
Examining The Fragments of G

Steven Perron
University of Toronto

Department of Computer Science,
Toronto, Ontario, Canada
sperron@cs.toronto.edu

Abstract

When restricted to proving Σq
i formulas, the quantified

propositional proof system G∗
i is closely related to the Σb

i

theorems of Buss’s theory Si
2. Namely, G∗

i has polynomial-
size proofs of the translations of theorems of Si

2, and Si
2

proves that G∗
i is sound. However, little is known about

G∗
i when proving more complex formulas. In this paper, we

prove a witnessing theorem for G∗
1 similar in style to the

KPT witnessing theorem for T i
2. This witnessing theorem is

then used to show that Si
2 proves G∗

1 is sound with respect
to prenex Σq

i+1 formulas. Note that unless the polynomial
hierarchy collapses Si

2 is the weakest theory in the S2 hier-
archy for which this is true. The witnessing theorem is also
used to show that G∗

1 is p-equivalent to a quantified ver-
sion of extended-Frege. This is followed by a proof that Gi

p-simulates G∗
i+1. We finish by proving that S2 can be ax-

iomatized byS1
2 plus axioms stating that the cut-free version

of G∗ is sound. All together this shows that the connection
between G∗

i and Si
2 does not extend to more complex for-

mulas.

1 Introduction

In [9], Krajicek and Pudlak introduced the quantified
propositional proof systemG and its fragments. These frag-
ments have close connections with bounded arithmetic and
computational complexity. In particular, the collapse of the
polynomial-time hierarchy, the bounded arithmetic hierar-
chy S2, and the fragments of G are all related [9, 8, 7, 10].
Even with these close connections to important open prob-
lems in logic and computer science, little work has been
done investigating the fragments of G. In this paper, we
take a closer look at them.

The proof system G∗
i has informally been described as

the non-uniform version of Si
2. This is often expressed by

describing the close connection between the Σb
i theorems

of Si
2 and G∗

i proofs of Σq
i formulas [7]. The same type

of connection exists between the theory PV and the treelike
version of extended-Frege [6]; and the theory T i

2 and Gi. In
this paper, we compare these proof systems to each other
and the theories to see how accurate these informal descrip-
tions of the proof systems are.

Following Morioka, the proof system G∗
i is defined by

restrictingG to treelike proofs where all cut formulas are Σq
i

[3, 11]. Note that originally G∗
i was defined by restricting

all formulas, not just cut formulas, to Σq
i formulas [9, 7].

Informally, we can think of G∗
i as reasoning with lemmas

that can be described as predicates in the ith level of the
polynomial-time hierarchy.

First, we examineG∗
1 by comparing it to extended-Frege

directly. In [7], it was shown that treelike extended-Frege is
p-equivalent to G∗

1 with respect to quantifier-free formulas.
The interesting part of this result is that G∗

1 only needs to
cut the extension axioms and quantifier-free formulas. This
raises the question of whether or not this holds when G∗

1

is used to prove more complicated formulas. We define a
quantified version of extended-Frege called GPV ∗, and we
prove that GPV ∗ and G∗

1 are p-equivalent with respect to
all prenex formulas. This result is surprising because the
class of formulas that GPV ∗ can cut is much less expres-
sive than the class of formulas thatG∗

1 can cut. As well, this
result does not fit with the view that GPV ∗ corresponds to
PV and G∗

1 with S1
2 .

We also take a look at Gi and G∗
i+1. If we used the con-

nections with bounded arithmetic as a guide, we would ex-
pect G∗

i+1 to be a strictly stronger proof system than Gi.
However, in [12], Nguyen showed that this is probably not
the case. This was done by showing that, under an appro-
priate complexity assumption,G∗

i+1 does not simulateGi or
even cut-free G for Σq

i+2 formulas. This is in contrast to a
result that shows that G∗

i+1 p-simulatesGi for Σq
i+1 formu-

las. In this paper, we prove that, in fact, Gi is stronger than
G∗

i+1, which is surprising. This is done by showing that Gi

p-simulatesG∗
i+1 for all formulas, not just Σq

i formula as in
[7].

Another way of examiningG∗
1 is to find the weakest frag-

ment of S2 that can prove thatG∗
1 is sound. So, we are look-

ing for a theory that proves that, if there is a G∗
1 proof of a

formula, then that formula is valid. Informally, this gives
an upper bound on the reasoning power of G∗

1. This type
of question first appeared in [6], where Cook showed that
PV proves that extended-Frege is sound. This kind of re-
sult played an important role in establishing the connection
between the collapse of S2 and G [9].

In [7], it was shown that S1
2 proves that G∗

1 is sound with
respect to Σq

1 formulas. However, in [11], Morioka proved
that, assuming the polynomial hierarchy does not collapse,
S1

2 does not prove that G∗
1 is sound with respect to Σq

3 for-
mulas. This does not fit with the view that G∗

1 is the non-
uniform version of S1

2 . In fact, it seems that, as the quan-
tifier complexity of the formulas we are proving grows, the
reasoning power of G∗

1 grows beyond any finite level of the
S2 hierarchy. For the same proof also shows that, assum-
ing the polynomial hierarchy does not collapse, T i

2 does not
prove that G∗

1 is sound with respect to Σq
i+2 formulas; how-

ever, we show that Si+1
2 does. Informally this means that

the reasoning power of G∗
1 relative to Σq

i+2 formulas is not
stronger than the reasoning power of S2

i+1.
This leads to the final way of examiningG∗

1. In [9], Kra-
jicek and Pudlak were able to prove that S2 can be axiom-
atized by S1

2 plus axioms stating Gi is sound relative to Σq
i

formulas, for i ∈ N. We show that the same is true whenGi

is replaced byG∗
1. In fact, we can replaceGi by the cut-free

version of G∗. This is interesting because it confirms that
the reasoning power of G∗

i is not closely related to any fi-
nite level of S2, but, in some sense, it captures the reasoning
power of all of S2.

The main tool used to prove some of these theorems is a
witnessing theorem in the style of the KPT witnessing the-
orem [8]. The KPT witnessing theorem describes how hard
it is to witness Σb

i+3 theorems of T i
2, for i > 0. It also

holds for i = 0 with PV in place of T i
2. This theorem

has been used to prove that the collapse of the S2 hierarchy
implies the collapse of the polynomial-time hierarchy [8],
and to show that certain weak theories do not prove the Σb

1

replacement scheme, relative to some complexity assump-
tions [5]. In this paper, we adapt the statement of the KPT
witnessing theorem to G∗

1, and then prove it. The main dif-
ficulty is that proofs of the KPT witnessing theorem rely on
the cut-elimination theorem, which, unfortunately, causes
the size of the proof to increase exponentially. We need to
avoid this increase, so we have to find a way to work around
cut formulas.

The paper is organized as follows. In Section 2, we give
the basic definitions and notations. Note that we will be us-
ing two-sorted theories of bounded arithmetic (V i) in place
of the single-sorted bounded arithmetic (Si

2). In Section 3,
we state and sketch a proof of the witnessing theorem for
G∗

1. In Section 4, we use the witnessing theorem to prove

that GPV ∗ p-simulates G∗
1. In Section 5, we show that Gi

p-simulates G∗
i+1. In Section 6, we prove the prenex-Σq

i+1

reflection principle for G∗
1 in Si

2. In section 7, we give a
new axiomatization of S2.

At this point, I would like to thank the reviewers and, es-
pecially, my supervisor Stephen Cook for their useful com-
ments on earlier versions of this paper.

2 Basic Definitions And Notation

2.1 Two-Sorted Bounded Arithmetic

In the introduction, the results were stated for the the-
ories Si

2. However, we will use two-sorted theories of
bounded arithmetic. We follow the presentation in [2, 4].
The two sorts are numbers and binary strings (aka finite
sets). The numbers are intended to range over the natural
numbers and will be denoted by lower-case letters. For ex-
ample, i, j, x, y, and z will often be used for number vari-
ables; r, s, and t will be used for number terms; and f , g
and h will be used for functions that return numbers. The
sets are intended to be finite sets of natural numbers. Since
the sets are finite, they can be coded by binary strings where
the ith bit is 1 if i is in the set. The strings will be denoted
by upper- case letters. The letters X ,Y , and Z will often be
used for string variables; and F , G and H will be used for
functions that return strings.

The base language is

L2
A = {0, 1,+,×, <,=,=2,∈, ||} .

The constants 0 and 1 are number constants. The functions
+ and × take two numbers as input and return a number–
the intended meanings are the obvious ones. The language
also includes two binary predicates that take two numbers:
< and =. The predicate =2 is meant to be equality between
strings, instead of numbers. In practice, the 2 will not be
written because which equality is meant is obvious from
the context. The membership predicate ∈ takes a number i
and a string X . It is meant to be true if the ith bit of X is
1 (or i is in the set X). This will also be written as X(i).
The final function |X | takes a string as input and returns a
number. It is intended to be the number of bits needed to
write X when leading zeros are removed (or the least upper
bound of the set X). The set of axioms 2BASIC is the set
of defining axioms for L2

A.
We use ∃X < b φ as shorthand for ∃X [(|X | < b) ∧ φ].

The shorthand ∀X < b φ means ∀X [(|X | < b) ⊃ φ]. The
set ΣB

0 = ΠB
0 is the set of formulas whose only quantifiers

are bounded number quantifiers. For i > 0, the set ΣB
i is

the set of formulas of the form ∃ �X < �tφ where φ is a ΠB
i−1

formula. For i > 0, the set ΠB
i is the set of formulas of the

form ∀ �X < �tφ where φ is a ΣB
i−1 formula.

Now we can define the two main axiom schemes:

ΣB
i -comp:

∃X ≤ b∀i < b[X(i) ↔ φ(i)],

ΣB
i -string-ind:

[φ(∅) ∧ ∀X [φ(X) ⊃ φ(S(X))]] ⊃ φ(Y)

where φ(i) is a ΣB
i formula, and, for ΣB

i -COMP, φ does
not contain X , but may contain other free variables. The
constant ∅ is the empty string, and the function S(X) in-
terprets X as a binary number and adds 1 to it. Note that
we still view ΣB

i -string-ind as a formula over L2
A. We sim-

ply replace the instances of ∅ and S(X) by their ΣB
0 bit-

definition.
We can now define two hierarchies of theories.

Definition 2.1. The theory Vi is axiomatized by the 2BA-
SIC axioms plus ΣB

i -comp. The theory TVi is axiomatized
by the 2BASIC axioms, ΣB

0 -comp, and ΣB
i -string-ind.

For i > 0, V i corresponds to Si
2, and TV i corresponds

to T i
2 in that they are RSUV-isomorphic [4].

Another theory we often use is V PV , a universal the-
ory with a function symbol for every polynomial time func-
tion. The function symbols have defining axioms based on
Cobham’s Theorem. These function symbols are known
as the PV functions. The theory V PV is axiomatized by
quantifier-free equivalents of the 2BASIC axioms plus in-
duction on all open ΣB

0 (PV) formulas. See [2, 4] for more
information on V PV .

Another scheme of formulas we use is the ΣB
i -MAX

scheme:

∃x < bφ(x) ⊃
∃x < b[φ(x) ∧ ∀y < b(x < y ⊃ ¬φ(y))]

where φ is ΣB
i . This scheme essentially says that, if there

exists a value for x less than b that satisfies φ(x), then there
exists a maximum x less than b that satisfies φ(x). It can be
shown that ΣB

i -MAX is provable in V i ([4], Corollary 5.8).
From time to time, we will use functions symbols that

are not in L2
A. The first is X(i, j) ≡ X(< i, j >), where

< i, j >= (i + j)(i + j + 1) + 2j is the pairing function.
We index a string by two (or more) numbers instead of one.
Even though this is not officially part of the language, it
can be thought of as a two dimensional array of bits. The
second is the row function. The notation we use is X [i].
This functions returns the ith row of the two dimensional
array X . Note that, if we add these functions with their
ΣB

0 defining axioms to the theory V i, we get a conservative
extension. They can also be used in the induction axioms
[2]. This means we can freely use the functions.

2.2 Quantified Propositional Calculus

We are also interested in quantified propositional proof
systems. The proof systems we use were originally defined
in [9]. They were redefined in [3, 11], which is the presen-
tation we follow.

The set of connectives we use are {∧,∨,¬, ∃, ∀,�,⊥}.
Formulas are build using these connectives in the usual way.
We will often refer to formulas by the number of quantifier
alternations.

Definition 2.2. The set of formulas Σq
0 = Πq

0 is the set
of quantifier-free propositional formulas. For i > 0, the
set of Σq

i (Πq
i) formulas is the smallest set of formulas that

contains Πq
i−1 (Σq

i−1) and is closed under ∧, ∨, existential
(universal) quantification, and if A ∈ Πq

i (A ∈ Σq
i) then

¬A ∈ Σq
i (¬A ∈ Πq

i).

The first proof system, from which all others will be de-
fined, is the proof system G. This proof system is a sequent
calculus based on Gentzen’s system LK . The system G is
essentially the DAG-like, propositional version of LK . We
will not give all of the rules, but will mention a few of spe-
cial interest.

The cut rule is

A,Γ → ∆ Γ → ∆, A
cut

Γ → ∆
In this rule, we call A the cut formula. There are also four
rules that introduce quantifiers:

A(x),Γ → ∆∃-left ∃zA(z),Γ → ∆
Γ → ∆, A(B)∃-right
Γ → ∆, ∃zA(z)

Γ → ∆, A(x)∀-left
Γ → ∆, ∀zA(z)

A(B),Γ → ∆∀-right ∀zA(z),Γ → ∆

These rules have conditions on them. In ∃-left and ∀-right,
the variable x must not appear in the bottom sequent. In
these rules, x is called the eigenvariable. In the other two
rules, the formula B must be a Σq

0 formula, and no variable
that appears free in B can be bound in A(x).

The initial sequents of G are sequents of the form → �,
⊥ →, or x→ x, where x is any propositional variable. AG
proof is a series of sequents such that each sequent is either
an initial sequent or can be derived from previous sequents
using one of the rules of inference. The proof system Gi is
G with cut formulas restricted to Σq

i formulas.
We defineG∗ as the treelike version ofG. So, aG∗ proof

is aG proof where each sequent in used as an upper sequent
in an inference at most once. A G∗

i proof is a G∗ proof in
which cut formulas are prenex Σq

i . In [11], it was shown
that, for treelike proofs, it did not matter if the cut formulas

in G∗
i were prenex or not. So when we construct G∗

i proofs
the cut formulas will not always be prenex, but that does not
matter.

To make proofs simpler, we assume that all treelike
proofs are in free-variable normal form.

Definition 2.3. A parameter variable for a G∗
i proof π is a

variable that appears free in the final sequent of π. A proof
π is in free-variable normal form if (1) every non-parameter
variable is used as an eigenvariable exactly once in π, and
(2) parameter variables are not used as eigenvariables.

Note that, if a proof is treelike, we can always put it in
free-variable normal form by simply renaming variables.

2.3 Truth Definitions

In order to reason about the proof systems in the theo-
ries, we must be able to reason about quantified proposi-
tional formulas. Due to space considerations, we will intro-
duce the notation and informal definitions, but not the for-
mal definitions. We follow the presentation in [7, 9]. This is
an abuse of notation, but we will not distinguish between a
formula and its string encoding. If we let F be a Σq

i formula
and let A be an assignment to the free variables of F , then

(A |=i F) ≡ “A is a satisfying assignment for F ”.

It is important that, for i > 0, A |=i F has a ΣB
i definition,

and, for i = 0, it has a ΣB
0 (PV) definition. If F is a Πq

i

formula, we will use the same notation for satisfaction, but
in this case the definition is ΠB

i .
Given a formula F ≡ ∧n

i=0 Fi, there is a PV function
Parse∧(F, j) that outputs Fmin(j,n). The same goes for ∨
in place of ∧. The theoryV PV proves the Tarski conditions
for the truth definition:

• (A |=i F) ↔ (∀j ≤ |F | A |=i Parse∧(F, j)) (where

F ≡
n∧

j=0

Fj)

• (A |=i F) ↔ (∃j ≤ |F | A |=i Parse∨(F, j)) (where

F ≡
n∨

j=0

Fj)

• (A |=i ¬F) ↔ (A �|=i F)

• (A |=i ∃�xF (�x)) ↔ ∃X(A ∪ X |=i F (�x)) (for F ∈
Σq

i)

• (A |=i ∀�xF (�x)) ↔ ∀X(A ∪ X |=i F (�x)) (for F ∈
Πq

i)

• (A |=i F) ↔ (A |=i−1 F) (for F ∈ Σq
i−1 ∪ Πq

i−1).

Valid formulas (or tautologies) are defined as

TAUTi(F) ≡ ∀A,
(“A is an assignment to the variables of F ” ⊃ A |=i F)

This truth definition can be extended to define the truth
of a sequent. So, if Γ → ∆ is a sequent of Σq

i ∪Πq
i formulas,

then

(A |=i Γ → ∆) ≡
“there exists a formula in Γ that A does not satisfy”

∨ “there exists a formula in ∆ that A satisfies”

Another important formula we will use is the reflection
principle for a proof system. We define the Σq

i reflection
principle for a proof system P as

Σq
i -RFN(P) ≡ ∀F∀π,
(“π is a P proof of F ” ∧ F ∈ Σq

i) ⊃ TAUTi(F)

This formula essentially says that, if there exists a P proof
of a Σq

i formula F , then F is valid. Another way of putting
it is to say that P is sound when proving Σq

i formulas. In
this paper, we will sometimes replace Σq

i with prenex Σq
i

formulas.

3 KPT Witnessing for G∗
1

In bounded arithmetic, a useful tool has been the KPT
witnessing theorem [8]. In the simplest case, the KPT wit-
nessing theorem describes how to witness the ΣB

2 theorems
of V PV . The original theorem was more general, but we
state it here for the simplest case.

Theorem 3.1 (KPT Witnessing [8]). Suppose V PV �
∀X∃Y ∀Zφ(X,Y, Z), where φ is a ΣB

0 formula. Then
there exists a finite sequence of PV function symbols
F1, F2, . . . , Fk such that

V PV �∀X∀W φ(X,F1(X),W [1])

∨ φ(X,F2(X,W [1]),W [2])
...

∨ φ(X,Fk(X,W [1],W [2], . . . ,W [k−1]),W [k])

Informally, this can be viewed as an interactive compu-
tation between a student, who runs in polynomial time, and
an all-knowing teacher. Given a value for X , the student’s
goal is the find a witness for ∃Y ∀Zφ(X,Y, Z). The stu-
dent starts by computing F1(X). If that is not a witness, the
teacher responds with a counter example W [1]. Using that
the students makes a second guess by computing F2. The
teacher responds with W [2], and this process continues.

Our goal is to get a similar theorem for G∗
1. The first

obstacle comes in the statement of the theorem. The theory
V PV has access to function symbols that correspond to the
polynomial-time functions, but, inG∗

1, there are no function
symbols. To fix this, we use the idea of an extension cedent
from [4].

Definition 3.2. An extension cedent is a series of formulas
of the form

e1 ↔ E1, e2 ↔ E2, . . . , en ↔ En

such that Ei is a Σq
0 formula that does not mention the vari-

ables ei, ei+1, . . . , en. We say that ei depends on a variable
q if Ei mentions q or Ei mentions a variable that depends
on q.

Observe that an extension cedent is really a description
of a circuit, and that polynomial-size circuits are the nonuni-
form version of polynomial-time functions. So extension
cedents replace the functions.

Theorem 3.3 (KPT Witnessing forG∗
1). There exists a PV

(polynomial-time) function F such that V PV proves the
following. Let π be a G∗

1 proof of a prenex Σq
2 formula

A(�p) ≡ ∃�x∀�yB(�x, �y, �p), where B(�x, �y, �p) is a Σq
0 formula

with all free variables shown. Then, given π, F outputs a
G∗

0 proof of a sequent Λ → Θ where

1. Θ is a series of formulas of the form B(�Ci, �qi, �p),

2. Λ is an extension cedent defining a new set of variables
E in terms of �q1, . . . , �qn and �p,

3. �Ci are Σq
0 formulas that do not mention �qj for j ≥ i,

4. �Ci does not mention any variable in E that depends
on a variable in �qj for j ≥ i.

Before we prove this theorem, notice that this is similar
to the KPT Witnessing theorem for V PV . The row W [i]

corresponds to �qi, and Fi corresponds to �Ci. The major
difference is that the number of functions is not constant; it
can grow polynomially in the size of the proof.

One way of proving the KPT Witnessing Theorem is to
observe that it is a corollary to the Herbrand Theorem. So
the idea behind our proof is to adjust the proof-theoretic
proof of the Herbrand Theorem. See [1] for an outline of
this proof. The main difference between our proof and that
proof is that cut elimination cannot be used since it causes
an exponential increase in the size of the proof. To get
around this problem, we use the idea used in [4] to prove
that extended-Frege p-simulates G∗

1. This idea is to turn
the Σq

1 cut formulas into Σq
0 cut formulas by witnessing the

existential quantifiers with extension variables.

We prove the Herbrand Theorem for all Σq
i formulas, but

before we can state the general theorem, we need a few def-
initions. The first one has more to do with notation. The q
variables come from the eigenvariables in the G∗

1 proof. To
make it easier to refer to these variables, we use the follow-
ing notation:

Notation 3.4. Let π be a G∗ proof. Then the set Qπ will be
the set of variables that are used as eigenvariables in π. If S
is a sequent in π, then Qπ,S will be the set of variables that
are used as eigenvariables in the subproof of π ending with
S. We will refer to Qπ,S as QS when π is understood.

Note that π is treelike, and, if it is in free-variable normal
form and S is derived from S1 and S2, then QS = QS1 ∪
QS2 , and QS1 ∩QS2 = ∅.

The general witnessing theorem will be for G∗
1 proofs of

any prenex Σq
i formula A. In the end, we want a G∗

0 proof
of a sequent Λ → Θ, where Θ is a series of instances as
defined as follows.

Definition 3.5. Let A be the formula

∀�y0∃�x1∀�y1 . . . ∃�xn∀�ynB(�y0, �x1, �y1, . . . , �xn, �yn),

where B is a Σq
0 formula with all free variables shown. An

instance of A is a Σq
0 formula obtained by

1. replacing each universal variable yi
j by a variable qi

j ∈
Q,

2. replacing each existential variable xi
j by a Σq

0 formula
Ci

j , and

3. removing the quantifiers.

A partial instance of A is the same as an instance of A
except only an initial segment of the quantified variables
are replaced.

Observe that in Theorem 3.3, there is an ordering on the
variables. Namely the variables �qi come before the vari-
ables �qi+1. We could also extend this ordering to include
the extension variables. An extension variable would have
to be larger than every variable it depends on. Then the for-
mulas �Ci can only mention variables smaller than �qi. For
the general case, we want something similar. To make the
proof simpler, we will use ≺ to refer to this ordering. The
ordering ≺ orders the eigenvariables Q and the extension
variablesE. Then Θ will be more than a series of instances;
it will be a series of instances relative to ≺.

Definition 3.6. Let ≺ be a partial ordering of the variables
Q ∪ E, and A be a formula as in Definition 3.5. Let

B′ ≡ B(�q0, �C1, �q1, . . . , �Cn, �qn)

be an instance of A. Then B′ is an instance of A relative to
≺ if

1. for i < i′, qi′
j′ �≺ qi

j

2. for j < j′, qi
j′ �≺ qi

j

3. �Ci does not mention qi
1 or any variable v ∈ Q∪E such

that qi
1 ≺ v

The first two points in this definition essentially say that
≺ preserves the quantifier order, where the outermost quan-
tifiers are smaller. The third point sets �qi as the upper bound
on the variables that �Ci can mention. The idea of defining
an instance comes from [1] and a conversation with Stephen
Cook.

The last definition we need before we state the general
theorem was something we were able to avoid in the simple
case. It is possible that the same variable q ∈ Q is substi-
tuted for a universal variable in two different instances of
Θ. When this happens, we must be sure it happens con-
sistently. The variable q must replace the same universal
variable yi

j in both instances, and the instances must be i, j-
contractable.

Definition 3.7. We say two instances of A are i, j-
contractable if yi

j and all quantified variables to the left of
yi

j are replaced by the same formula or variable in both in-
stances.

The idea behind the name is that these instances would
have been contracted in π before the ∀yi

j quantifier was
added.

Now we are prepared to state the general theorem.

Theorem 3.8 (Main Theorem). There exists a PV function
F such that V PV proves the following. Let π be aG∗

1 proof
of A in free-variable normal form, where

A ≡ ∀�y0∃�x1∀�y1 . . .∃�xn∀�ynB(�y0, �x1, �y1, . . . , �xn, �yn),

and B is a Σq
0 formula with all free variables shown. Then,

given π, F outputs a G∗
0 proof of a sequent Λ → Θ and

a total ordering ≺ of the variables Qπ ∪ E, where E is a
set of variables that do not appear in π, with the following
properties:

• Λ is an extension cedent defining the variables in E;

• for e ∈ E, if e depends on a variable p ∈ Qπ∪E, then
p ≺ e;

• Θ is a series of instances of A, relative to ≺, and

• if two of the instances in Θ use q ∈ Qπ to replace a
universal variable, then those two instances are i, j-
contractable, where q replaced yi

j in the instances.

Proof. The G∗
0 proof that we are looking for will be con-

structed by changing π one sequent at a time starting with
the initial sequents and working our way down. To simplify
the construction, we will ignore the order of the formulas in
the sequents. So a sequent is a pair of multisets. One set for
the left side of the sequent, and one set for the right side.

Let S be any sequent in π. By the subformula property
of G∗

1, S is of the form

Γ → ∆,Ω,

where Γ and ∆ are possibly empty sets of Σq
1 formulas and

Ω is a possibly empty set of formulas that are partial in-
stances of A. We want to define a PV function that outputs
a G∗

0 proof of a sequent

S′ ≡ Λ,Γ′ → ∆′,Θ,

and a total ordering ≺ on QS ∪ E where

1. Γ′ is obtained from Γ by replacing each formula
∃�zD(�z) by D(�q), where D is Σq

0 and �q ∈ QS. (We
use different �q for different formulas.)

2. ∆′ is obtained from ∆ be replacing each formula
∃�zD(�z) by D(�e), where D is Σq

0 and �e ∈ E. (We
use different �e for different formulas.)

3. Λ is an extension cedent defining E;

4. for e ∈ E, if e depends on a variable p ∈ QS ∪E, then
p ≺ e;

5. Θ is a set of instances of A, relative to ≺, and

6. if two of the instances in Θ use q ∈ QS to replace
a universal variable, then those two instances are i, j-
contractable, where q replaced yi

j in the instances.

Note that ≺ is only defined on the extension variables and
eigenvariables used so far. Initially, ≺ is an ordering where
nothing is comparable. As we move down the proof, we
order the variables.

The proof is done by induction on the depth of S in the
proof π. If we let S be the final sequent, we get a proof
of the theorem since Qπ = QS , and conditions 3-6 are the
conditions we need for the theorem. Also, note that the in-
duction hypothesis can be stated as a ΣB

0 (PV) formula (is a
polynomial predicate) by saying that the output of the func-
tionF on the first i sequents of π meets all of the conditions.
This means the induction can be carried out in V PV .

The function F is described and proved correct by in-
duction. There is a separate construction for each rule of
inference. For the sake of space, we will not give many
details. The construction in most cases is done the same
way it is in the proof that extended-Frege p-simulates G∗

1

(Theorem 7.48 of [4]). The difference is that the variables

need to be ordered. As new extension variables come along,
they are made the largest variables so far. As new eigen-
variables come along, they become the smallest variables
so far. When cutting, the extension variables and eigenvari-
ables from the subproof with the cut formula on the right
become larger than the variables from the other subproof.
This gives an idea of how the main cases are handled.

4 GPV ∗ and G∗
1

We now move on to applications of the main theorem.
The first application deals with a seemingly weaker proof
system.

Definition 4.1. The proof system GPV ∗ is G∗ where cut
formulas are restricted to Σq

0 formulas or formulas of the
form ∃x[x ↔ A], where A is a Σq

0 formula that does not
mention x.

At first glance, it seems like GPV ∗ would be a weaker
proof system than G∗

1 because the cut formulas are less ex-
pressive. The cut formulas in GPV ∗ can be trivially wit-
nessed, but the cut formulas in G∗

1 are NP-hard. Neverthe-
less, it can be shown thatGPV ∗ andG∗

1 are p-equivalent for
prenex formulas. One direction is easy since every GPV ∗

proof is a G∗
1 proof, so all that is left is to prove the other

direction.

Theorem 4.2. V PV proves thatGPV ∗ p-simulatesG∗
1 for

prenex formulas.

Proof. Let π be a G∗
1 proof of a formulaA of the form

∀�y0∃�x1∀�y1 . . . ∃�xn∀�ynB(�y0, �x1, �y1, . . . , �xn, �yn).

By the main theorem (Theorem 3.8), V PV proves that there
exists aG∗

0 proof π′ of a sequent Λ → Θ and a total ordering
≺ of the variables Qπ ∪ E meeting the conditions of the
theorem.

We describe an algorithm that takes as input π′ and ≺.
The algorithm extends π′ into a GPV ∗ proof of A. At any
stage, π′ will be a proof of a sequent Λ′ → Θ′, where Λ′ is
a subsequence of Λ and Θ′ is a series of partial instances of
A relative to ≺. The algorithm has four steps:

Step 1: Add as many existential quantifiers to the formulas
in Θ′ as possible using ∃-right rules.

Step 2: Use contraction to combine as many formulas in
Θ′ as possible.

Step 3: Find the largest variable that is mentioned in
Λ′ or Θ′.
Step 3a: If it is an extension variable e,

apply ∃-left to the formula e↔ E
with e as the eigenvariable. Then

cut the formula ∃e[e↔ E] after
deriving → ∃e[e↔ E].

Step 3b: If it was an eigenvariable q in π,
then apply ∀-right with q as the
eigenvariable.

Step 4: Repeat steps 1 to 3 until there is no change.

At first, it may not be obvious that this algorithm works.
For example, it is not obvious that the eigenvariable restric-
tion for ∃-left or ∀-right rules in Step 3 is met. To show
that the eigenvariable restriction is met, we make two ob-
servations. First, if p is the largest variable in Λ′ and Θ′,
then no extension variable can depend on p. Otherwise, that
variable would be larger than p. Second, if we are in Step
3 and p is the largest variable in Λ′ and Θ′, then p cannot
be mentioned in any formula C that was used to replace an
existential variable in a partial instance of A. This is be-
cause C would have been used as the target formula in an
∃-right rule in Step 1. Otherwise, an eigenvariable that ap-
pears to the right of C is still present, and this variable must
be larger than p. For the same reason, we know that there
cannot be two partial instances with p replacing a universal
variable that have not been contracted yet. This means the
eigenvariable restriction is met in Step 3.

When the algorithm is done, we will have a proof of
the formula we want. Notice that Λ′ would be empty be-
cause every extension variable has been removed. Also, Θ′

would be the single formula A since every instance in Θ
would have every quantifier added by now, and every in-
stance would have been contracted to a single formula. We
know the algorithm eventually stops because we continually
reduce the number of variables in π′.

5 Gi and G∗
i+1

As has already been mentioned, Gi is commonly con-
nected with the theory TV i and G∗

i+1 is commonly con-
nected with V i+1. Since the two theories have the same
ΣB

i+1 theorems, it was natural that the two proof systems
are p-equivalent when proving Σq

i+1 formulas. However,
we want to extend this to more general formulas. In [12],
it was shown that one direction is probably not possible.
Namely that, under an appropriate complexity assumption,
there is a family of Σq

2 formulas for which G∗
i+1 does not

p-simulate Gi. Here we prove that Gi p-simulatesG∗
i+1 for

all formulas.
The proof is based on the proof of Krajicek that depth

d, DAG-like PK can p-simulate depth d + 1, tree-like PK.
The observation of the similarity between the two theorems
is due to Toni Pitassi.

Definition 5.1 (The i-Substitution Rule). The i-substitution
rule is

A1(p), . . . , Am(p),Γ → ∆, B1(p), . . . , Bn(p)
A1(C), . . . , Am(C),Γ → ∆, B1(C), . . . , Bn(C)

where C is a quantifier-free formula,
A1, . . . , Am, B1, . . . , Bn are Σq

i ∪ Πq
i formulas, and

p does not appear in the bottom sequent.

Lemma 5.2. G∗
i p-simulates the i-substitution rule.

Proof. We will describe how to do the simulation for the
case where there is one A and B. The general case is done
the same way.

Suppose we have a derivation of

A(p),Γ → ∆, B(p). (5.1)

We want to derive

A(C),Γ → ∆, B(C).

First we derive

p↔ C,A(C) → A(p),

and cut this with (5.1), where A(p) is the cut formula. This
gives

p↔ C,A(C),Γ → ∆, B(p). (5.2)

Then we derive

p↔ C,B(p) → B(C),

and cut this with (5.2), where B(p) is the cut formula. This
gives

p↔ C,A(C),Γ → ∆, B(C). (5.3)

We then apply ∃-left to this sequent with p as the eigenvari-
able, and then cut ∃p[p ↔ C] after deriving → ∃p[p ↔
C].

Theorem 5.3. Gi p-simulates G∗
i+1.

Proof. Let π be a G∗
i+1 proof. The reason π is not a Gi

proof is that it would contain cut formulas that are not Σq
i

or Πq
i . We can assume these formulas are Σq

i+1 and are of
the form

∃x1 . . . ∃xnC(x1, . . . , xn).

We need to turn these cut formulas into Πq
i cut formulas. To

do this, we change all of the non-(Σq
i ∪ Πq

i) formulas that
are ancestors of these cut formulas. They are of the form

∃xl . . . ∃xnC(D1, . . . , Dl−1, xl, . . . , xn), (5.4)

where Dj is a Σq
0 formula for j < l, and C(�x) is a Πq

i

formula. Note that, if this formula is on the left side of a
sequent, then the formula Di will actually be variables that
eventually get used as eigenvariables. From now on, we
will assume all formulas of the form (5.4) are ancestors of
cut formulas. Those that are not are simply ignored.

For each sequent S ≡ Γ → ∆ in π, we give a Gi proof
π′ of a sequent S′ ≡ Γ′ → ∆′ where

1. Γ′ is obtain from Γ by replacing every formula of the
form (5.4) by C(D1, . . . , Dl−1, x

C
l , . . . , x

C
n),

2. ∆′ is obtained from ∆ by removing every formula of
the form (5.4),

3. the sequent

C(D1, . . . , Dl−1, x
C
l , . . . , x

C
n) →

can be used as an axiom if and only if ∆ contains a
formula of the form (5.4).

For example, if S is the sequent

∃x2, x3C1(q1, x2, x3),Γ → ∆, ∃x3, x4C2(D1, D2, x3, x4),

S′ would be

C1(q1, xC1
2 , xC1

3),Γ → ∆,

and when we prove S′, we are allowed to use

C2(D1, D2, x
C2
3 , xC2

4) →

as an axiom. In essence, we are saying, if we can derive

C2(D1, D2, x
C2
3 , xC2

4) →,

we can prove S′. Note that, when we get to the final se-
quent, no formula is an ancestor of a cut formula. There-
fore, if S is the final formula in π, S′ = S and the only
initial sequents are of the form x → x. So this will give us
a proof of the theorem.

The construction of π′ is given inductively. There is a
separate case for each rule of inference. Most cases are sim-
ple and are left to the reader. The only cases we will give
are cut, ∃-left, and ∃-right.

Cut: Suppose S ≡ Γ → ∆ is derived from S1 and S2 using
cut. Let the cut formula be ∃�xC(�x). By induction with S1,
we have a Gi proof π′

1 of

S′
1 ≡ C(�xC),Γ′ → ∆′.

By induction with S2, we have a Gi proof π′
2 of Γ′ → ∆′

using the axiom C(�xC) →. Notice that π′
2 is a proof of

the sequent we want, but it uses an axiom we are no longer
able to use. However, π′

1 gives us a derivation of this axiom,
with a few extra formulas.

The first step in the construction of π′ is to add Γ′ to the
left and ∆′ to the right of every sequent in π′

2. This makes
the axiom we want to remove Ci(�xi),Γ′ → ∆′, which is
the final sequent π′

1. So, π′ is π′
1 followed by the new π′

2.
Note that the axiom could have been used multiple times;
however, since we are constructing a DAG-like proof, we
do not need to repeat π′

1 multiple times. This gives a proof

of Γ′,Γ′ → ∆′,∆′, from which we can derive Γ′ → ∆′

using contraction.

∃-left: Suppose S is

∃xj . . . ∃xnC(q1, . . . , qj−1,xj, xj+1, . . . , xn),Γ → ∆,

and it was derived from S1

∃xj+1 . . . ∃xnC(q1, . . . , qj−1,qj, xj+1, . . . , xn),Γ → ∆.

By induction with S1, we get a Gi proof of

C(q1, . . . , qj−1,qj, x
C
j+1, . . . , x

C
n),Γ′ → ∆′.

Since qj was used as an eigenvariable, it only appears in that
one formula. Therefore we can substitute qj by xC

j using the
i-substitution rule. This gives us π′.
∃-right: Suppose S is

Γ → ∆, ∃xj . . . ∃xnC(D1, . . . , Dj−1,xj, xj+1, . . . , xn),

and it was derived from S1

Γ → ∆, ∃xj+1 . . . ∃xnC(D1, . . . , Dj−1,Dj, xj+1, . . . , xn).

First assume j < n. That is we had at least one quantifier
already. By induction with S1, we get a Gi proof of Γ′ →
∆′ using the axiom

C(. . . ,Dj, . . .) → . (5.5)

We cannot use this axiom anymore. Instead, we use the
axiom

C(. . . ,xC
j , . . .) →

to derive (5.5) using the i-substitution rule.
If j = n, the construction is a little different. By induc-

tion with S1, we get a Gi proof of

Γ′ → ∆′, C(. . . , Dn−1, Dn). (5.6)

To construct π′, we take the axiom we can now use,

C(. . . , Dn−1, x
C
n) →,

and derive
C(. . . , Dn−1, Dn) →

using the i-substitution rule. Then we cut with (5.6).

6 G∗
1 Reflection Principles

We can also use the main theorem to prove reflection
principles. Proving reflection principles is the standard
method of assessing the strength of a proof system rela-
tive to a theory. For example, the Σq

1 reasoning of G∗
1

is not stronger than the ΣB
1 reasoning of V 1 because V 1

proves Σq
1-RFN(G∗

1) [7]. Our goal is to find the weak-
est fragment of V that proves Σq

i -RFN(G∗
1). In [11], it

was shown that TV 0 does not prove Σq
2-RFN(G∗

1) unless
the polynomial-time hierarchy collapses. Using the same
ideas, it is possible to show that TV i does not prove Σq

i+2-
RFN(G∗

1), for i ≥ 0, unless the polynomial-time hierarchy
collapses. This still leaves open whether or not V i proves
Σq

i+1-RFN(G∗
1) for i ≥ 1. We do not resolve this problem

completely, but we do take a big step. We prove that V i

proves (prenex Σq
i+1)-RFN(G∗

1).
We first prove the base case. Namely, that V 1 proves

(prenex Σq
2)-RFN(G∗

1). The proof serves as a template for
the general case, which we prove right after.

Theorem 6.1. V 1 proves (prenex Σq
2)-RNF(G∗

1).

Proof. Let π be a G∗
1 proof of a prenex Σq

2 formula A. So
A is of the form

∃�x∀�yB(�x, �y, �p),

where B is a Σq
0 formula. In this formula, �p is all of the

free variables in A, and should be understood as being im-
plicitly universally quantified. We want to prove in V 1 that,
given values for �p, there exists values for �x that witness the
formula.

By the KTP witnessing theorem for G∗
1 (Theorem 3.3),

V 1 proves that there is a G∗
0 proof of a sequent

S ≡ Λ → Θ,

meeting the conditions of the theorem.
Let

ψ(m,Λ,Θ, P) ≡
∃E ∃Q “E is a truth assignment to the extension variables”

∧ “Q is a truth assignment to the eigenvariables”

∧ ∀i < m (P ∪E ∪Q) |=0 ¬B(�Ci, �qi, �p)
∧ (P ∪E ∪Q) |=0 Λ

This formula says that there exists assignments E and Q
that satisfy Λ and make to first m formulas in Θ false. It
is easy to bound the size of E and Q. This means that ψ is
equivalent to a ΣB

1 formula.
Using ΣB

1 -MAX, we find the maximum value m0 for m
that satisfies ψ given values for Λ,Θ, and P . Then �Cm0+1

are the witnesses we are looking for.
If that were not the case, we could find values for �qm0+1

that would falsify B(�Cm0+1, �qm0+1, �p). Since �Ci does not
mention �qm0+1, it follows, with a little work, that we could
falsify the first m0 +1 instances. However, that violates the
choice of m0.

Also note that �Cm0+1 exists since it is not possible to
falsify all of the instances.

Theorem 6.2. V i proves (prenex Σq
i+1)-RFN(G∗

1).

Proof. Given a G∗
1 proof of a Σq

i+1 formula, we use the
main theorem (Theorem 3.8) to get a G∗

0 proof of Λ → Θ
and an ordering ≺ meeting the conditions of that theorem.
Let

B(�C1, �q1, . . . , �Cn, �qn)

be one of the instances in Θ. Then �qi is a block of eigen-
variables, and for each block �qi we associate the formula

∃�xi+1∀�yi+1 . . . ∃�xn∀ynB(�C1, �q1, . . . , �qi, �xi+1, . . . , �xn, �yn).

That is we add all of the quantifiers to the right of ∀�yi to the
instance. Note this formula will always be Σq

i−1. Using ≺,
we are able to order each block of eigenvariables in Θ.

Now, as in the previous theorem, we define a formula
ψ(m,Λ,Θ, P), which says there are values falsifying the
formulas corresponding to the first m blocks of eigenvari-
ables. This formula is ΣB

i , so we find the the maximum
valuem0 satisfying the formula using ΣB

i -MAX. From this,
we can find our witness.

7 New Axiomatization of V

In this section, we will strengthen a result from [9].
In that paper, Krajicek and Pudlak showed that V can
be axiomatized by V 1 + {Σq

i -RFN(Gi) | i ∈ N}. A sim-
ilar proof can be used to prove that V can be axiom-
atized by V 1 + {Σq

i -RFN(G∗
i) | i ∈ N}. In this sec-

tion, we show that V can also be axiomatized by V 1 +
{Σq

i -RFN(CFG∗) | i ∈ N}, where CFG∗ is the cut-free
version of G∗. Note that CFG∗ is a weaker proof system
than any of the other fragments of G.

Just a bit of notation. IfA is a formula with free variables
�p, then ∃A, called the existential closure ofA, is the formula
∃�pA.

Lemma 7.1. V 1 proves

Σq
i+1-RFN(CFG∗) ↔ Σq

i+1-RFN(G∗
i).

Proof. The if direction is easy since a CFG∗ proof is also
a G∗

i proof. The only if direction is not as easy. Assume
Σq

i+1-RFN(CFG∗), and argue in V 1. Given a G∗
i proof π

of a Σq
i+1 formula A, we change it into a CFG∗ proof of a

formula

B ≡ A ∨
n∨

j=1

∃(Cj ∧ ¬Cj),

where C1, . . . , Cn are all of the cut formulas in π.
This is done by, first, replacing each cut by

Γ → ∆, C
C,Γ → ∆

Γ → ∆,¬C
Γ → ∆, C ∧ ¬C
Γ → ∆, ∃(C ∧ ¬C)

The sequents in the rest of the proof are changed to in-
clude ∃(Ci ∧ ¬Ci). Note that none of the inferences are
affected by adding this formula. The only problem could be
the eigenvariable restriction in ∃-left and ∀-right inferences;
however, since the new formula does not have any free vari-
ables, there is no problem. At the end of the proof, the A is
combined with the new formulas using ∨-right inferences.

Since the cut formulas are Σq
i , B is a Σq

i+1. By
Σq

i+1-RFN(CFG∗), B is true, and, since ∃(Ci ∧¬Ci) can-
not be true, A must be true. This can be done in V 1 since it
proves the Tarski conditions for the true definition.

Corollary 7.2. V = V 1 + {Σq
i -RFN(CFG∗) | i ∈ N}.

Proof. Follows from the lemma above, Krajicek’s and Pud-
lak’s axiomatization of V , and the fact that Σq

i+1-RFN(G∗
i)

implies Σq
i -RFN(G∗

i)

References

[1] S. R. Buss. On Herbrand’s theorem. Lecture Notes in Com-
puter Science, 960:195–209, 1995.

[2] S. Cook. Theories for Complexity Classes and their Propo-
sitional Translations, pages 175–227. Quaderni di Matem-
atica. 2003.

[3] S. Cook and T. Morioka. Quantified propositional calcu-
lus and a second-order theory for NC1. Archive for Math.
Logic, 44(6):711–749, August 2005.

[4] S. Cook and P. Nguyen. Foundations of
proof complexity: Bounded arithmetic and
propositional translations. Available from
http://www.cs.toronto.edu/˜sacook/csc2429h/book, 2006.

[5] S. Cook and N. Thapen. The strength of replacement in
weak arithmetic. ACM Trans. Comput. Logic, 7(4):749–764,
2006.

[6] S. A. Cook. Feasibly constructive proofs and the proposi-
tional calculus. In Proceedings of the 7-th ACM Symposium
on the Theory of computation, pages 83–97, 1975.

[7] J. Krajicek. Bounded Arithmetic, Propositional Logic, and
Complexity Theory. Cambridge University Press, 1995.

[8] J. Krajı́cek, P. Pudlák, and G. Takeuti. Bounded arithmetic
and the polynomial hierarchy. Ann. Pure Appl. Logic, 52(1-
2):143–153, 1991.

[9] J. Krajicek and P. Pulak. Quantified propostitional calculi
and fragments of bounded arithmetic. Zeitschr. f. math.
Logik und Grendlagen d. Math., 36:29–46, 1990.

[10] A. Maciel and T. Pitassi. Conditional lower bound for a
system of constant-depth proofs with modular connectives.
In LICS, pages 189–200. IEEE Computer Society, 2006.

[11] T. Morioka. Logical Approaches to the Complexity of Search
Problems: Proof Complexity, Quantified Propositional Cal-
culus, and Bounded Arithmetic. PhD thesis, University Of
Toronto, 2005.

[12] P. Nguyen. Separating dag-like and tree-like proof systems.
Accepted in LICS, 2007.

