluating those formulas is complete for L, but why should we restrict
the free variables in the cut formulas? As it turns out, without this restriction, the proof
system corresponds to P, which we now prove.

At a high level, if we allow non-parameter variables in the cut formulas, we are able
to prove there exists an output to a given circuit by repeated nesting of variables in cut
formulas. This is a problem since determining the output of a circuit is P-complete.

Let H* be the proof system G* with cuts restricted to XCNF'(2) formulas and no
restriction on the free variables. We will show that H* p-simulates G7. This means that,
unless L = P, H* does not correspond to L. This is because the G and, by this result,

the H* witnessing problems are P-complete.

Definition 4.3.2. An extension cedent A is a sequence of formulas

A:syn Y1 < Bl,yg < BQ,...,yn e Bn (431)
where B; is a 3§ formula that does not mention any of the variables y;, ..., y,. We call
the variables ¥, ..., 1, extension variables.

Based on a lemma in [11], Cook proved the following lemma in [6].

Lemma 4.3.3. If 7 is a GT proof of 3ZA(Z, %), then there exists a PK proof ©' of

A = A(Y, %)

where A is as in 4.3.1 and |7'| < p(|x|), for some polynomial p.
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The proof guaranteed by this lemma is also an H* proof since every PK proof is also
an H* proof. Extending this proof with a number of applications of J-right, we get an
H* proof of

A — 32 A(Z, 7). (4.3.2)

So now we need to find a way to remove the extension cedent A. This is done one
formula at a time. Suppose y <= B is the last formula in A. We will show that there

are small H* proofs of a sequent of the form

Ci(r1)y-- -, C(rm), Ca(y) = [y < B, (4.3.3)

where Jz;, Ci(2;) is a SCNF(2) formula and C; is equivalent to r; <= D; where D;
does not mention r;,...,7r, or y. The variable r; is meant to refer to a subformula of
B. Note that the left side of the sequent is equivalent to an extension cedent. To make

things simpler, we will refer to C; by the equivalent formula r; <= D;.

Lemma 4.3.4. H* has proofs of sequents of the form 4.3.3 where the size of the proof is
bounded by the size of B.

Proof. The proof is done by structural induction on B. For the base case, suppose B is

atomic. Then B =, y' for some variable y'. There are small H* proofs of

y = 1y -y = v

Since 3z, (~z Vy') A (2 V —y') is ECNF(2), we have completed the base case.

For the inductive step, suppose B =;,,, C' A D. Then there are proofs of

AN -y <= C
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and

AQ—)yQ ~— D.

Since the proofs are treelike, we can assume the extension variables of A; and A, are

disjoint. We can easily combine these proofs to get a proof of

A, N,y <= y1 ANyy >y < B.

Since the proof does not require any quantifiers, it is easy to see the proof is a valid H*
proof. Looking at

dy,y <= y1 ANy,

we see this formula is equivalent to

y, Cy Vy) Ay V- V) Ay Vo Vo)

which is a XCNF(2) formula.
When B =,,,, CV D or B =, —~C, the proof is similar. Looking at the construction,

it is easy to see the size of the H* proof is bounded by a polynomial. O

From this lemma and the sequent 4.3.2, we are able to prove the following:

Aiy. Ay — 32, A2, 2), (4.3.4)

where each A; is the extension cedent from the lemma for each formula in A.

The final step is to cut the A;s. This is easy. Start with the last formula of A,. Let
that formula be y <= D. We apply 3-left with y as the eigenvariable. The variable
restriction is met by the definition of an extension cedent. Then we can cut that formula
since we can prove dz,z <= D from D <= D.

This proves the following theorem.
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Theorem 4.3.5. H* p-simulates G
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Chapter 5

Connecting L, VL, and GL*

We have already shown the connection between L and V' L (see Corollary 3.2.6). In this
section, we demonstrate the connection between VL and GL*. Then, as a corollary, we
will show the connection between L and GL*.

To connect VL and GL*, two things must be shown. To show that our proof system
is powerful enough, we show that X2 theorems of V' L can be translated into a family
of tautologies that have polynomial size GL* proofs; that is, GL* simulates V L. This
is similar to the translation done in [8]. As a corollary, we can then show that the GL*
witnessing problem is L-hard. We must also show that GL* is not too strong. This
involves showing that V' L proves GL* is sound. Then as a corollary, the GL* witnessing

problem is in L. The soundness proof will be left to a later time.

5.1 Propositional Translations

We begin by proving the translation theorem. The translation that we use is described in
[7, 8]. It is a modification of the Paris-Wilkie translation (see [7]). Given a ©F formula
¢(&, X) over the language £2, we want to translate it into a family of propositional
formulas ||¢(Z, X)||[7i], where the size of the formulas is bounded by a polynomial in 7

and the value given to Z.

31
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The first step is to substitute constant values for all the number variables Z. For now
we assume ¢ has no free number variables. The formula ||¢(X)]||[] is meant to be a
formula that says ¢(X) is true whenever | X;| = n; and the number variables are equal to
the constants that replaced them. Then if ¢(X) is true for all X, then every ||¢(X)||[7] is
a tautology. Note that any term ¢ that appears in ¢ can be evaluated immediately. This
is because there are no number variables and the size of each string variable is known.
So we will let val(t(7i)) be value of the term. The variables 7 will often be omitted
since they are understood. The free variables in the propositional formula will be pfi for
j < n;—1. The variable pf" is meant to represent the value of the jth bit of X;; we know
that the n;th bit is 1, and for j > n;, we know the jth bit is 0. The definition proceeds

by structural induction on ¢.

Suppose ¢ is an atomic formula. Then it has one of the following forms: s =1, s < t,
X;(t), or one of the trivial formulas 0 and 1, for terms s and ¢. In the first case, we define
||#(X)]|[7] as the formula 1, if val(s) = val(t), and 0, otherwise. A similar construction
is done for s < t. If ¢ is one of the trivial formulas, then ||¢(X)||[77] is the same trivial
formula. So now, if ¢(X) =,,n Xi(t), then let j = val(t). Then the translation is defined

as follows: )

pyt ifj<mni—1
16 =sm {1 it j=my -1

0 ifj>n—1

Now for the inductive part of the definition. Suppose ¢ =, a A 5. Then

1S 1[73] =syn () [178] A 18CX)]I[7)-

When the connective is V, or —, the definition is similar. Let j = val(t). If the outer
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most connective is a quantifier, then the translation is defined as

13y < ¢, aly, X)||[7] =yn \/ [lee(s, X)) [7]
¥y < ¢, aly, X)||[77] =syn /\ [lee(i, X)) [7]

J
Y < t,0(Y, )] =g 30+, 30% 2 \/ oY, X)) 7
=0

j
VY < t, (Y, X)|[] =ayn YDy 5 - -5 YDy 95\ (Y, X)]][4, 7]
=0
This completes the definition.

The standard method of proving translation theorems is to translate a proof, where
every cut is an instance of an axiom, one formula at a time. We will use this method, but
there are a few complications. We need to be sure cut formulas in the V' L proof translate
into cut formulas in the appropriate form. This means that axioms must translate to
YCNF(2) formulas and that free string variables in cut formulas must be parameter

variables. These conditions are considered in next two sections.

5.1.1 The Theory VL’

We want to reformulate the axioms so they translate into XCNF(2) formulas. The
main issue is the X — rec axiom. At a high level, we will show how to reduce the path
problem defined by that axiom to a SAT'(2) problem (see section 4.2). Since SAT(2) is
L-complete, we know this is possible.

Now to look at the axioms. The ©¥ axioms translate to %f formulas, which are
YCNF(2). That leaves ¥ — COMP and ©¥ — rec. We are not going to worry about
¥8 —COM P; we will handle this axiom the same way Cook and Morioka did in [8]. That
is, if the proof system is asked to cut the translation of an instance the X — COMP

axiom, AXVi < t, X (i) <= ¢(i), then that cut becomes A/_,[||6(0)|| <= ||6()|l],
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which is YXCNF(2). So now we consider ©F — rec.

Let YF-edge-rec be the axiom scheme

37 < (b,a,a)[p1 A p2 A p3 A pa A ps A ps A prl,

where

p1 =gy Vj < a,=Z(0,0,7) vV ¢(0, ) V3l < jp(0,1))

P2 =syn Vj < aVk < 3,-Z(0,0,7) V=¢(0, k) v 3l < k¢(0,1))

p3 =syn Vi < aV¥j < a,i =0V =Z(0,1,7)

Pa =gy Y < Vi < aVj < a,~Z(w+1,4,5) VIh < aZ(w, h,i) V=i, 7) VI < jo(i,1)
P5 =syn YW < BVi < aVj < a,=Z(w + 1,4,7) V (i, 5) V Il < jd(i,1)

P6 =syn YW < Vi < aVj < aVk < j,~Z(w+1,4,7) V —¢(i, k) V 3l < ko(i, 1)

P7 =syn 4 < aEIj <a, Z(b’iaj)a

where ¢(i, j) is a 5§ formula that does not mention Z, but may have other free variables.
Informally this axiom says there exists a string Z that gives a pseudo-path of length b
in the graph with @ nodes and edge relation ¢(i, 7). This path starts at node 0. If (i, )
is an edge in this path, then j is the smallest number with an edge from 7 to j, or j = a
when there are no outgoing edges. Note that the edge may not exist in the original graph
when j = a. This is why we call is a pseudo-path. If (7, ) is the wth edge in the path,
then Z(w,1,j) is true, and Z(w, i, j') is false for every other pair. It is not immediately

obvious the axiom says this, so we will look at it closer.

Let Z be a string that witnesses the axiom. We want to make sure Z is the path
described above. Looking at ps, we see the path starts at 0. Suppose Z(0,0, 5) is true. We
must show that j is the first node adjacent to 0. This follows from p;, which guarantees

X(i,7) is true when j < a, and py, which guarantees X (i, k) is false when k£ < j. A
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similar argument can be made with ps and pg to show that every node is the smallest
node adjacent to its predecessor. To make sure the path is long enough, we have py,
which says there is a bth edge, and p4, which says if there is a (w + 1)th edge there is a
wth. As you may have noticed, there are parts of this formula that semantically are not
needed. For example, the 31 < j¢(0,1) in p; is not needed. It will be used later when we

show the axiom translates into a XC'NF(2) formula.

Notation. For simplicity, 1, is the string-quantifier-free part of the axiom instantiated

with ¢. Note this includes the bound on Z. So the axiom can be written as 3Z1)y.

So now we define the theory VL.

Definition 5.1.1. VL' is the theory axiomatized by the 2-BASIC, ¥¥ — COMP, and

Y8-edge-rec axioms.

We want to prove VL' is equivalent to VL. Then after we prove the translation

theorem with V' L', the translation theorem for V' L will follow.
Lemma 5.1.2. VL is equivalent to VL'.

Proof. To prove the two theories equivalent, we must show that V L proves the ¥F-edge-
rec axiom and that VL' proves the X-rec axiom.
To show that VL prove the 3F — edge — rec axiom, recall the path function (see

3.2.3). The string Z, defined as

Z(w,i,j) < path(a,w,0,X) =1iA path(a,w +1,0,X) = j,

witnesses the ©F — edge — rec axiom for ¢ when X (i,57) <= ¢(i,7). Since VL proves
there exists an output to path, it also proves Z exists.

To show that VL' proves the X-rec axiom, suppose Vi < a3dj < a, X(4,j). By the
Y8-edge-rec axiom, there is a pseudo-path of length b in the graph X. We need to show

that this is a real path. Suppose (7,j) is an edge in the path. If j < a, then (4, 7) is in
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the graph by p; and ps. Otherwise, j = a, and Vk < j—X (i, k). Then by the assumption
Vi < adj < a,X(i,j), this implies X (i, j). This means every edge in the path exists, and

there exists a path of length b. O
The next step is to be sure the translation of this axiom is a XCNF(2) formula.
Lemma 5.1.3. The formula ||3Z4(a,b, Z)|| is a SCNF(2) formula.

Proof. First we assume @(i,7) =syn X (4, j) for some variable X. It is easy to see that
x5 (a, b, Z)||[t, a* a], where t is the bound on Z given in the X§ — edge — rec axiom,
is a CNF formula. Note that we assigned |Z| =t and | X| = a * a. We now need to make
sure the clauses have the correct form. This is done by examining each occurrence of a
bound literal. To verify this, the proof will require a careful inspection of the definition
of the axiom.

The only bound variables are those that come from Z. These are z,; ;. The only free
variables are those corresponding to X. These variables will be z; ;.

We will first look at the positive occurrences of z,; ;. On inspection, we can observe
that, when w < b, every occurrence of z,;; must be in clauses that are part of the
translation of ps. So we want to show that every clause that is part of the translation
of ps has a conflicting free variables. This is true since —¢(i, j;) will conflict with one of
the variables from 3 < ji, ¢(4,1) when j; < jo. When w = b, the variable z,; ; appears
once in pz.

Now we turn to the negative occurrences. When w = 0, the variable z,; ; will appear
negatively in the clauses corresponding to pi, po, and ps. If 7 > 0, it will appear only in
the clauses corresponding to ps and will appear only once. If 7 = 0, the variable 2 o ; will
not appear in the translation of p; because the ¢+ = 0 part will satisfy the clause. It is
easy to observe that every occurrence of the variable in the translation of p; and ps will
have a conflicting free variable. Simply examine the construction ¢(0,7) Vv 3l < j$(0,1)

at the end of p; and —=¢(0, k) VIl < k¢(0,1) at the end of py. A similar argument can be
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made with p4, ps, and pg when w > 0.

This implies that the translation is a XCNF(2) formula when ¢(7,5) =g X(3,7)-
When ¢ is a more general formula, the translation is the formula in the first case with the
free variables substituted with the translation of ¢, which will be XI. Since XCNF(2)
formulas are closed under this type of substitution, the formula is XC N F'(2) in all cases.

O

5.1.2 Cut Variable Normal Form

In this section, we want to find a normal form for V' I' proofs. The normal form will be
used to show the connection between VL' and GL*.

The normal form we want is cut variable normal form and is defined as follows.

Definition 5.1.4. A formula ¢(Y") is bit-dependent on Y if there is an atomic sub-formula

of ¢ of the form Y'(¢), for some term ¢.

Definition 5.1.5. A proof is in free variable normal form if every non-parameter free
variable y or Y that appears in the proof is used as an eigenvariable of an inference

exactly once, and every formula that contains y or Y appears before the inference.
Definition 5.1.6. A cut in a proof is anchored if the cut formula is an axiom.

Definition 5.1.7. A VL' proof = is in cut variable normal form if © is (1) in free
variable normal form, (2) every cut with a non-Xf cut formula is anchored, and (3)
no cut formula that is an instance of the L8 — edge — rec aziom is bit-dependent on a

non-parameter free string variable.

It is known how to find a proof with the first two properties [6, 3|, but, to my
knowledge, no property similar to the third has ever been considered.

The main theorem of this section is
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Figure 5.1: Undesired form for a cut.

P

AZgvy(tas ts, Z),T(Y) —> A(Y) IY) —> A(Y), 3ZY vy (tas ty, Z)
(YY) - A®Y)

(V)T = A
YY), T — A

Theorem 5.1.8. Suppose VL' & 37 < to(Z) from some $E formula ¢. Then there

exists a V L'-proof m of 3Z < t¢(Z) such that 7 is in cut variable normal form.

We start with an anchored proof 7 that is in free variable normal form, and we want
to put it in cut variable normal form. We replace every cut formula 3244y (ta,ts, Z),
where Y is a non-parameter variable, with 37 (Z), where ¢' is bit-independent of Y.

Since 7 is in free variable normal form, we know the variable Y must be used as the
eigenvariable in an J-string-left rule. This means the proof looks like the proof in Figure
5.1, where y(Y") is a descendant of at least one formula in I'(Y)UA(Y). Also, the 3Yy(Y)
must an ancestor of a cut formula since it is not a sub-formula of the final formula; to get
the formula on the right of a sequent you would have to introduce a — in front. Because
JY(Y) is not =, it must be an instance of ©¥ — COMP or § — edge — rec; otherwise
the cut would not be anchored. The proof divides into two cases: one for each axiom.

We begin by assuming 3Yy(Y) in an instance of X — COMP. That is

YY) =sym [V SEAVE <Y (1) = 62(i)]-

In this case, the proof tells us that Y is equivalent to a ¥ formula ¢, with ¢ as the upper

bound on the size of Y. So the formula we are looking for will be ¢ with Y replaced by
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its ©F definition. This can be done as follows.

Definition 5.1.9. Let ¢;(Y) and ¢, bg-fifrmulas and ¢ be some term such that the
free variables of ¢ and ¢4, except i, are not bound in ¢;. Then ¢1Y’¢2’t is defined to be
¢1 with every atomic formula of the form Y (s) replaced by s < t A ¢5(s), where the free

variables of s are not bound in ¢s.

Note that d)f"bz’t is no longer bit-dependent on Y. With this definition we can prove

the following lemma and corollary.

Lemma 5.1.10. V° proves

Proof. The proof is done by structural induction on ¢;. Most cases are easy. We will
only look at the quantifier case. Say we have a formula ¢;(z,Y’), and we want to prove
the lemma for Jz¢;(z,Y). By the variable restriction in the definition above, we can

assume z is not free in ¢y and ¢. That means
3$[¢1Y,¢2,t] =gm [Elx(ﬁl]y’@’t:

and the lemma follows. O
Corollary 5.1.11. V° proves
[Y[<tAVi<t(Y(i) <= $:200))] = [Wov)(2) = Yyre(2)];

with Z distinct from Y.

Proof. This is simply a special case of the previous lemma since ¢ v.s, ¢ (Z) =syn Wy (v (2)]22.
1

O
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So now we are equipped to modify 7 to remove the undesirable cut. For simplicity,

we assume the proof has the form

P

sy (2),7(Y),T = A 5(Y),T = A, 329y (2)
V), = A

We can assume this since we can weaken to get the v(Y'), and then contract it later. We

also assume all the variable restrictions in the definition of ¢ are met. If they are

s
not, a simple renaming of variables will fix the problem.

We now want to find a new proof of ¥(Y),T" — A in which one less ©f-edge-rec cut
is bit-dependent on Y. The first step is to change the proof P into a proof P’ of the

sequent

¢¢(Y) (Y*)a fy(Y)a r—A

where Y* is a new string variable that does not appear anywhere in 7. This can be
done by omitting every 3-left rule that introduced the 37 part, and by renaming the
eigenvariable to Y*. We can do this since the proof is in free variable normal form.

Let ¢' be ¢¥*?>*. By corollary 5.1.11, there is an anchored V°-proof Q) of

YY) % (Y7) = oy (Y7)

that is in free variable normal form. Since L — edge — rec is not in V°, but all of the
other axioms of VL' are in V°, we know @ is also a V L'-proof in cut variable normal

form. The section of the proof now becomes

P Q

by (Y1), T = A A(Y), 6 (Y*) = gy (V)
w¢I(Y*), ’)/(Y), F — A
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Then we can cut 32y (Z) since it is an axiom. That gives us a new proof that is in still
in free variable normal form, all cuts with a non-XF cut formula are anchored, and one
less X8 — edge — rec cut formula is bit-dependent on Y.

Moving on to the second case, we now assume 3Y (V) is an instance of XF-edge-rec;
that is, Y(Y) =syn ©¥s, (Sa, 56, Y') for some L formula ¢, and terms s, and s,. So now we
want to transform the proof as we did in the first case. However the construction is more
complicated. We will have to define a new graph in which a path can be transformed
into a path in the graph of ¢. The high level idea is to define a graph where a path in
this graph represents an execution in a branching program that finds the path. For the

rest of this section we will work with the following definition of a branching program.

Definition 5.1.12. A branching program is a nonempty set of nodes labeled with triples
(a,1,7), where v is a ¥ formula over some set of variables and 0 < 7, j < ¢ for some term
t that depends only on the inputs to the program. Semantically, if a node u is labeled
with (e, 1, j), then, when the branching program is at node u, it will go to node i, if « is

true, or node j, otherwise. The initial node is always 0.

This definition is different from the standard definition of a branching program: there
are no output nodes and a ¥¥ formula is evaluated at each node, but, for our purpose,
this is alright.

Given a branching program BP where the formulas are over the variables (#, X), we
want to define a formula ¢pp(u,v, T, )Z") that is true if BP goes from node v to node v
on the given input. This can be difficult since the programs are not necessarily finite,
but the programs we use can be easily turned into an appropriate formula. We will refer
to this formula as BP as well.

We are going to define a sequence of branching programs BPF,, ..., BP,. Then, using
BP,, we will construct a final branching program that is bit-independent of Y. This final
branching program can be used to find Y*, a path in the graph of ¢(7, j,Y), assuming Y

satisfies Vg, (Sq, S, Y').
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The first step is to introduce the initial branching program BPF,. The nodes of BF,
are triples (w,1,j). If we reach a particular node (w, i, ), then we know the wth node
in Y* is i and Vk < j—¢(i, k). So as far as we know, j could be the next node. Recall
that ¢, is the maximum value of a node and ¢, is the length of the path. This means the
number of nodes in BPF, is bound by (ty, t,,t,). So now to define the labels. If j < t,,
then (w, i, 7) is labeled with (¢(3, j), (w + 1,4,0), (w,,j + 1)). If j = t,, then (w, 1, j) is
labeled with (7', (w + 1,7,0),0). It is easy to see that the invariants hold and that Y*

can be obtained from a path in BPF,.

Moving on to the second step, we now want to simplify the branching program so
that every node whose label is bit-dependent on Y is labeled with an atomic formula.
We start with BF,. Then, given BP;, we define BP;,; by removing one connective in a
node of BP; that is not in the right form. Let node n in BP; be labeled with (o, uy, us).

The construction is divided into five cases: one for each possible outer connective.

If =4, —f then BP;,, is the same as BPF; except node n is now labeled with
(B, ug,u1).

If o =4y, B1 A B2, we first rename the nodes. The nodes of BF;,; are interpreted as
pairs (u, v). So the node (u, 0) corresponds to node u in BPF;. The label of (n,0) becomes
(B1, (n, 1), (us, 0)) and the label for (n, 1) is (B2, (u1, 0}, (us, 0)). Notice that (n, 1) is used

as an intermediate node while evaluating «.

When o =, 81V B2, BP;; is defined as in the previous case, with a few minor

modifications. This case is left to the reader.

Now suppose o =g, 32 < t(2). The nodes become pairs as in the previous case, but
this time the labels are different. The node (n, ) is labeled with (5(i), (u1,0), (n,7+ 1)),
when i < t. Otherwise, the node is labeled with (5(¢), (u1,0), (us,0)). In this case, the
branching program is looking for an 7 that satisfies 3(¢). When a =, Vz < t3(z), BP;+1
is constructed in a similar way. The only difference is the branching program is looking

for an i that falsifies 5(7).
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Let BP, be the final branching program.

We now move on to the third and final step. We want to show how to find a branching
program BP' that is bit-independent of Y, such that given a path in BP', we are able
to find a path in BP,, assuming Y satisfies ¢y, (Sq, S5, Y). Then we can get Y* from the
path in BP,

To construct BP’'; we will show how to change the label on each node u of BP(Y).
The nodes in BP' are quadruples (u, w, i, j). The three extra values are used to compute
Y the same way BF, computed Y*. Recall Y is a path in the graph of ¢,. Let u be a
node in BP, that is labeled with («, u1,u3). The label of (u,w,,j) is divided into two
cases.

First suppose « is bit-independent of Y. Then the label is (¢, (u1, 0,0, 0), (us, 0, 0, 0)).
There is no need to compute Y.

For the second case, suppose « is bit-dependent on Y. Then a =, Y (v',7,j'). In

this case, (u,w',1,j) is labeled with

(wl S Sh A 7;, = Z/\]I = j7 <u170a0a0>7 <U2,0,0,0>),

and when w < w', (u,w, 1, j) is labeled with

(¢2(i’]) \/j = Sa, <u’w+ 17j7 O)’ <u7 w7 Z’] + 170>)'

Note that BP' computes the path Y then decides if the edge in question is part of Y.
This makes it fairly easy to see that we can extract a path in BP, from a path in BP'.

Using these transformations, we are able to prove the following lemma.

Lemma 5.1.13. Suppose that Y satisfies 14,(Sq, 55, Y). Then, for every formula ¢(Y")

and ¢, VO proves that

Ypm(Z2) AVi < H2() < ¢3(i, Z')] = Vo (tas t, Z), (5.1.1)
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for some $E formulas ¢3 and BP'.

Proof. The construction of BP' is given above. The formula ¢5 transforms a path in BP’
into a path of ¢(Y), when Y satisfies 1y, (Sq, S5, Y). Looking at the transformations of
the path above, we can see they can be done in AC°. This means there is a £§ formula
that describes this transformation: this formula is ¢3. Also, it is easy to see V0 proves

the properties of this function. O

We now need to change the proof as we did in the previous case. Recall the form of

the proof (see Figure 5.1). As before, we begin by changing P to a proof of

Vo) (Y*),7(Y), T — A,

This time we let () be a proof of Formula 5.1.1. Then we change the proof to the following

proof.

P Q

Vo) (tar to, Y), 7(Y), T = A& (V) 00mmr(Z'), & = bory) (tas by Y*)
YY), Y (Z'),e, T — A
yY), ¥ (Z'),AY *e, T — A

where ¢ is the formula |Y*| < t AVi < t[Y*(i) <= ¢3(i,Z')]. Note that IY*e and
AZ"ppp (Z') are instances of axioms; so we are allowed to cut them. The proof continues

as follows:
YY), ¢¥pr (Z'),Y e, T - A s Oye
vV, Ypm (Z'), T — A
V(Y), 32w (Z'),T — A — 32" (Z')
1Y), I' = A

Observe that the X8 cut formulas are anchored and that the proof is still in free variable
normal form. As well, Y is involved in one less cut that violates the cut variable normal
form conditions.

We are now prepared to prove theorem 5.1.8.
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Proof of Theorem 5.1.8. It would be nice to be able to simply say we can repeatedly
apply the manipulations above and eventually the proof will be in cut variable normal
form, but this is not obvious. In both manipulations, if y(Y) is bit-dependent on a string
variable other than Y, then the new YF-edge-rec cut formula is bit-dependent on that
variable. This includes non-parameter string variables. So we need to state our induction
hypothesis more carefully.

Let Yi,...,Y, be all the non-parameter free string variables that appear in 7 ordered
such that when 7 < j, the variable Y; is used as a eigenvariable before Y;. This means Y;
does not appear in v(Y;) in the manipulations above. So now suppose no Xf-edge-rec
cut formula is bit-dependent on the variables Y3, ..., Y}, for some k£ < n. Then we can
manipulate 7 such that the same holds for the variables Y1, ..., Y;11. To accomplish this,
we simply manipulate every Y.Z-edge-rec cut formula that is bit-dependent on Y;,; as
described above. Since Yi,..., Y, cannot appear in the y(Y}) formulas, those variables
will not violate the condition. So by induction, we can get a proof that is in cut variables

normal form. O

5.1.3 Translating Theorems of V'L

We are now prepared to prove the translation theorem. As has already been mentioned,
the proof is done by induction on the length of the proof. For the base case, we need to
prove the translation of the axioms of V' L'. Since every axiom besides Y.F-edge-rec is an
axiom of V NC*, we know those axioms have polynomial size proofs in G}, and, therefore,
in GL* as well. We still need to show how to prove the XF-edge-rec axiom in GL*. Recall
that we write the axiom as 3Z4(a, b, Z). Note that the axiom does have a bound on Z,

which has been omitted since the specific bound is not important.

Lemma 5.1.14. The formula ||[3Zv4(a,b, Z)|| has a GL* proof of size p(a,b) for some

polynomial p.
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Proof. The proof is done by a brute force induction. We prove, in GL*, that if there is
a pseudo-path of length b, then there exists a pseudo-path of length b 4 1.

The idea is to find ¥ formulas that can be used to determine the next edge. We
need to show that GL* prove exactly one edge is chosen. Let A;; =4, ||6(4,7)||. Since
¢ is a Xf formula, 4; ; is a X formula. To prove there is an edge that starts the path,

consider the formula

j—1
By, =syn Ao N /\ = Aok,
k=0
when j < a, and
a—1
BO,O,a —syn /\ _‘AO,k-
k=0

It is easy to see By ; is true for at least one j < a. This is also provable in GL*. This

shows that GL* has a polynomial size proof of

13Z2¢4(a, 1, 2)||.

For the inductive step, there is a path of length b and the path is given by the variables

Zw,j- Then the witnesses are defined as follows:

a j—1
Byt =syn \/ 2ok, N Aij N /\ —Ai ks
k=0 k=0
when j < a, and
a a—1
Bb—l—l,i,a —syn \/ Zb,k,i A /\ _‘Ai,k-
k=0 k=0

Using the fact that exactly one 2 ; ; is true, we can prove in GL* that exactly one B4 ;

is true. This shows that GL* has a polynomial size proof of

13Z2%4(a, b, Z)|| = [[3Z1y(a, b+ 1, Z)]|.

So now we are able to prove ||3Zv4(a,b, Z)|| for any b by successive cutting. Re-
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call that [|3Zvyy(a,b, Z)|| is a ECNF(2) formula, and note that the free variables in
||3Z4(a,b,Z)|| do not change as b changes. This means we are allowed to do the

cut. ]

We now prove the main theorem of this section.

—

Theorem 5.1.15. Suppose V'L proves 37 < té(Z, X, Z). Then there are polynomial size
GL* proofs of ||3Z < té(z, X, Z)||[7)].

Proof. Since VL' is equivalent to V'L, the formula is a theorem of VL' as well. Then,
by Lemma 5.1.8, there exists a VL' proof 7w of 37 < tqﬁ(f,X’, Z) that is in cut variable
normal form.

We proceed by induction on the depth of 7. The base case follows from lemma 5.1.14
and the comments that precede it. The inductive step is divided into cases: one for each
rule. With the exception of cut, every rule can be handled the same way it is handled in
the V! — G} Translation Theorem [6], and will not be repeated here.

When looking at cut, there are three cases. If the cut formula is ©§, then we simply
cut the corresponding 3¢ formulas in the GL* proof. If the cut formula is not ©§, then
it must be anchored since the proof is in cut variable normal form. This means the cut
formula is an instance of Y.}-edge-rec or an instance of X — COMP. First suppose it
is an instance of Y}-edge-rec. Then we are able to cut the corresponding formulas in
the GL* proof since the axiom translates to a XCNF'(2) formula and, since it is not
bit-dependent on a non-parameter string variable, the free variable in the translation are
parameter variables.

When the cut formula is an instance of £§ — COM P, we apply the same transfor-
mation as the authors of [8]. That is, we remove the quantifier by replacing the variables
with ¥ formulas that witness the quantifier. This change would not effect other cut
formulas since their free variables are parameter variables or they are X. The current

cut formula becomes a X formula, which can be cut. O



Chapter 6

Conclusions

To summarize, the theory V' L corresponds to F'L in the same way other theories corre-
spond to complexity classes. However, it might be interesting explore other definability
results. For example, find which class of functions are ©Z definable in V' L.

We have also defined a new proof system GL*, which is, to our knowledge, the first
proof system that corresponds to a complexity class between NC! and P. We have shown
that GL* simulates V L, but we did not show VL proves the soundness of GL*. This
would prove GL* does not correspond to a larger class. We know how to do this, but the
final details are still being worked out.

In later work, it would be nice to explore GGL, which is the proof system GL* except
that proofs do not have to be treelike. Also, we wonder if it is possible to construct a
proof system for N L using the same method. That is, base the proof system on 2—CNF

formulas instead of C N F(2) formulas.

48
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