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Abstract. When restricted to proving Σq
i formulas, the quantified propositional proof

system G∗
i is closely related to the Σb

i theorems of Buss’s theory Si
2. Namely, G∗

i has

polynomial-size proofs of the translations of theorems of Si
2, and Si

2 proves that G∗
i is

sound. However, little is known about G∗
i when proving more complex formulas. In

this paper, we prove a witnessing theorem for G∗
i similar in style to the KPT witnessing

theorem for T i
2 . This witnessing theorem is then used to show that Si

2 proves G∗
i is sound

with respect to Σq
i+1 formulas. Note that unless the polynomial-time hierarchy collapses

Si
2 is the weakest theory in the S2 hierarchy for which this is true. The witnessing theorem

is also used to show that G∗
1 is p-equivalent to a quantified version of extended-Frege for

prenex formulas. This is followed by a proof that Gi p-simulates G∗
i+1. We finish by

proving that S2 can be axiomatized by S1
2 plus axioms stating that the cut-free version

of G∗
0 is sound. All together this shows that the connection between G∗

i and Si
2 does not

extend to more complex formulas.

§1. Introduction. In [9], Krajicek and Pudlak introduced the quantified
propositional proof system G and its fragments. These fragments have close
connections with bounded arithmetic and computational complexity. In par-
ticular, the collapse of the polynomial-time hierarchy, the bounded arithmetic
hierarchy S2, and the fragments of G are all related [9, 8, 7, 11]. Even with these
close connections to important open problems in logic and computer science,
little work has been done investigating the fragments of G. In this paper, we
take a closer look at them.

The proof system G∗
i has informally been described as the non-uniform version

of Si
2. This is often expressed by describing the close connection between the Σb

i

theorems of Si
2 and G∗

i proofs of Σq
i formulas [7]. The same type of connection

exists between the theory PV and extended-Frege [2], and the theory T i
2 and Gi.

In this paper, we compare these proof systems to each other and the theories to
verify the accuracy of these informal descriptions.

Following Morioka, the proof system G∗
i is defined by restricting G to treelike

proofs where all cut formulas are Σq
i [4, 12]. Note that originally G∗

i was defined
by restricting all formulas, not just cut formulas, to Σq

i formulas [9, 7]. Infor-
mally, we can think of G∗

i as reasoning with lemmas that can be described as
predicates in the ith level of the polynomial-time hierarchy.

We examineG∗
1 by comparing it to extended-Frege directly. In [7], it was shown

that treelike extended-Frege is p-equivalent to G∗
1 with respect to quantifier-free
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formulas. This means that, when proving quantifier-free formulas, G∗
1 only needs

to cut quantifier-free formulas and extension cedents. This raises the question of
whether or not this holds when G∗

1 is used to prove more complicated formulas.
We define a quantified version of extended-Frege called GPV ∗, and prove that
GPV ∗ and G∗

1 are p-equivalent with respect to all prenex formulas. This result
is surprising because the class of formulas that GPV ∗ can cut is much less
expressive than the class of formulas that G∗

1 can cut. As well, this result does
not fit with the view that GPV ∗ corresponds to PV and G∗

1 with S1
2 .

We also take a look at Gi and G∗
i+1. If we used the connections with bounded

arithmetic as a guide, we would expectG∗
i+1 to be a strictly stronger proof system

than Gi. However, in [13], Nguyen showed that this is probably not the case.
This was done by showing that, under an appropriate complexity assumption,
G∗

i+1 does not simulate Gi or even cut-free G for Σq
i+2 formulas. This is in

contrast to a result that shows that G∗
i+1 p-simulates Gi for Σq

i+1 formulas. In
this paper, we prove that, in fact, Gi is stronger than G∗

i+1, which is surprising.
This is done by showing that Gi p-simulates G∗

i+1 for all formulas, not just Σq
i

formulas as in [7].
Another way of examining G∗

i is to find the weakest fragment of S2 that can
prove that G∗

i is sound. So, we are looking for a theory that proves that, if there
is a G∗

i proof of a formula, then that formula is valid. Informally, this gives an
upper bound on the reasoning power of G∗

i . This type of question first appeared
in [2], where Cook showed that PV proves that extended-Frege is sound. This
kind of result played an important role in establishing the connection between
the collapse of S2 and G [9].

In [7], it was shown that S1
2 proves that G∗

1 is sound with respect to Σq
1 formu-

las. However, in [12], Morioka proved that, assuming the polynomial hierarchy
does not collapse, S1

2 does not prove that G∗
1 is sound with respect to Σq

3 for-
mulas. This does not fit with the view that G∗

1 is the non-uniform version of
S1

2 . In fact, it seems that, as the quantifier complexity of the formulas we are
proving grows, the reasoning power of G∗

1 grows beyond any finite level of the
S2 hierarchy. For the same proof also shows that, assuming the polynomial-time
hierarchy does not collapse, T i

2 does not prove that G∗
1 is sound with respect to

Σq
i+2 formulas; however, we show that Si+1

2 does. In fact, we show that Si+1
2

proves G∗
i+1 is sound with respect to Σq

i+2 formulas. Informally this means that
the reasoning power of G∗

1 relative to Σq
i+2 formulas is not stronger than the

reasoning power of S2
i+1.

This leads to the final way of examining G∗
1. In [9], Krajicek and Pudlak were

able to prove that S2 can be axiomatized by S1
2 plus axioms stating Gi is sound

relative to Σq
i formulas, for i ∈ N. We show that the same is true when Gi is

replaced by G∗
1. In fact, we can replace Gi by the cut-free version of G∗. This

is interesting because it confirms that the reasoning power of G∗
1 is not closely

related to any finite level of S2, but, in some sense, it captures the reasoning
power of all of S2.

The main tool used to prove some of these theorems is a witnessing theorem
in the style of the KPT witnessing theorem [8]. The original KPT witnessing
theorem describes how hard it is to witness Σb

i+3 theorems of T i
2, for i > 0.
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It also holds for i = 0 with PV in place of T i
2. This theorem has been used to

prove that the collapse of the S2 hierarchy implies the collapse of the polynomial-
time hierarchy [8], and to show that certain weak theories do not prove the Σb

1

replacement scheme, relative to some complexity assumptions [6]. In this paper,
we adapt the statement of the KPT witnessing theorem to G∗

i , and then prove
it. The main difficulty is that proofs of the KPT witnessing theorem rely on
the cut-elimination theorem, which unfortunately causes the size of the proof to
increase exponentially. We must avoid this increase, so we have to find a way to
work around cut formulas.

The paper is organized as follows. In Section 2, we give the basic definitions
and notations. Note that we will be using two-sorted theories of bounded arith-
metic (V i) in place of the single-sorted theories (Si

2). In Section 3, we prove the
witnessing theorem for G∗

i . In Section 4, we use the witnessing theorem to prove
that GPV ∗ p-simulates G∗

1. In Section 5, we show that Gi p-simulates G∗
i+1. In

Section 6, we prove the Σq
i+1 reflection principle for G∗

i in Si
2. In Section 7, we

give a new axiomatization of S2.
I should mention that this paper is an expanded version of a conference paper

[14]. The main difference is this paper has the witnessing theorem for G∗
i proofs

of any formula as opposed to G∗
1 proofs of prenex formulas. At this point, I would

like to thank my supervisor Stephen Cook for comments on earlier versions of
this paper.

§2. Basic Definitions And Notation.
2.1. Two-Sorted Bounded Arithmetic. In the introduction, the results

were stated for the theories Si
2. However, we will use two-sorted theories of

bounded arithmetic. We follow the presentation in [3, 5]. The two sorts are
numbers and binary strings (aka finite sets). The numbers are intended to range
over the natural numbers and will be denoted by lower-case letters. For example,
i, j, x, y, and z will often be used for number variables; r, s, and t will be used
for number terms; and f , g and h will be used for functions that return numbers.
The sets are intended to be finite sets of natural numbers. Since the sets are
finite, they can be coded by binary strings where the ith bit is 1 if i is in the set.
The strings will be denoted by upper- case letters. The letters X,Y , and Z will
often be used for string variables; and F , G and H will be used for functions
that return strings.

The base language is

L2
A = {0, 1,+,×, <,=,=2,∈, ||} .

The constants 0 and 1 are number constants. The functions + and × take two
numbers as input and return a number–the intended meanings are the obvious
ones. The language also includes two binary predicates that take two numbers:
< and =. The predicate =2 is meant to be equality between strings, instead of
numbers. In practice, the 2 will not be written because which equality is meant
is obvious from the context. The membership predicate ∈ takes a number i and
a string X. It is meant to be true if the ith bit of X is 1 (or i is in the set X).
This will also be written as X(i). The final function |X| takes a string as input
and returns a number. It is intended to be the number of bits needed to write
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X when leading zeros are removed (or the least upper bound of the set X). The
set of axioms 2BASIC is the set of defining axioms for L2

A.
We use ∃X < b φ as shorthand for ∃X[(|X| < b) ∧ φ]. The shorthand

∀X < b φ means ∀X[(|X| < b) ⊃ φ]. The set ΣB
0 = ΠB

0 is the set of formulas
whose only quantifiers are bounded number quantifiers. For i > 0, the set ΣB

i is
the set of formulas of the form ∃ ~X < ~tφ where φ is a ΠB

i−1 formula. For i > 0,
the set ΠB

i is the set of formulas of the form ∀ ~X < ~tφ where φ is a ΣB
i−1 formula.

Now we can define the two main axiom schemes:

ΣB
i -comp: ∃X ≤ b∀i < b[X(i) ↔ φ(i)],

ΣB
i -string-ind: [φ(∅) ∧ ∀X[φ(X) ⊃ φ(S(X))]] ⊃ φ(Y )

where φ(i) is a ΣB
i formula, and, for ΣB

i -COMP, φ does not contain X, but may
contain other free variables. The constant ∅ is the empty string, and the function
S(X) interprets X as a binary number and adds 1 to it. Note that we still view
ΣB

i -string-ind as a formula over L2
A. We simply replace the instances of ∅ and

S(X) by their ΣB
0 bit-definition.

We can now define two hierarchies of theories.

Definition 2.1. The theory V i is axiomatized by the 2BASIC axioms plus
ΣB

i -comp. The theory TV i is axiomatized by the 2BASIC axioms, ΣB
0 -comp,

and ΣB
i -string-ind.

For i > 0, V i corresponds to Si
2, and TV i corresponds to T i

2 in that they are
RSUV-isomorphic [5].

Another theory we often use is V PV , a universal theory with a function symbol
for every polynomial-time function. The function symbols have the following
defining axioms based on Cobham’s Theorem:

Definition 2.2 (PV function symbols). The language LFP is the smallest set
satisfying the following:

1. LFP includes L2
A ∪ {pd,CHOP}.

2. For each open formula φ(z, ~x, ~X) over LFP and term t = t(~x, ~X) over L2
A,

there is a string function Fφ,t and a number function fφ,t in LFP .
3. For each triple G,H, t, where G(~x, ~X) and H(y, ~x, ~X,Z) are functions in
LFP and t(y, ~x, ~X) is an L2

A term, there is a function FG,H,t in LFP .

The 2BASIC axiom define the function symbols in L2
A. The rest of the functions

symbols have the following defining axioms:

• pd(0) = 0, x 6= 0 ⊃ pd(x) + 1 = x
• CHOP (X, y)(i) ↔ i < y ∧X(i)
• Fφ,t(~x, ~X)(i) ↔ i < t(~x, ~X) ∧ φ(i, ~x, ~X)
• i < fφ,t(~x, ~X) ⊃ ¬φ(i, ~x, ~X)
• fφ,t(~x, ~X) < t(~x, ~X) ⊃ φ(fφ,t(~x, ~X), ~x, ~X)
• FG,H,t(0, ~x, ~X) = G(0, ~x, ~X)
• FG,H,t(y + 1, ~x, ~X) = CHOP (H(y, ~x, ~X, FG,H,t(y, ~x, ~X)), t(y, ~x, ~X))
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The theory V PV is axiomatized by quantifier-free equivalents of the 2BASIC
axioms, induction on all open ΣB

0 (PV ) formulas, and the defining axioms for all
of the LFP function symbols. See [3, 5] for more information on V PV .

Another scheme of formulas we use is the ΣB
i -MAX scheme:

∃x < bφ(x) ⊃ ∃x < b[φ(x) ∧ ∀y < b(x < y ⊃ ¬φ(y))]

where φ is ΣB
i . This scheme essentially says that, if there exists a value for x

less than b that satisfies φ(x), then there exists a maximum x less than b that
satisfies φ(x). It can be shown that ΣB

i -MAX is provable in V i ([5], Corollary
5.8).

From time to time, we will use functions symbols that are not in L2
A. The

first is X(i, j) ≡ X(〈i, j〉), where 〈i, j〉 = (i + j)(i + j + 1) + 2j is the pairing
function. It can be thought of as a two dimensional array of bits. The second
is the row function. The notation we use is X [i]. This functions returns the
ith row of the two dimensional array X. In the same way, we can also describe
three dimensional arrays. We also want to pair string. So if X = 〈Y1, Y2〉, then
X [0] = Y1 and X [1] = Y2. Note that, if we add these functions with their ΣB

0

defining axioms to the theory V i, we get a conservative extension. They can also
be used in the induction axioms [3]. This means that, if there is a V i proof of a
formula that uses these functions, there is a V i proof of the same formula that
does not use these functions.

2.2. Quantified Propositional Calculus. We are also interested in quan-
tified propositional proof systems. The proof systems we use were originally
defined in [9], and then they were redefined in [4, 12], which is the presentation
we follow.

The set of connectives are {∧,∨,¬,∃,∀,>,⊥}, where > and ⊥ are constants
for true and false, respectively. Formulas are built using these connectives in
the usual way. We will often refer to formulas by the number of quantifier
alternations.

Definition 2.3. The set of formulas Σq
0 = Πq

0 is the set of quantifier-free
propositional formulas. For i > 0, the set of Σq

i (Πq
i ) formulas is the smallest

set of formulas that contains Πq
i−1 (Σq

i−1) and is closed under ∧, ∨, existential
(universal) quantification, and if A ∈ Πq

i (A ∈ Σq
i ) then ¬A ∈ Σq

i (¬A ∈ Πq
i ).

The first proof system, from which all others will be defined, is the proof
system G. This proof system is a sequent calculus based on Gentzen’s system
LK. The system G is essentially the DAG-like, propositional version of LK. We
will not give all of the rules, but will mention a few of special interest.

The cut rule is
A,Γ → ∆ Γ → ∆, A

cut Γ → ∆
In this rule, we call A the cut formula. There are also four rules that introduce
quantifiers:

A(x),Γ → ∆
∃-left ∃zA(z),Γ → ∆

Γ → ∆, A(B)
∃-right

Γ → ∆,∃zA(z)
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Γ → ∆, A(x)
∀-left

Γ → ∆,∀zA(z)
A(B),Γ → ∆

∀-right
∀zA(z),Γ → ∆

These rules have conditions on them. In ∃-left and ∀-right, the variable x must
not appear in the bottom sequent. In these rules, x is called the eigenvariable.
In the other two rules, the formula B must be a Σq

0 formula, and no variable
that appears free in B can be bound in A(x).

The initial sequents of G are sequents of the form → >, ⊥ →, or x → x,
where x is any propositional variable. A G proof is a series of sequents such that
each sequent is either an initial sequent or can be derived from previous sequents
using one of the rules of inference. The proof system Gi is G with cut formulas
restricted to Σq

i formulas.
We define G∗ as the treelike version of G. So, a G∗ proof is a G proof where

each sequent in used as an upper sequent in an inference at most once. A G∗
i

proof is a G∗ proof in which cut formulas are prenex Σq
i . In [12], it was shown

that, for treelike proofs, it did not matter if the cut formulas in G∗
i were prenex

or not. So when we construct G∗
i proofs the cut formulas will not always be

prenex, but that does not matter.
To make proofs simpler, we assume that all treelike proofs are in free-variable

normal form.

Definition 2.4. A parameter variable for a G∗
i proof π is a variable that

appears free in the final sequent of π. A proof π is in free-variable normal form
if (1) every non-parameter variable is used as an eigenvariable exactly once in
π, and (2) parameter variables are not used as eigenvariables.

Note that, if a proof is treelike, we can always put it in free-variable normal
form by simply renaming variables. In fact, V PV proves that every treelike
proof can be put in free-variable normal form.

A useful property of these proof systems is the subformula property. It can be
shown in VPV that every formula in a G∗

i proof is an ancestor (and therefore
a subformula) of a cut formula or a formula in the final sequent. This is useful
because it tells us that any non-Σq

i formula in a G∗
i proof must be an ancestor

of a final formula.
2.3. Truth Definitions. In order to reason about the proof systems in the

theories, we must be able to reason about quantified propositional formulas. We
follow the presentation in [7, 9].

Formally formulas will be coded as string, but we will not distinguish between
a formula and its encoding. So if F is a formula, we will use F as the string
encoding the formula as well. The method of coding a formula can be found in
[4]. The encoding of an assignment A will be a set of pairs 〈i, 0〉 and 〈i, 1〉 which
mean that the variable xi is assigned false and true, respectively.

The truth definition will be defined in the usual way. For Σq
i formulas, we will

construct a formula that essentially says there exists an evaluation of the formula
and it evaluates to true. For Πq

i formula, the statement is the same except we
say that all evaluations evaluate to true. The definition will be given recursively.
Because of the potentially large and repetitive nature of the definition, we will
only give part of the definition and leave it to the reader to complete it.
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Given a Σq
i formula F , an evaluation of that formula will be a series of lines.

Each line will consist of a truth value and a subformula of F . Plus each line
will have to be consistent with previous lines. With this in mind, we have the
following definition.

Definition 2.5. We recursively define A |=i F . If F is a Σq
i formula, then

A |=i F ≡ ∃X∃E eval∃i (E,A,X, F ) ∧ ∃n < |E|, E[n] = 〈>, F 〉,

where eval∃i (E,A,X, F ) is a formula saying that E is a series of lines assigning
truth values to subformulas of F and X assigns values to the outermost even ex-
istential quantifiers and the outermost odd universal quantifiers. An even quan-
tifier is one that is in the scope of an even number of ¬, and an odd quantifier is
on that is in the scope of an odd number of ¬. More formally eval∃i (E,A,X, F )
is the conjunction of the following. Note that we do not give the bounds on the
quantified variables, but the reader can fill in what they should be.
• For every line l, if the outermost connective of the formula is ∧ and the

formula is true, then there are earlier lines j1, j2 saying both left subformula
F1 and right subformula F2 are true.

∀l∃F1∃F2∃j1∃j2,

E[l] = 〈>, F1 ∧ F2〉 ⊃ E[j1] = 〈>, F1〉 ∧ E[j2] = 〈>, F2〉

Note that the case of ∨ with a false formula is handled the same way.
• For every line l, if the outermost connective of the formula is ∧ and the for-

mula is false, then there is an earlier line j saying one of the left subformula
F1 or right subformula F2 is false.

∀l∃F1∃F2∃j,

E[l] = 〈⊥, F1 ∨ F2〉 ⊃ E[j] = 〈⊥, F1〉 ∨ E[j] = 〈⊥, F2〉

Note that the case of ∨ with a true formula is handled the same way.
• For every line l, if the outermost connective of the formula is ¬ and the

formula is true, then there is a previous line j saying the subformula is
false.

∀l∃F1∃j,

E[l] = 〈>,¬F1〉 ⊃ E[j] = 〈⊥, F1〉

Note that this is the only case where the truth value changes, so the truth
value can also be viewed as the parity of the number of negations that were
passed to reach this subformula.

• For every line l, if the outermost connective of the formula is ∃ and the for-
mula is true, then there is a previous line j with a witness for the quantifier
and X gives us that value.

∀l∃F1∃j,

E[l] = 〈>,∃xnF1(xn)〉 ⊃ (E[j] = 〈>, F1(xn)〉 ∧ (〈n, 0〉 ∈ X ∨ 〈n, 1〉 ∈ X))

Note that the case of ∀ with a false formula is handled the same way.
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• For every line l, if the outermost connective of the formula is ∃ and the
formula is false, then the formula is a Σq

i−1 formula, and it is false according
to |=i−1.

∀l∃F1,

E[l] = 〈⊥,∃ynF1(yn)〉 ⊃ ∃ynF1(yn) ∈ Σq
i−1 ∧ (X ∪A) |=i−1 ∃ynF1(yn)

Note that the case of ∀ with a true formula is handled the same way.
• For every line l, if the formula is a single variable, then the truth value is

consistent with A.

∀l,

E[l] = 〈>, xn〉 ⊃ 〈xn, 1〉 ∈ A

∧E[l] = 〈⊥, xn〉 ⊃ 〈xn, 0〉 ∈ A

If F is a Πq
i formula, then

A |=i F ≡ ∀Y ∀E eval∀i (E,A, Y, F ) ⊃ ∃nE[n] = 〈>, F 〉
where eval∀i (E,A, Y, F ) is almost the same as eval∃i except Y now gives a truth
value for the even universally-quantified variables and the odd existentially-quantified
variables.

Notice that in eval∃i if the outermost connective is ∀ and we want to falsify
it, then it is treated like ∃. The connectives ∧ and ∨ are also treated the same
when we are trying to satisfy one and falsify the other. When we see a ∀ and we
want to satisfy the formula, we know the quantifier complexity of the formula
has dropped. Therefore, we can get the value of this formula recursively. If we
are looking at a Σq

0 formula the recursive case never comes up.
For a Σq

i formula, we are saying there is an evaluation of the formula that says
it is true. For a Πq

i formula, we are saying that all evaluations of the formula
say it is true. This is an important difference since a Σq

i formula is false if there
is no evaluation of the formula, but a Πq

i formula would be true.
For i > 0, this gives a ΣB

i definition for A |=i F and, for i = 0, it has a
ΣB

0 (PV ) definition in V PV . If F is a Πq
i formula, the definition is ΠB

i .
Given a formula F ≡

∧n
i=0 Fi, there is a PV function Parse∧(F, j) that out-

puts Fmin(j,n). The same goes for ∨ in place of ∧. The theory V PV proves the
Tarski conditions for the truth definition.

Lemma 2.6 (Tarski’s Conditions). V PV proves the following
1. (A |=i F1 ∧ F2) ↔ (A |=i F1 ∧A |=i F2)
2. (A |=i F1 ∨ F2) ↔ (A |=i F1 ∨A |=i F2)

3. (A |=i F ) ↔ (∀j ≤ |F | A |=i Parse∧(F, j)) (where F ≡
n∧

j=0

Fj and F ∈ Πq
i )

4. (A |=i F ) ↔ (∃j ≤ |F | A |=i Parse∨(F, j)) (where F ≡
n∨

j=0

Fj and F ∈ Σq
i )

5. (A |=i ¬F ) ↔ ¬(A |=i F )
6. (A |=i ∃~xF (~x)) ↔ ∃X(A ∪X |=i F (~x)) (for F ∈ Σq

i )
7. (A |=i ∀~xF (~x)) ↔ ∀X(A ∪X |=i F (~x)) (for F ∈ Πq

i )
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8. (A |=i F ) ↔ (A |=i−1 F ) (for F ∈ Σq
i−1 ∪Πq

i−1).

Proof. (1) Suppose A |=i F1 ∧ F2 and the formula is Σq
i , then there is an

evaluation of this formula. This evaluation would contain the line (>, F1 ∧ F2).
Therefore this evaluation would also contain lines of the form (>, F1) and (>, F2).
This means we have evaluations of F1 and F2. Suppose A |= F1 ∧A |= F2. Then
there exist evaluations of these formulas. An evaluation for F1 ∧ F2 is obtained
from these evaluations by combining these evaluations and adding a new line
using ΣB

0 -COMP. If the formula is Πq
i , the proof is similar.

(2) The same way as (1).
(3) Suppose A |=i F is false and ∀j ≤ |F | A |=i Parse∧(F, j) is true, where

F ≡
n∧

j=0

Fj . Let Fm be the formula
m∧

j=0

Fj . This means Fm ≡ Fm−1 ∧ Fm.

By the first assumption, there is an evaluation of F ≡ Fn with a line 〈⊥, F 〉.
If there is a line in the evaluation of the form 〈⊥, Fm+1〉, then there is a line
〈⊥, Fm〉. Note that 〈⊥, Fm〉 cannot appear in a line by the second assumption.
So it follows by induction that there is a line saying that F 1 ≡ F1 is false, but
this contradicts the second assumption.

Now suppose ∀j ≤ |F | A |=i Parse∧(F, j) is false. Then there exists an
evaluation of Fj , for some j, with a line 〈⊥, Fj〉. To this evaluation we can
append the lines 〈⊥, Fm〉 for j ≤ m ≤ n using ΣB

0 -COMP. This shows that
A |=i F is false.

Note that the proof of (3) does not work if F is a Σq
i formula since A |=i F

could be false because there is no evaluation of F . There is not necessarily an
evaluation that shows F is false.

(4) This is the dual of (3).
(5) We assume F is a Πq

i formula. The case where F is a Σq
i formula is

essentially the same. Suppose (A |=i ¬F ). Then there exists an evaluation
of F with a line 〈>,¬F 〉. This means the evaluation also has a line 〈⊥, F 〉,
proving ¬(A |=i F ). Suppose ¬(A |=i F ). There there exists an evaluation of F
with line 〈⊥, F 〉. The line 〈>,¬F 〉 can be appended to this evaluation, proving
(A |=i ¬F ).

(6) This follows directly from the ∃X in the definition of |=i.
(7) This is the dual of (6).
(8) This follows directly from the recursive nature of the definition. a
Valid formulas (or tautologies) are defined as

TAUTi(F ) ≡ ∀A, (“A is an assignment to the variables of F” ⊃ A |=i F )

This truth definition can be extended to define the truth of a sequent. So, if
Γ → ∆ is a sequent of Σq

i ∪Πq
i formulas, then

(A |=i Γ → ∆) ≡“there exists a formula in Γ that A does not satisfy”
∨ “there exists a formula in ∆ that A satisfies”

Another important formula we will use is the reflection principle for a proof
system. We define the Σq

i reflection principle for a proof system P as

Σq
i -RFN(P ) ≡ ∀F∀π, (“π is a P proof of F” ∧ F ∈ Σq

i ) ⊃ TAUTi(F )



10 STEVEN PERRON†

This formula essentially says that, if there exists a P proof of a Σq
i formula F ,

then F is valid. Another way of putting it is to say that P is sound when proving
Σq

i formulas.

§3. KPT Style Witnessing for Fragments of G. In bounded arithmetic,
a useful tool has been the KPT witnessing theorem [8]. In the simplest case, the
KPT witnessing theorem describes how to witness the ΣB

2 theorems of V PV .
The original theorem was more general, but we state it here for the simplest
case.

Theorem 3.1 (KPT Witnessing [8]). Suppose V PV ` ∀X∃Y ∀Zφ(X,Y, Z),
where φ is a ΣB

0 formula. Then there exists a finite sequence of PV function
symbols F1, F2, . . . , Fk such that

V PV `∀X∀W φ(X,F1(X),W [1])

∨ φ(X,F2(X,W [1]),W [2])
...

∨ φ(X,Fk(X,W [1],W [2], . . . ,W [k−1]),W [k])

Informally, this can be viewed as an interactive computation between a stu-
dent, who runs in polynomial time, and an all-knowing teacher. Given a value
for X, the student’s goal is the find a witness for ∃Y ∀Zφ(X,Y, Z). The stu-
dent starts by computing F1(X). If that is not a witness, the teacher responds
with a counter example W [1]. Using that the students makes a second guess by
computing F2. The teacher responds with W [2], and this process continues.

Our goal is to get a similar theorem for G∗
1, and to extend this to G∗

i . The
rest of this section is organized as follows. We start by stating the analog of the
above theorem for G∗

1. Using this as a starting point, we then define the concepts
needed to prove this theorem. Our presentation will be based on a proof of the
Herbrand Theorem. We then prove an analog of the Herbrand Theorem for G∗

1,
and as a corollary we get a proof of the KPT Witnessing Theorem for G∗

1. In
the second subsection, we explain how to generalize the Herbrand Theorem for
G∗

1 so it works for G∗
i .

3.1. Witnessing for G∗
1. In adapting the KPT Witnessing Theorem for G∗

1,
the first obstacle comes in the statement of the theorem. The theory V PV has
access to function symbols that correspond to the polynomial-time functions,
but, in G∗

1, there are no function symbols. To fix this, we use the idea of an
extension cedent from [5].

Definition 3.2. An extension cedent is a series of formulas of the form

e1 ↔ E1, e2 ↔ E2, . . . , en ↔ En

such that Ei is a Σq
0 formula that does not mention the variables ei, ei+1, . . . , en.

We say that ei depends on a variable q if Ei mentions q or Ei mentions a variable
that depends on q.
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Observe that an extension cedent is really a description of a circuit, and that
polynomial-size circuits are the nonuniform version of polynomial-time functions.
So extension cedents replace the functions.

Theorem 3.3 (KPT Witnessing for G∗
1). There exists a PV (polynomial-time)

function F such that V PV proves the following. Let π be a G∗
1 proof of a prenex

Σq
2 formula A(~p) ≡ ∃~x∀~yB(~x, ~y, ~p), where B(~x, ~y, ~p) is a Σq

0 formula with all free
variables shown. Then, given π, F outputs a G∗

0 proof of a sequent Λ → Θ where

1. Θ is a series of formulas of the form B(~ei, ~qi, ~p), where ~ei ∈ E
2. Λ is an extension cedent defining a new set of variables E in terms of
~q1, . . . , ~qn and ~p,

3. ~ei does not depend on ~qj, for j ≥ i, and
4. ~qi and ~qj are disjoint.

Before we prove this theorem, notice that this is similar to the KPT Witnessing
theorem for V PV . The row W [i] corresponds to ~qi, and Fi corresponds to the
circuits defining ~ei. The major difference is that the number of rounds in the
student-teacher game is not constant; it can grow polynomially in the size of the
proof.

One way of proving the KPT Witnessing Theorem is to observe that it is a
corollary to the Herbrand Theorem. So the idea behind our proof is to adjust the
proof-theoretic proof of the Herbrand Theorem. See [1] Section 3 for an outline
of the proof we use as a model. The main difference between our proof and
that proof is that cut elimination cannot be used since it causes an exponential
increase in the size of the proof. To get around this problem, we use the idea in [5]
to prove that extended-Frege p-simulates G∗

1. The Σq
1 cut formulas are turned

into Σq
0 cut formulas by witnessing the existential quantifiers with extension

variables.
We prove the Herbrand Theorem for all Σq

i formulas, but before we can state
the general theorem, we need a few definitions. The first one has more to do
with notation. The q variables come from the eigenvariables in the G∗

1 proof. To
make it easier to refer to these variables, we use the following notation:

Notation 3.4. Let π be a G∗ proof. Then the set Qπ will be the set of variables
that are used as eigenvariables in π. If S is a sequent in π, then Qπ,S will be the
set of variables that are used as eigenvariables in the subproof of π ending with
S. We will refer to Qπ,S as QS when π is understood.

Note that π is treelike, and, if it is in free-variable normal form and S is derived
from S1 and S2, then QS = QS1 ∪QS2 , and QS1 ∩QS2 = ∅.

The general witnessing theorem will be for G∗
1 proofs of any formula A. In the

end, we want a G∗
0 proof of a sequent Λ → A∗, where A∗ is an instance of of an

∨-expansion of A defined below.
From now on we assume quantifiers do not appear in the scope of a ¬. If we

did not assume this, we would have to add a separate cases for when quantifiers
appear in the scope of an odd number of quantifiers and an even number.
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Definition 3.5 (∨-expansion). An ∨-expansion of a formula A is any for-
mula that can be obtained from A by a finite number of applications of the fol-
lowing rule:

If A∗ is an ∨-expansion of A and B is a non-Σq
0 subformula of A∗,

then replacing B by B ∨B′, where B′ is B with renamed quantified

variables, in A∗ yields another ∨-expansion of A.
(α)

Note that A is an ∨-expansion of A.

Definition 3.6 ((Q,E)-instance). Let Q and E be disjoint sets of variables.
A (Q,E)-instance of a formula A is a quantifier-free formula A′ obtained from
A by replacing universally-quantified variables by distinct variables in Q and
existentially-quantified variables by distinct variables in E.

Example 3.7. If

A ≡ B1 ∧ ∃x[B2(x) ∧ ∀yB3(x, y)]

and B2(x) is not a Σq
0 formula, then

A∗ ≡ B1 ∧ ∃x[(B2(x) ∨B2(x)) ∧ (∀yB3(x, y) ∨ ∀y′B3(x, y′))]

is an ∨-expansion of A. This can be seen by replacing B2(x) and ∀yB3(x, y). We
renamed the copy of y to y′ to emphasis it is now a different quantified variable.
If q1, q2 ∈ Q and e ∈ E, then the formula

B1 ∧ [(B2(e) ∨B2(e)) ∧ (B3(e, q1) ∨B3(e, q2))]

is a (Q,E)-instance of A∗, but

B1 ∧ [(B2(e) ∨B2(e)) ∧ (B3(e, q1) ∨B3(e, q1))]

is not because y and y′ were replaced by the same variable.

For another example, consider a prenex formula

∃~x1∀~y1 . . .∃~xn∀~ynB(~x1, ~y1, . . . , ~xn, ~yn),

where B is a Σq
0 formula. Then an instance of an ∨-expansion of this formula is

a formula of the form

B(~e1,1, ~q1,1, . . . , ~e1,n, ~q1,n) ∨ . . . ∨B(~em,1, ~qm,1, . . . , ~em,n, ~qm,n).

So in Theorem 3.3, the disjunction of the formulas in Θ is a (Qπ, E)-instance
of A. Because of this, Theorem 3.3 is simply a special case of the Herbrand
Theorem for G∗

1 below.
Observe that in Theorem 3.3, there is an ordering on the variables. Namely the

variables ~qi come before the variables ~qi+1. We could also extend this ordering to
include the extension variables. An extension variable would have to be larger
than every variable it depends on. For the general case, we want something
similar. To make the proof simpler, we will use ≺ to refer to this ordering. The
ordering ≺ orders the eigenvariables Q and the extension variables E. Then A∗

will be more than a (Q,E)-instance; it will be a (Q,E,≺)-instance.
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Definition 3.8. (Q,E,≺)-instance Let B be a (Q,E)-instance of a formula
A, and let ≺ be an ordering on Q ∪ E. Then B is a (Q,E,≺)-instance of A
if z1 ≺ z2 whenever z2 replaces a quantified variable that is in the scope of the
quantified variable that z1 replaced.

Example 3.9. Take A∗ from the previous example. Then

B ≡ B1 ∧ [(B2(e) ∨B2(e)) ∧ (B3(e, q1) ∨B3(e, q2))]

is a (Q,E)-instance of A∗. If B is a (Q,E,≺)-instance, then we know that
e ≺ q1 and e ≺ q2 since ∀y and ∀y′ are in the scope of the ∃x. Note that it does
not matter if q1 ≺ q2 or if q2 ≺ q1 since ∀y is not in the scope of ∀y′ and vice
versa.

The idea of an instance is essentially the witnessing substitution from [1]. Now
we are prepared to state the general theorem.

Theorem 3.10 (Herbrand Theorem for G∗
1). There exists a PV function F

such that V PV proves the following. Let π be a G∗
1 proof of A. Then, given

π, F outputs a G∗
0 proof of a sequent Λ → A∗ and a total ordering ≺ of the

variables Qπ ∪E, where E is a set of variables that do not appear in π, with the
following properties:
• Λ is an extension cedent defining the variables in E in terms of Qπ and the

free variables of A;
• for e ∈ E, if e depends on a variable p ∈ Qπ ∪ E, then p ≺ e; and
• A∗ is a (Qπ, E,≺)-instance of an ∨-expansion of A

Proof. The G∗
0 proof that we are looking for will be constructed by changing

π one sequent at a time starting with the initial sequents and working our way
down. To simplify this construction, we use the “multiplicative” form of two
hypothesis rules instead of the “additive” form. For example, the multiplicative
form of ∧-right is

Γ1 → ∆1, A Γ2 → ∆2, B

Γ1,Γ2 → ∆1,∆2, A ∧B
We use this form instead of the more standard form

Γ → ∆, A Γ → ∆, B
Γ → ∆, A ∧B

This is something that was also done in [1]. The advantage of the multiplicative
form is that, except for the principal formula, each formula in the bottom sequent
has a single parent in the upper sequents. So, in essence, we have removed
implicit contractions. We also ignore the order of the formulas in the sequents.
So a sequent is a pair of multi-sets. One set for the left side of the sequent, and
one set for the right side.

Let S be any sequent in π. By the subformula property of G∗
1, S is of the form

Γ → ∆,Ω,

where Γ and ∆ are possibly empty sets of Σq
1 formulas that are not ancestors of

the final formula and Ω is a possibly empty set of formulas that are ancestors
of the final formula. Recall that we are assuming there are no quantifiers in the
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scope of any ¬. We want to define a PV function that outputs a G∗
0 proof of a

sequent
S′ ≡ Λ,Γ′ → ∆′,Ω′,

and a total ordering ≺ on QS ∪ E where

1. Γ′ is obtained from Γ by replacing each formula ∃~zD(~z) by D(~q), where D
is Σq

0 and ~q ∈ QS . (We use different ~q for different formulas.)
2. ∆′ is obtained from ∆ be replacing each formula ∃~zD(~z) by D(~e), where
D is Σq

0 and ~e ∈ E. (We use different ~e for different formulas.)
3. Λ is an extension cedent defining E in terms of QS and the free variables

of S;
4. for e ∈ E, if e depends on a variable p ∈ QS ∪ E, then p ≺ e;
5. Ω′ is obtained from Ω by replacing each formula B by a (QS , E,≺)-instance

of an ∨-expansion of B; and
6. each q ∈ QS appears in at most one formula in Γ′, ∆′, and Ω′.

Note that ≺ is only defined on the extension variables and eigenvariables used so
far. Initially, ≺ is an ordering where nothing is comparable. As we move down
the proof, we order the variables.

The proof is done by induction on the depth of S in the proof π. If we let S be
the final sequent, we get a proof of the theorem since Qπ = QS , and conditions
3-5 are the conditions we need for the theorem. Also, note that the induction
hypothesis can be stated as a ΣB

0 (PV ) formula (is a polynomial-time predicate)
by saying that the output of the function F on the first i sequents of π meets all
of the conditions. This means the induction can be carried out in V PV .

The description of F is done in cases. There is a separate case for each rule
of inference. The construction is similar to the proof that extended-Frege p-
simulates G∗

1 (Theorem 7.48 of [5]). The difference is that the variables need to
be ordered.

When the last inference is the ∨, ∧, ¬ introduction rules, the same rule can
be applied in the G∗

0 proof we are constructing. It is a simple exercise to check
that the induction hypothesis still holds. The same would go for weakening. The
other cases are more involved, and are given below.
Inductive Case 1: S is inferred using cut

Suppose
S ≡ Γ1,Γ2 → ∆1,∆2,Ω1,Ω2

and that it is derived from

S1 ≡ ∃~xD(~x),Γ1 → ∆1,Ω1

and
S2 ≡ Γ2 → ∆2,∃~xD(~x),Ω2,

where D(~x) is a Σq
0 formula. By induction, we have a G∗

0 proof of the sequents

S′1 ≡ Λ1(~q), D(~q),Γ′1 → ∆′
1,Ω

′
1

with an ordering ≺1 on QS1 ∪ E1 and

S′2 ≡ Λ2,Γ′2 → ∆′
2, D(~e),Ω′

2
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with an ordering ≺2 on QS2 ∪ E2. In this case, we let

S′ ≡ Λ2,Λ1(~e),Γ′1,Γ
′
2 → ∆′

1,∆
′
2,Ω

′
1,Ω

′
2.

We say p1 ≺ p2 is true if any of the following conditions hold:
• p1 ≺1 p2,
• p1 ≺2 p2, or
• p1 ∈ QS2 ∪ E2 and p2 ∈ QS1 ∪ E1.
We can prove S′ by taking the proof of S′1 and replacing ~q with ~e. Because

the proofs are treelike, the substitution does not cause any problems. We can
then do the cut with S′1 and S′2.

We now look at each part of the induction hypothesis to be sure it still holds.
Properties 1 to 3 are obvious.

Let us prove property 4. Suppose e ∈ E = E1 ∪E2 depends on p ∈ QS ∪E. If
e ∈ E2, then e also depends on p in S′2 since Λ2 did not change. So, by induction
with S2, p ≺2 e and, therefore, p ≺ e. Now suppose e ∈ E1. If p ∈ QS2 ∪ E2,
then p ≺ e. If p 6∈ QS2 ∪ E2, then e depends on p in Λ1(~q) since ~e ∈ E2. So, by
induction with S1, we get p ≺1 e, which implies p ≺ e.

Property 5 follows directly form the induction hypothesis. Property 6 follows
from the induction hypothesis and the fact that QS1 and QS2 are disjoint.
Inductive Case 2: S is inferred using ∀-right

Suppose
S ≡ Γ → ∆,∀yD(y),Ω

and it is derived from
S1 ≡ Γ → ∆, D(q),Ω.

By induction with S1, there exists a sequent S′1 and an ordering ≺1 satisfying
the induction hypothesis. In S′1, there is a formula D∗(q) that is a (QS1 , E,≺1)-
instance of an ∨-expansion of A. That same formula is also a (QS , E,≺)-instance
of an ∨-expansion of ∀yD(y) now that q is part of QS .

The construction for this case is fairly simple. We let S′ be the same as S′1,
and the ordering ≺ is the same as ≺1 except q is now smaller than everything
in QS1 ∪ E. That is, q is the smallest variable of all variables ordered so far.
Inductive Case 3: S is inferred using ∃-right

Suppose
S ≡ Γ → ∆,∃xD(x),Ω

and it is derived from
S1 ≡ Γ,→ ∆, D(F ),Ω,

where F is a Σq
0 formula.

By induction, we have

S′1 ≡ Λ,Γ′ → ∆′, D∗(F ),Θ

and the ordering ≺1 on QS1 ∪ E. Note that we use D∗(F ) in place of D(F )
because it is possible that D(F ) had quantifiers that have already been removed.
Since F is a Σq

0 formula, it would still be intact since (α) does not change Σq
0

formulas. There are two cases to consider. If D(F ) is an ancestor of the final
formula then D∗(F ) in an instance of D(F ). If D(F ) is not an ancestor of the
final formula, then D∗(F ) is D(F ) with the existential quantifiers replaced by
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extension variables. In either case, D∗(F ) is a Σq
0 formula. The sequent S′ will

be defined as
S′ ≡ e↔ F,Λ,Γ′ → ∆′, D∗(e),Θ,

where e is a new extension variable. As for the ordering ≺, it is defined by
extending ≺1 by making e the minimum element. Note that QS = QS1 .

Let S′2 be
e↔ F,D′(F ) → D∗(e).

It is easy to derive S′2. Then it is possible to derive S′ from S′1 and S′2 by cutting
D∗(F ), which is a Σq

0 formula.
We now look at each part of the induction hypothesis to be sure it still holds.

It is easy to see that properties 1 to 3 and property 6 still hold.
For property 4, if e, the new extension variable, depends on p, then p must

appear in F , which is part of S1. This means that p 6∈ QS ∪ E. So, property 4
holds for e. For other variables, it holds directly from the induction hypothesis.

For property 5, the only instance that changed is D∗(F ), assuming ∃xD(x) is
not a Σq

1 formula. Since e replaced the outermost quantifier, e does not have to
be larger than any variable, and it is smaller than every variable that replaced
inside variables. Therefore D∗(e) is a (QS , E,≺)-instance of an ∨-expansion of
∃xD(x).
Inductive Case 4: S is inferred using contraction-right

Suppose
S ≡ Γ → ∆, D,Ω

and it is derived from
S1 ≡ Γ → ∆, D,D,Ω.

We look at two different cases: D is a Σq
1 formula, D is not Σq

1.
For the first case, let D be ∃~xD′(~x), where D′(~x) is a Σq

0 formula, then, by
induction with S1, we have

S′1 ≡ Λ,Γ′ → ∆′, D′(~e1), D′(~e2),Ω′

with the ordering ≺1 on QS1 ∪ E. We now have two witnesses for D, and we
need to pick the one that works. So, in this case, we let

S′ ≡ . . . , e3i ↔ [(D′(~e1) ∧ e1i ) ∨ (¬D′(~e1) ∧ e2i )], . . . ,Λ,Γ′ → ∆′, D′(~e3),Ω′,

where ~e3 are new extension variables. The ordering ≺ is defined as ≺1 with ~e3

added as the maximum elements so far.
Now we look at each part of the induction hypothesis to be sure it still holds.

For properties 1 to 3, notice that the initial part of S′ is part of the extension
cedent and it defines the new variables ~e3. With this observation, it is easy
to see that properties 1 to 3 still hold. Now to look at property 4. Since
~e3 are the largest elements in the ordering ≺, anything they depend on must
be incomparable or smaller. So property 4 holds for ~e3. For other extension
variables, it holds directly from the induction hypothesis. Property 5 follows
directly from the induction hypothesis since Ω did not change. Property 6 follows
directly from the induction hypothesis.
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For the second possibility, assume thatD is not a Σq
1 formula. The by induction

with S1 we get
S′1 ≡ Λ,Γ′ → ∆′, D∗

1 , D
∗
2 ,Ω

′

where D∗
1 and D∗

2 are (QS1 , E,≺1)-instances of an ∨-expansion of D. Then we
let

S′ ≡ Λ,Γ′ → ∆′, D∗
1 ∨D∗

2 ,Ω
′

which can be obtained from S′1 using ∨-right. Notice that D∗
1 ∨ D∗

2 is also
a (QS , E,≺)-instance of an ∨-expansion of D, and, since the ordering is not
changed, the induction hypothesis still holds.
Inductive Case 5: S is inferred using contraction-left

Suppose
S ≡ D,Γ → ∆,Ω

and it is derived from
S1 ≡ D,D,Γ,→ ∆,Ω.

The formula D must be a Σq
1 formula and an ancestor of a cut formula. Let it

be of the form ∃xF (x), where F (x) is a Σq
0 formula. For now, we assume that

D has a single existential quantifier, but the construction easily generalizes. By
induction with S1, there exists a sequent S′1 of the form

Λ(q1, q2), F (q1), F (q2),Γ′ → ∆′,Ω′

with an ordering ≺. Without lose of generality, assume that q1 ≺ q2. Then, we
let

S′ ≡ Λ(q1, q1), F (q1),Γ′ → ∆′,Ω′

The ordering will remain the same.
To prove S′, we take the proof of S′1, replace every instance of q2 by q1, and

then contract the two copies of F (q1). The substitution can be done because the
proof is treelike.

We now look at each part of the induction hypothesis to be sure it still holds.
It is easy to see that properties 1 to 3 hold.

Property 4 follows from the induction hypothesis. Note that, if a variable
depended on q2, it now depends on q1, but that is fine since q1 is smaller.

Property 5 holds since Ω did not change. a
From this, we are able to prove the witnessing theorem (Theorem 3.3). We

will restate it here.

Theorem 3.11 (KPT Witnessing for G∗
1). There exists a PV (polynomial-time)

function F such that V PV proves the following. Let π be a G∗
1 proof of a prenex

Σq
2 formula A(~p) ≡ ∃~x∀~yB(~x, ~y, ~p), where B(~x, ~y, ~p) is a Σq

0 formula with all free
variables shown. Then, given π, F outputs a G∗

0 proof of a sequent Λ → Θ where

1. Θ is a series of formulas of the form B(~ei, ~qi, ~p), where ~ei ∈ E
2. Λ is an extension cedent defining a new set of variables E in terms of
~q1, . . . , ~qn and ~p,

3. ~ei does not depend on ~qj, for j ≥ i, and
4. ~qi and ~qj are disjoint.
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Proof. By the Herbrand theorem above, there is a proof of Λ → A∗, where
A∗ is a (Qπ, E,≺)-instance of an ∨-expansion of A. We need to show how to get
Θ from A∗.

The first observation we make is that A∗ is of the from

B(~e1, ~q1, ~p) ∨ . . . ∨B(~en, ~qn, ~p).

This is true because the rule (α) gives multiple copies of B, which all remain in
tact since B is a Σq

0 formula, combined using ∨. This means that A∗ is essentially
the Θ we want.

Without lose of generality, we can assume that, if i < j, then the smallest
variable in ~qi is smaller than the smallest variable in ~qj . This implies that ~ei

does not depend on ~qj for j ≥ i. This is because every variable in ~ei is smaller
than every variable in ~qi since we have a (Qπ, E,≺)-instance.

The final observation is that if ~qi and ~qj contain a common variable then ~ei and
~ej must be the same. Otherwise, if ~ei and ~ej are different, then an application
of (α) must have occurred that would make part of ~ei and ~ej correspond to
different existential variables. Since the universal variables are in the scope of
these existential variables, ~qi and ~qj would correspond to different quantifiers
making them disjoint.

If we have that ~qi and ~qj are not disjoint, we are able to replace ~qj by ~qi

everywhere in the proof. Then we can contract the two copies of B(~ei, ~qi). a
3.2. Witnessing for G∗

i . In the statement of the original KPT witnessing
theorem for V PV , polynomial-time functions are used to find the possible wit-
nesses; however, for TV i, the KPT witnessing theorem uses functions in FPΣp

i .
Corresponding to that we will generalize the definition of an extension cedent to
allow oracles from the other levels of the polynomial hierarchy.

Definition 3.12 (i-extension cedent). An i-extension cedent is a series of
formulas of the form

e1 ↔ E1, e2 ↔ E2, . . . , en ↔ En

such that Em is a Σq
i ∪Πq

i formula that does not mention the variables
em, em+1, . . . , en.

Note that an extension cedent is the same as a 0-extension cedent.

Definition 3.13 (i-expansion). The same as an ∨-expansion except that B
must be a non-(Σq

i ∪Πq
i ) formula instead of a non-Σq

0 formula.

Definition 3.14 ((i, Q,E,≺)-instance). An (i, Q,E,≺)-instance of a formula
A is the same as a (Q,E,≺)-instance of A except that Σq

i ∪ Πq
i subformulas of

A are not changed. That is, the quantifiers that appear in the i innermost blocks
of quantifiers are not replaced.

Note that a (i, Q,E,≺)-instance of a formula will always be a Σq
0(Σ

q
i ) formula.

Example 3.15. Let A be the formula ∃~x∀~y∃~zB(~x, ~y, ~z), where B is a Σq
0 for-

mula. Then a (1, Q,E,≺)-instance of A would be ∃~zB(~e, ~q, ~z) and a (2, Q,E,≺)-
instance would be ∀~y∃~zB(~e, ~y, ~z).
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Theorem 3.16 (Herbrand Theorem for G∗
i ). For each i > 0, there is a PV

function F such that VPV proves the following. Let π be a G∗
i proof of A. Then,

given π, F outputs a G∗
i−1 proof of a sequent Λ → A∗ and a total ordering ≺ of

the variables Qπ ∪E, where E is a set of variables that do not appear in π, with
the following properties:
• Λ is a (i − 1)-extension cedent defining the variables in E in terms of Qπ

and the free variables of A;
• for e ∈ E, if e depends on a variable p ∈ Qπ ∪ E, then p ≺ e; and
• A∗ is an (i− 1, Qπ, E,≺)-instance of an (i− 1)-expansion of A.

Before we prove this theorem, we should note that it does not seem like we
can improve the complexity of the extension cedent. For, if the (i− 1)-extension
cedent could be replaced by a (i − 2)-extension cedent, this could be used to
show that G∗

i−1 p-simulates G∗
i for prenex formulas. The proof would be similar

to the proof of Theorem 4.2.
Proof of Theorem 3.16. The proof is almost the same as in the G∗

1 case.
The quantifier complexity of the cut formulas is reduced by witnessing the outer-
most block of existential quantifiers with extension variables. The only difference
is that we can no longer skip all of the quantifier introduction rules. Some will
have to be added. For example, if we have a cut formula ∃~x∀~yC(~x, ~y), then we
will replace ~x by extension variables, but we still add ∀~y to the formula.

This construction can be described more formally. As before, each sequent S
in π can be divided into three parts: Γ which contains all of the formulas on
the left-hand side; ∆, which contains the formulas on the right-hand side that
are ancestors of cut formulas; and Ω, which contains the ancestors of the final
formula on the right-hand side. Note that by the subformula property, we know
that Γ and ∆ contain only Σq

i formulas. For each sequent S ≡ Γ → ∆,Ω in π,
we construct a G∗

i−1 proof of a sequent

S′ ≡ Λ,Γ′ → ∆′,Ω′,

and a total ordering ≺ on QS ∪ E where
1. Γ′ is obtained from Γ by replacing each non-Σq

i−1 formula ∃~zD(~z) by D(~q),
where D is Πq

i−1 and ~q ∈ QS . (We use different ~q for different formulas.)
2. ∆′ is obtained from ∆ be replacing each non-Σq

i−1 formula ∃~zD(~z) by D(~e),
where D is Πq

i−1 and ~e ∈ E. (We use different ~e for different formulas.)
3. Λ is an (i− 1)-extension cedent defining E;
4. for e ∈ E, if e depends on a variable p ∈ QS ∪ E, then p ≺ e;
5. Ω′ is obtained from Ω by replacing each formula B by an (i− 1, QS , E,≺)-

instance of an (i− 1)-expansion of B; and
6. each q ∈ QS appears in at most 1 formula in Γ′, ∆′, and Ω′.

The construction is the same as in Theorem 3.10 except for the need to add a
few new cases. If ∃-right is applied with a Σq

i−1 principal formula or ∀-left is
applied with a Πq

i−1 principal formula, the same inference can be used in the
G∗

i−1 proof we are constructing. We must also consider when S is derived using
∃-left with a Σq

i−1 principal formula and when S is derived using ∀-right with
a Πq

i−1 principal formula. Both cases are handled in the same way, so we only
describe the latter.
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Suppose
S ≡ Γ → ∆,∀qD(q),Ω

and it is derived from
S1 ≡ Γ → ∆, D(q),Ω

where D(q) is Πq
i−1. By induction, we have a G∗

i−1 proof of S′1, where

S′1 ≡ Λ(q),Γ′ → ∆′,Ω′, D(q).

We know q does not appear in Γ′ or ∆′ since is was used as an eigenvariable,
but it is still possible that the extension variables depend on it, in which case it
would appear in Λ.

The first step is to replace q by a new extension variable e. This gives

Λ(e),Γ′ → ∆′,Ω′, D(e).(3.1)

We then derive

e↔ D(⊥), D(e) → ∀qD(q).(3.2)

See Lemma 3.17 below for how to do this. We finish by deriving

e↔ D(⊥),Λ(e),Γ′ → ∆′,Ω′,∀qD(q)

by cut with sequents (3.1) and (3.2) and cut formula D(e).
The ordering is changed by adding e as the smallest element. Note that, since

D(q) is in S1, D(⊥) does not contain any extension variables or eigenvariables
in QS . With this fact in mind, we can see all of the conditions in the induction
hypothesis follow. a

Lemma 3.17. Let B(q) be a Σq
i or Πq

i formula. Then there exists polynomial-
size G∗

i proofs of the sequents

e↔ B(⊥), B(e) → ∀qB(q)

e↔ B(>),∃qB(q) → B(e)

Proof. The proof for the two sequents are essentially the same, so we only
give the construction for the first one. Informally, the reason the first sequent is
true is that we are picking a value for e that makes B(e) false if possible. So, if
B(⊥) is false, we make e false, otherwise we make e true, which is the only other
possible value.

First, it is possible to get cut-free proofs of the following four sequents.

e,B(e) → B(>)

B(e) → B(⊥), e

e, B(>) → B(e)

B(⊥) → B(e), e

This can be shown by simultaneous structural induction on the formula B(e).
We use this in the following derivation:

q,B(>) → B(q) B(⊥) → B(q), q
Cut q

B(⊥), B(>) → B(q)
∀-right

B(⊥), B(>) → ∀qB(q)
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So to finish proving this lemma, all we need are proofs of the sequents

e↔ B(⊥), B(e) → B(⊥)

e↔ B(⊥), B(e) → B(>)

We prove the first one as follows:

e, e ⊃ B(⊥) → B(⊥) B(e) → B(⊥), e
Cut e

e ⊃ B(⊥), B(e) → B(⊥)
Weakening and ∨-left

e↔ B(⊥), B(e) → B(⊥)

The second one is proved as follows:

B(e) → e,B(⊥) B(⊥) ⊃ e,B(⊥) → e
Cut B(⊥)

B(⊥) ⊃ e,B(e) → e e,B(e) → B(>)
Cut e

B(⊥) ⊃ e,B(e) → B(>)

Note that the only cut formulas are e, B(⊥), and B(>); therefore, the proof
is a G∗

i proof. a

§4. GPV ∗ and G∗
1. We now move on to applications of the Herbrand Theo-

rem for G∗
1. The first application deals with a seemingly weaker proof system.

Definition 4.1. The proof system GPV ∗ is G∗
1 in which cut formulas are

restricted to Σq
0 formulas or formulas of the form ∃x[x ↔ A], where A is a Σq

0

formula that does not mention x.

At first glance, it seems like GPV ∗ would be a weaker proof system than G∗
1

because the cut formulas are less expressive. The cut formulas in GPV ∗ can
be trivially witnessed, but the cut formulas in G∗

1 are NP-hard. Nevertheless,
it can be shown that GPV ∗ and G∗

1 are p-equivalent for prenex formulas. One
direction is easy since every GPV ∗ proof is a G∗

1 proof, so all that is left is to
prove the other direction.

Theorem 4.2. V PV proves that GPV ∗ p-simulates G∗
1 for prenex formulas.

Proof. Let π be a G∗
1 proof of a formula A of the form

∀~y0∃~x1∀~y1 . . .∃~xn∀~ynB(~y0, ~x1, ~y1, . . . , ~xn, ~yn),

where B is a Σq
0 formula. By the Theorem 3.10, V PV proves that there exists a

G∗
0 proof π′ of a sequent Λ → A∗ and a total ordering ≺ of the variables Qπ ∪E

meeting the conditions of the theorem. Since A is in prenex form, we know that
A∗ is of the form

∨m
i=0B(~qi,0, ~ei,1, ~qi,2, . . . , ~ei,n, ~qi,n). From this we are able to

get a proof of Λ → Θ where

Θ ≡ B(~q0,0, ~e0,1, ~q0,2, . . . , ~e0,n, ~q0,n), . . . , B(~qm,0, ~em,1, ~qm,2, . . . , ~em,n, ~qm,n)

by deriving A∗ → Θ and cutting A∗.
We describe an algorithm that takes as input π′ and ≺. The algorithm extends

π′ into a GPV ∗ proof of A. At any stage, π′ will be a proof of a sequent Λ′ → Θ′,
where Λ′ is a subsequence of Λ and Θ′ is a sub-series of Θ with some quantifiers
added. The algorithm has four steps:
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Step 1: Add as many existential quantifiers to the formulas
in Θ′ as possible using ∃-right rules such that the formula is still a subformula of A.

Step 2: Use contraction to combine as many formulas in
Θ′ as possible.

Step 3: Find the largest variable that is mentioned in
Λ′ or Θ′.
Step 3a: If it is an extension variable e,

apply ∃-left to the formula e↔ E
with e as the eigenvariable. Then
cut the formula ∃e[e↔ E] after
deriving → ∃e[e↔ E].

Step 3b: If it was an eigenvariable q in π,
then apply ∀-right with q as the
eigenvariable.

Step 4: Repeat steps 1 to 3 until there is no change.
At first, it may not be obvious that this algorithm works. For example, it is not

obvious that the eigenvariable restriction for ∃-left or ∀-right rules in Step 3 is
met. To show that the eigenvariable restriction is met, we make two observations.
First, if p is the largest variable in Λ′ and Θ′, then no extension variable can
depend on p. Otherwise, that variable would be larger than p. Second, if we are
in Step 3 and p is the largest variable in Λ′ and Θ′, then p cannot be mentioned
in Θ′ unless it is in Qπ; otherwise p would be an extension variable and have
been used as the target formula in an ∃-right rule in Step 1. If this is not the
case, an eigenvariable that appears to the right of p is still present, and this
variable must be larger than p. For the same reason, we know that there cannot
be two formulas in Θ with p replacing a universal variable that have not been
contracted yet. This means the eigenvariable restriction is met in Step 3.

When the algorithm is done, we will have a proof of the formula we want.
Notice that Λ′ would be empty because every extension variable has been re-
moved. Also, Θ′ would be the single formula A since every formula in Θ would
have every quantifier added by now, and would have been contracted to a single
formula. We know the algorithm eventually stops because we continually reduce
the number of variables in π′. a

§5. Gi and G∗
i+1. As has already been mentioned, for i > 0, Gi is commonly

connected with the theory TV i and G∗
i+1 is commonly connected with V i+1.

Since the two theories have the same ΣB
i+1 theorems, it was natural that the

two proof systems are p-equivalent when proving Σq
i+1 formulas. However, we

want to extend this to more general formulas. In [13], it was shown that one
direction is probably not possible. Namely that, under an appropriate complexity
assumption, there is a family of Σq

i+2 formulas for which G∗
i+1 does not p-simulate

Gi. Here we prove that Gi p-simulates G∗
i+1 for all formulas.

The proof is based on the proof of Krajicek that depth d, DAG-like PK can
p-simulate depth d + 1, treelike PK. The observation of the similarity between
the two theorems is due to Toni Pitassi.

Definition 5.1 (The i-Substitution Rule). The i-substitution rule is
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A1(p), . . . , Am(p),Γ → ∆, B1(p), . . . , Bn(p)
A1(C), . . . , Am(C),Γ → ∆, B1(C), . . . , Bn(C)

where C is a quantifier-free formula, A1, . . . , Am, B1, . . . , Bn are Σq
i ∪Πq

i formu-
las, and p does not appear in the bottom sequent.

Lemma 5.2. For i > 0, G∗
i p-simulates the i-substitution rule.

Proof. The proof is the same as the proof of Lemma 2.1 in [9]. We will
describe how to do the simulation for the case where there is one A and B. The
general case is done the same way.

Suppose we have a derivation of

A(p),Γ → ∆, B(p).(5.1)

We want to derive
A(C),Γ → ∆, B(C).

First we derive
p↔ C,A(C) → A(p),

and cut this with (5.1), where A(p) is the cut formula. This gives

p↔ C,A(C),Γ → ∆, B(p).(5.2)

Then we derive
p↔ C,B(p) → B(C),

and cut this with (5.2), where B(p) is the cut formula. This gives

p↔ C,A(C),Γ → ∆, B(C).(5.3)

We then apply ∃-left to this sequent with p as the eigenvariable, and then cut
∃p[p↔ C] after deriving → ∃p[p↔ C]. a

Theorem 5.3. For i > 0, Gi p-simulates G∗
i+1.

Proof. At a high level, this proof is done by carefully applying one step of
cut-elimination to each cut formula. The increase in the size of the proof in the
cut-elimination theorem comes from repeating part of the proof multiple times.
We avoid this increase by creating a DAG-like proof.

Let π be a G∗
i+1 proof. The reason π is not a Gi proof is that it would contain

cut formulas that are not Σq
i or Πq

i . We can assume these formulas are Σq
i+1 and

are of the form
∃x1 . . .∃xnC(x1, . . . , xn),

where C is Πq
i . We can assume this because, in [12], Morioka proved that we all

G∗
i+1 proofs can be transformed into a G∗

i+1 proof where the cut formulas are
prenex. We need to turn these cut formulas into Πq

i cut formulas. To do this, we
change all of the non-(Σq

i ∪Πq
i ) formulas that are ancestors of these cut formulas.

These formulas are of the form

∃xl . . .∃xnC(D1, . . . , Dl−1, xl, . . . , xn),(5.4)

where Dj is a Σq
0 formula for j < l, and C(~x) is a Πq

i formula. Note that, if
this formula is on the left side of a sequent, then the formula Di will actually be
variables that eventually get used as eigenvariables in an ∃-left rule. From now
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on, we will assume all formulas of the form (5.4) are ancestors of cut formulas.
Those that are not are simply ignored.

The construction will be done inductively. We start with the first sequent in
π and work our way down the proof. For each sequent S ≡ Γ → ∆ in π, we give
a Gi proof π′ of a sequent S′ ≡ Γ′ → ∆′ where

1. Γ′ is obtain from Γ by replacing every formula of the form (5.4) by C(D1, . . . , Dl−1, x
C
l , . . . , x

C
n ),

2. ∆′ is obtained from ∆ by removing every formula of the form (5.4),
3. the sequent

C(D1, . . . , Dl−1, x
C
l , . . . , x

C
n ) →

can be used as an axiom if and only if ∆ contains a formula of the form
(5.4).

For example, if S is the sequent

∃x2, x3C1(q1, x2, x3),Γ → ∆,∃x3, x4C2(D1, D2, x3, x4),

S′ would be
C1(q1, xC1

2 , xC1
3 ),Γ → ∆,

and when we prove S′, we are allowed to use

C2(D1, D2, x
C2
3 , xC2

4 ) →

as an axiom. In essence, we are saying, if we can derive

C2(D1, D2, x
C2
3 , xC2

4 ) →,

we can prove S′. Note that, when we get to the final sequent, no formula is an
ancestor of a cut formula. Therefore, if S is the final formula in π, S′ = S and
the only initial sequents are of the form x → x. So this will give us a proof of
the theorem.

The construction of π′ is given inductively. There is a separate case for each
rule of inference. Most cases are simple and are left to the reader. The only
cases we will give are cut, ∃-left, and ∃-right.
Cut: Suppose S ≡ Γ → ∆ is derived from S1 and S2 using cut. Let the cut
formula be ∃~xC(~x). By induction with S1, we have a Gi proof π′1 of

S′1 ≡ C(~xC),Γ′ → ∆′.

By induction with S2, we have a Gi proof π′2 of Γ′ → ∆′ using the axiom
C(~xC) →. Notice that π′2 is a proof of the sequent we want, but it uses an axiom
we are no longer able to use. However, π′1 gives us a derivation of this axiom,
with a few extra formulas.

The first step in the construction of π′ is to add Γ′ to the left and ∆′ to the right
of every sequent in π′2. This makes the axiom we want to remove Ci(~xi),Γ′ → ∆′,
which is the final sequent π′1. So, π′ is π′1 followed by the new π′2. Note that
the axiom would have been used once for every time ∃xn was introduced in the
original proof. Each of these formulas would later be contracted into the single
cut formula. However, since we are constructing a DAG-like proof, we do not
need to repeat π′1 multiple times. This gives a proof of Γ′,Γ′ → ∆′,∆′, from
which we can derive Γ′ → ∆′ using contraction.
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∃-left: Suppose S is

∃xj . . .∃xnC(q1, . . . , qj−1,xj, xj+1, . . . , xn),Γ → ∆,

and it was derived from S1

∃xj+1 . . .∃xnC(q1, . . . , qj−1,qj, xj+1, . . . , xn),Γ → ∆.

By induction with S1, we get a Gi proof of

C(q1, . . . , qj−1,qj, x
C
j+1, . . . , x

C
n ),Γ′ → ∆′.

Since qj was used as an eigenvariable, it only appears in that one formula. There-
fore we can replace qj by xC

j using the i-substitution rule. This gives us π′.
∃-right: Suppose S is

Γ → ∆,∃xj . . .∃xnC(D1, . . . , Dj−1,xj, xj+1, . . . , xn),

and it was derived from S1

Γ → ∆,∃xj+1 . . .∃xnC(D1, . . . , Dj−1,Dj, xj+1, . . . , xn).

First assume j < n. That is we had at least one quantifier already. By
induction with S1, we get a Gi proof of Γ′ → ∆′ using the axiom

C(. . . ,Dj, . . . ) → .(5.5)

We cannot use this axiom anymore. Instead, we use the axiom

C(. . . ,xC
j , . . . ) →

and derive (5.5) using the i-substitution rule.
If j = n, the construction is a little different. By induction with S1, we get a

Gi proof of

Γ′ → ∆′, C(. . . , Dn−1, Dn).(5.6)

To construct π′, we take the axiom we can now use,

C(. . . , Dn−1, x
C
n ) →,

and derive
C(. . . , Dn−1, Dn) →

using the i-substitution rule. Then we cut with (5.6). a

§6. Reflection Principles. We can also use the Herbrand Theorem to prove
reflection principles. Proving reflection principles is the standard method of
assessing the strength of a proof system relative to a theory. For example,
the Σq

1 reasoning of G∗
1 is not stronger than the ΣB

1 reasoning of V 1 because
V 1 proves Σq

1-RFN(G∗
1) [7]. Our goal is to find the weakest fragment of V

that proves Σq
i -RFN(G∗

1). In [12], it was shown that TV 0 does not prove Σq
2-

RFN(G∗
1) unless the polynomial-time hierarchy collapses. Using the same ideas,

it is possible to show that TV i does not prove Σq
i+2-RFN(G∗

1), for i ≥ 0, unless
the polynomial-time hierarchy collapses. This still leaves open whether or not
V i proves Σq

i+1-RFN(G∗
1) for i ≥ 1. We prove that, in fact, it does.

We first prove the simplest case. Namely, that V 1 proves (prenex Σq
2)-RFN(G∗

1).
The proof serves as a template for the general case, which we prove right after.



26 STEVEN PERRON†

Theorem 6.1. V 1 proves (prenex Σq
2)-RFN(G∗

1).

Proof. Let π be a G∗
1 proof of a prenex Σq

2 formula A. So A is of the form

∃~x∀~yB(~x, ~y, ~p),

where B is a Σq
0 formula. In this formula, ~p is all of the free variables in A,

and should be understood as being implicitly universally quantified. We want
to prove in V 1 that, given values for ~p, there exists values for ~x that witness the
formula.

By the KPT witnessing theorem for G∗
1 (Theorem 3.3), V 1 proves that there

is a G∗
0 proof of a sequent

S ≡ Λ → Θ,
meeting the conditions of the theorem.

Let
ψ(m,Λ,Θ, P ) ≡
∃E ∃Q “E is a truth assignment to the extension variables”

∧ “Q is a truth assignment to the eigenvariables”

∧ ∀i < m (P ∪ E ∪Q) |=0 ¬B(~ei, ~qi, ~p)

∧ (P ∪ E ∪Q) |=0 Λ

This formula says that there exists assignments E and Q that satisfy Λ and make
the first m formulas in Θ false. It is easy to bound the size of E and Q. This
means that ψ is equivalent to a ΣB

1 formula.
Using ΣB

1 -MAX, we find the maximum value m0 for m that satisfies ψ given
values for Λ,Θ, and P . Then ~em0+1 are the witnesses we are looking for, which
we now prove.

First note that ψ(0) is true. We can set Q to the assignment that sets ev-
erything to false, and compute E that satisfies Λ. Also note that m0 < n since
it is not possible the falsify all of the formulas in Θ. This would violate the
Σq

0-RFN(G∗
0), which is provable in V 1. This means that ~em0+1 exists.

Let E and Q be witnesses for ψ(m0). For the sake of contradiction assume
~em0+1 is not a witness for ∃~x∀yB(~x, ~y, ~p). Change Q so that ~qm0+1 are assigned
values falsifying B(~em0+1, ~qm0+1, ~p). We can then change E so that Λ is satisfied.
Since ~ej , for j ≤ m0 + 1, does not depend on ~qm0+1, their values stay the same.
This means we now have E and Q making the first m0 + 1 formula in Θ false,
violating our choice of m0. a

Theorem 6.2. V i ` Σq
i+1-RFN(G∗

i ).

Proof. Suppose we have a G∗
i proof of a Σq

i+1 formula A. By Theorem 3.16,
we can find a G∗

i−1 proof of an instance of an ∨-expansion of A, with and ordering
≺. Let A∗ be the ∨-expansion of A. Then, by Lemma 6.3 below, all we need to
do is prove A∗ is valid in order to prove the reflection principle.

This is done in a similar fashion to Theorem 6.1. In the previous case, a block
of quantifiers was ~qi. In this theorem, we put all of the universal quantifiers that
are in the scope of the same existential quantifiers in one group. For example, if

A∗ ≡ (∃x1(∀y1B ∨ ∀y2B)) ∧ ∃x2(∀y3C ∧ ∃x3∀y4D)
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then there are three groups of quantifiers. The variables y1 and y2 form one group
since they are both in the scope of x1 and no other variables. The variable y3
forms the second group. It cannot be in the same group as y4 because it is not
in the scope of x3. The final group is y4.

We order the groups of universal variables by the smallest variable in the group,
and for each group we associate the formula where the variables for the smaller
groups have been replaced. For example, we use A∗ above and the instance is

A′ ≡ (B(e1, q1) ∨B(e1, q2)) ∧ (C(e2, q3) ∧D(e2, e3, q4))

where q3 ≺ q1 ≺ q4 ≺ q2. Then the formula associated with the group {q1, q2} is

(B(e1, q1) ∨B(e1, q2)) ∧ (C(e2, q3) ∧ ∃x3∀y4D(e2, x3, y4))

We removed the quantifiers ∀y3, ∀y2, and ∀y1, plus all existential quantifiers that
are outside (smaller than) these universal quantifiers. Note we did not replace
y4 with q4 because the group {q4} is larger then the group {q1, q2}, even if q2 is
larger than q4.

Then, by ΣB
i -MAX, we are able to find values for the eigenvariables that make

as many of these formulas false, starting with the formula for the first group and
going through the groups in order. By Σq

i−1-RFN(G∗
i−1), which is provable in

V i, we cannot make the last formula false. As before we are able to extract the
witness we want. a

Lemma 6.3. V i proves that, if A∗ is an ∨-expansion of a Σq
i formula A, then

σ |=i A
∗ ↔ σ |=i A.

Proof. Done by induction on the number of applications of (α) (Definition
3.5) used to obtain A∗ from A. a

§7. New Axiomatization of V . In this section, we will strengthen a result
from [9]. In that paper, Krajicek and Pudlak showed that V can be axiomatized
by V 1 +{Σq

i -RFN(Gi) | i ∈ N}. A similar proof can be used to prove that V can
be axiomatized by V 1 + {Σq

i -RFN(G∗
i ) | i ∈ N}. In this section, we show that

V can also be axiomatized by V 1 + {Σq
i -RFN(CFG∗) | i ∈ N}, where CFG∗ is

the cut-free version of G∗. Note that CFG∗ is a weaker proof system than any
of the other fragments of G.

Just a bit of notation. If A is a formula with free variables ~p, then ∃A, called
the existential closure of A, is the formula ∃~pA.

Lemma 7.1. V 1 proves

Σq
i+1-RFN(CFG∗) ↔ Σq

i+1-RFN(G∗
i ).

Proof. The if direction is easy since a CFG∗ proof is also a G∗
i proof. The

only if direction is not as easy. Assume Σq
i+1-RFN(CFG∗), and argue in V 1.

Given a G∗
i proof π of a Σq

i+1 formula A, we change it into a CFG∗ proof of a
formula

B ≡ A ∨
n∨

j=1

∃(Cj ∧ ¬Cj),

where C1, . . . , Cn are all of the cut formulas in π.
This is done by first replacing each cut by
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Γ → ∆, C
C,Γ → ∆

Γ → ∆,¬C
Γ → ∆, C ∧ ¬C
Γ → ∆,∃(C ∧ ¬C)

The sequents in the rest of the proof are changed to include ∃(Ci ∧ ¬Ci). Note
that none of the inferences are affected by adding this formula. The only problem
could be the eigenvariable restriction in ∃-left and ∀-right inferences; however,
since the new formula does not have any free variables, there is no problem. At
the end of the proof, the A is combined with the new formulas using ∨-right
inferences.

Since the cut formulas are Σq
i formulas, B is a Σq

i+1 formula. By Σq
i+1-RFN(CFG∗),

B is true, and, since ∃(Ci ∧ ¬Ci) cannot be true, A must be true. This can be
done in V 1 since it proves the Tarski conditions for the true definition. a

Corollary 7.2. V = V 1 + {Σq
i -RFN(CFG∗) | i ∈ N}.

Proof. Follows from the lemma above, Krajicek and Pudlak’s axiomatization
of V , and the fact that Σq

i+1-RFN(G∗
i ) implies Σq

i -RFN(G∗
i ) a

§8. Conclusion And Future Work. In this paper, we looked at Gi and
G∗

i as proof systems for proving formulas with high quantifier complexity. Many
questions of this type have been resolved, and, as a whole, these results indicate
that power of these proof systems grows beyond any finite level of the V (or S2)
hierarchy.

The Herbrand theorem for G∗
i provides an interesting reduction of the prov-

ability of high complexity formulas to the provability of a Σq
i+1 formula. Only a

couple corollaries have a been given, but we believe it is worth further exploring
the use of this theorem as a tool in the proof theory of quantified propositional
proof systems.

We still need to explore these proof systems as proof systems for low quantifier
complexity formulas. One interesting problem would be the find the complexity
of the witnessing problem for these proof systems. For example, we could ask
how hard it is to find a witness for Σq

1 formula given a G∗
i proof of the formula.

It can be shown that this problem is equivalent to the corresponding witnessing
problem in the associated theory. So the Σq

1 witnessing problem for G∗
i has the

same complexity as the ΣB
1 witnessing problem for V i. This would be related to

the work in [10], and may provide an alternative view of their results.
It would also be interesting to explore the provability of the reflection principles

for formulas with low quantifier complexity. In particular, we could ask if V i

proves that G∗
i+1 is consistent. People have thought of these problems ([7],

Section 10.5), so the answers are not easy. However, this is still an important
question to answer.
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