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HOW MUCH CO2 CAN ACCUMULATE IN 
THE ATMOSPHERE BEFORE WE 

CROSS 2°C WARMING?

• Global warming target of 2015 Paris Agreement: 2°C

• How much CO2 can accumulate in the atmosphere before this
threshold is crossed?

No certain answer.

Answers vary from 480 ppm in 2030, to 600 ppm after 2060
(Schneider et al., 2017a).

• Estimated economic value of an accurate answer:

$10 trillions in savings (Hope, 2015).

OBJECTIVE

Want: 

• A climate model which can objectively zoom in on clouds. 

Where does ML fit in?

• Can a deep learning model recover the parameters underlying a 
cloud parameterization scheme ?  

Objective: 

• Recover the parameters underlying the chaotic behavior of the Lorenz-
96 model.

RECOVERING B, C AND H 

RESULTS

References

 Generate 200 trajectories of the 20 variables in the L-96 model

 Convert these trajectories to grayscale images of shape (20, 50000)

 Chunk images into tiles of shape (20, 20)

 Flatten image chunks used as FC models inputs

 Image chunks used as convolutional models inputs

 FC and Conv models used to predict the b, c and h parameters

Loss function:

• Mean squared error normalized by standard deviation:

𝑊𝑀𝑆𝐸 =
1

𝑛

1

𝜎𝑏
෍

𝑖=1

𝑛

(𝑏𝑖 − ෠𝑏𝑖)
2 +

1

𝜎𝑐
෍

𝑖=1

𝑛

(𝑐𝑖 − Ƹ𝑐𝑖)
2 +

1

𝜎ℎ
෍

𝑖=1

𝑛

(ℎ𝑖 − ෠ℎ𝑖)
2

Slow large-scale variables xi (i=1,2,…, I):
𝑑𝑋𝑖
𝑑𝑡

= −𝑋𝑖−1 𝑋𝑖−2 − 𝑋𝑖+1 − 𝑋𝑖 + 𝐹 − 𝒉𝒄ത𝑌𝑖

ത𝑌𝑖 =
1

𝐽
෍

𝑖=1

𝐼

𝑌𝑖,𝑗

Fast small-scale variables yi,j (i=1,2,…,I; j=1,2,…,J):
1

𝑐

𝑑𝑌𝑖,𝑗

𝑑𝑡
= −𝒃𝑌𝑖+1,𝑗 𝑌𝑖+2,𝑗 − 𝑌𝑖−1,𝑗 − 𝑌𝑖,𝑗 +

ℎ

𝑗
𝑋𝑗

PARAMETRIZATION SCHEMES

• Typical GCM grid scale: 10 to 150 km.

• Cloud formation scales: ~2 km or less.

Clouds cannot be resolved by current climate models.

Clouds modeled by heuristically approximated parametrization
schemes.

LORENZ-96 MODEL LEARNING MODELS

Learning algorithms:

 Fully connected with 3 layers

 1D convolutional with 2 layers (each with 32 filters of size 3) followed
by 3 FC layers

 2D convolutional with 1 layer (32 filters of size 3x3) followed by 3 FC
layers

• b: controls the amplitude of the nonlinear interactions among the fast
variables, while the parameter

• c: controls how rapidly the fast variables fluctuate relative to the slow
variables and the parameter

• h: controls strength of the coupling between the fast and slow variables

• Lorenz-96 configuration:

• Four slow variables, each associated with four fast variables

• F = 8 forcing used in original configuration of the Loren-96 model

• Accumulated over 50,000 steps, with a time step of 0.01

• Parameters b, c and h are sampled from gaussian distributions with
mean 11 and standard deviation 5 for b and c and mean 1 and
standard deviation 0.1.

Figure 1. Dependence of climate goals on equilibrium climate sensitivity (ECS) and 
of ECS on low-cloud feedback (Schneider et al., 2017a).

Figure 2. The response patterns of clouds and precipitation to warming vary
dramatically depending on the climate model, even in the simplest model
configuration. Shown are changes in the radiative effects of clouds and in
precipitation accompanying a uniform warming (4°C) (Stevens and Bony, 2013).

Figure 3. The Lorenz-96 model with coupled slow large-scale variables and fast
small-scale variables.

Figure 4. Overview of the L-96 trajectories pre-processing and their underlying 
parameters recovery.

RELATED WORK

• Learn cloud parametrizations from cloud resolving

model simulation data using:

Single-layers feed-forward neural networks (Krasnopolsky

et al., 2013; Gentine et al., 2018; Brenowitz and Bretherton, 2018)

Ensemble Kalman inversion model (Schneider et al., 2017b)

Random forest model (O’Gorman and Dwyer, 2018)

Multi-layer feed-forward neural network (Rasp et al., 2018)

But…
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Figure 6. Lorenz-96 phase diagram of the first three slow (X) and fast (Y) variables
using observed parameters (green), learned parameters from the X and Y variables
(blue) and learned parameters from the Y variables only (red). The learning
algorithm is a fully connected network with test_mode set to False (top row). The
learning algorithm is a 1D convolutional model with test_mode set to True (bottom
row).

Figure 7. Errors between the Lorenz-96 slow (X) and fast (Y) variables generated
using the observed parameters and the inferred parameters using the FC model
trained on the Y variables with test_mode set to False (top row) and using the Conv1D
model trained on Y variables with test_mode set to True (bottom row).

Figure 5. The image chunks used as inputs to a 1D convolutional model with 2 layers
of 32 filters (size 3) each the Lorenz-96 model with coupled slow large-scale
variables and fast small-scale variables.

Table 1. Training and testing loss and coefficient of determination.


