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LORENZ-96 MODEL

HOW MUCH CO, CAN ACCUMULATE IN
THE ATMOSPHERE BEFORE WE

Slow large-scale variables xi (i=1,2,..., I):

CROSS ZOC WARMING? aX; = —X;_1(X;_p —X;41) —X; + F — hCYi

dt
I
7 12y
i — 7 9]
]i=1

Fast small-scale variables yij (i=1,2,...,1; j=1,2,...,]):
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* Global warming target of 2015 Paris Agreement: 2°C

* How much CO, can accumulate in the atmosphere before this
threshold is crossed?

=» No certain answer.

=» Answers vary from 480 ppm in 2030, to 600 ppm after 2060
(Schneider et al., 2017a).

* Estimated economic value of an accurate answer:
=» $10 trillions in savings (Hope, 2015).
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b: controls the amplitude of the nonlinear interactions among the fast

-1 . .
1/ECS (K™) variables, while the parameter

Low-cloud reflectance change (% K™)

* ¢: controls how rapidly the fast variables fluctuate relative to the slow

Figure 1. Dependence of climate goals on equilibrium climate sensitivity (ECS) and .
variables and the parameter

of ECS on low-cloud feedback (Schneider et al., 2017a).

PARAMETRIZATION SCHEMES

» Typical GCM grid scale: 10 to 150 km.

* (Cloud formation scales: ~2 km or less.

=» Clouds cannot be resolved by current climate models.

=» Clouds modeled by heuristically approximated parametrization
schemes.

CHANGE IN CLOUD RADIATIVE EFFECTS

* h: controls strength of the coupling between the fast and slow variables

* Lorenz-96 configuration:

* Four slow variables, each associated with four fast variables

- F =8 forcing used in original configuration of the Loren-96 model
* Accumulated over 50,000 steps, with a time step of 0.01

* Parameters b, ¢ and h are sampled from gaussian distributions with
mean 11 and standard deviation 5 for b and ¢ and mean 1 and
standard deviation 0.1.

RECOVERING B, CAND H

CHANGE IN PRECIPITATION
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Generate 200 trajectories of the 20 variables in the L-96 model
Convert these trajectories to grayscale images of shape (20, 50000)
Chunk images into tiles of shape (20, 20)

Flatten image chunks used as FC models inputs

Image chunks used as convolutional models inputs
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Loss function:

Figure 2. The response patterns of clouds and precipitation to warming vary FC and Conv models used to predict the b, c and h parameters

dramatically depending on the climate model, even in the simplest model
configuration. Shown are changes in the radiative effects of clouds and in
precipitation accompanying a uniform warming (4°C) (Stevens and Bony, 2013).

* Mean squared error normalized by standard deviation:
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RELATED WORK

* Learn cloud parametrizations from cloud resolving
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model simulation data using: oservet X onese i =
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=» Multi-layer feed-forward neural network (Rasp et al., 2018) Z 20021650000 S - Neuralgcetwork —E
But... 20 SRS ConviD

' Conv2D
50000

OBJECTIVE

Want:

* A climate model which can objectively zoom in on clouds.
Where does ML fit in?

* (Can a deep learning model recover the parameters underlying a

cloud parameterization scheme ? Figure 4. Overview of the L-96 trajectories pre-processing and their underlying

parameters recovery.
Objective:

* Recover the parameters underlying the chaotic behavior of the Lorenz-
96 model.
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LEARNING MODELS

Learning algorithms:
=» Fully connected with 3 layers

=» 1D convolutional with 2 layers (each with 32 filters of size 3) followed
by 3 FC layers

=» 2D convolutional with 1 layer (32 filters of size 3x3) followed by 3 FC
layers
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Figure 5. The image chunks used as inputs to a 1D convolutional model with 2 layers
of 32 filters (size 3) each the Lorenz-96 model with coupled slow large-scale
variables and fast small-scale variables.

RESULTS

Table 1. Training and testing loss and coefficient of determination.

TEST MODE  MODEL TRAIN LOSS TEST LOSS TRAIN 7>  TEST 72
[LEARNING FROM X AND Y
LR 1.7512 1.7560 0.7588 0.7578
FC 0.6583 0.6714 0.9094 0.9074
ConNnvIiD 0.6682 0.6812 0.9079 0.9060
ConNv2D 0.6502 0.6861 0.9103 0.9054
False LEARNING FROM Y ONLY
LR 1.7394 1.7429 0.76035 0.7597
FC 0.6647 0.6808 0.9084 0.9061
ConNnvIiD 0.6968 0.7073 0.9041 0.9024
ConNnv2D 0.6744 0.7063 0.9071 0.9026
[LEARNING FROM X AND Y
LR 1.7371 29112 0.7609 0.6059
FC 0.7064 1.3262 0.9028 0.8212
ConNvID 0.7029 1.2822 0.9031 0.8263
ConNv2D 0.6577 1.3260 0.9070 0.8125
True [LEARNING FROM Y ONLY
LR 1.7407 2.9268 0.7604 0.6039
FC 0.68035 1.3197 0.9063 0.8220
ConNvID 0.6898 1.2726 0.9050 0.8276
ConNv2D 0.6577 1.3260 0.9094 0.8210

Observed X phase diagram

X phase diagram - learned parameters from XY

X phase diagram - learned paramaters from Y

Y phase diagram

Observed X phase diagram X phase diagram - learned parameters from XY X phase diagram - learned paramaters from Y

Figure 6. Lorenz-96 phase diagram of the first three slow (X) and fast (Y) variables
using observed parameters (green), learned parameters from the X and Y variables
(blue) and learned parameters from the Y variables only (red). The learning
algorithm is a fully connected network with test mode set to False (top row). The
learning algorithm is a 1D convolutional model with test_mode set to True (bottom
row).
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Figure 7. Errors between the Lorenz-96 slow (X) and fast (Y) variables generated
using the observed parameters and the inferred parameters using the FC model

trained on the Y variables with test_mode set to False (top row) and using the Conv1D
model trained on Y variables with test mode set to True (bottom row).
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