


Past and current work

Downscaling Seasonal forecasting 

Problem:
Understand local climate change

ML challenge:
Sources of heterogeneity
Paucity of labelled data
Noise, missing values

ML opportunities:
Non-uniform LSTMs (Mouatadid et al., 2017)
Super-resolution CNNs (Vandal et al., 2017)

Problem: 
Seasonal and sub-seasonal forecasts predict weather 
anomalies at monthly and weekly intervals.

ML challenge:
Long-range dependencies
Non-stationarity of extremes under climate change

ML opportunities:
Wavelet-LSTM for seasonal forecasts of temperature and 
drought indices. (Mouatadid et al., 2018, 2019a)
Multitask KNN for the sub-seasonal climate forecast 
rodeo challenge (Hwang et al., 2018)
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I will be working on 
this with Lester this 

summer



Current work - Parameterization

Problem:

• Climate models need to model relevant physics at fine scales, that are not currently resolved by GCMs.

Exp: cloud formation, ocean turbulence, land surface heterogeneity, etc.

• Climate scientists use physical intuition + calibration data to come up with approximations of the bulk effect: 
parameterization schemes.

ML challenge:

• Can ML define and automate new parameterization schemes?

ML opportunities:

• NNs to learn from existing schemes (Gentine et al., 2018; Rasp et al., 2018)

• NNs to estimate the underlying parameters of a chaotic system (Mouatadid et al., 2019b)
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The Lorenz-96 model
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yi,j Slow large-scale variables xi (i=1,2,…, I):
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Fast small-scale variables yi,j (i=1,2,…,I; j=1,2,…,J):
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Lorenz-96 configuration
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Recovering 𝑏, 𝑐 and ℎ
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Loss function and shared aspects

• Loss function: 

𝑊𝑀𝑆𝐸 =
1
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• Non linear activation: LeakyRelu with 𝛼 = 0.001

• Optimizer: Adam
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FCNN
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CONV1D
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CONV2D
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Learning tasks

• Learning from both slow and fast variables

• Learning from fast variables only

• Setting 𝑡𝑒𝑠𝑡_𝑚𝑜𝑑𝑒 to 𝐹𝑎𝑙𝑠𝑒

• Setting 𝑡𝑒𝑠𝑡_𝑚𝑜𝑑𝑒 to 𝑇𝑟𝑢𝑒
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Results
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Results
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Figure 1. Lorenz-96 phase diagram of the first three slow (X) and fast (Y) variables using observed parameters
(green), learned parameters from the X and Y variables (blue) and learned parameters from the Y variables only
(red) . The learning algorithm is a fully connected network with test_mode set to False.

Source: Mouatadid et al., 2019b
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Figure 2. Lorenz-96 phase diagram of the first three slow (X) and fast (Y) variables using observed parameters
(green), learned parameters from the X and Y variables (blue) and learned parameters from the Y variables only
(red). The learning algorithm is a 1D convolutional model with test_mode set to True.
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Figure 3.

Errors between the Lorenz-
96 slow (X) and fast (Y)
variables generated using
the observed parameters
and the inferred
parameters using the FC
model trained on the Y
variables with test_mode
set to False (top row) and
using the Conv1D model
trained on Y variables with
test_mode set to True
(bottom row).



Discussion/What’s next?

• Why do FCs outperform CNNs?

• (20, 20) image shapes

• Spherical CNNs

• Flexible CNN filters

• Assigning weights to different channels

• Making the network invertible
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