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Abstract. The spine of a constraint satisfaction formula is the set of variables
which are forced to take on only one value by some subformula. Introduced as a

tool to study resolution complexity, it has applications in analyzing algorithms

on CSPs as well as the structure of random formulas. We show that the spine
of 3-XORSAT exhibits a sharp threshold at the point where satisfiability does;

the size of the spine is o(n2/3) before this threshold, and at least cn for some
c > 0 after the threshold.

1. Introduction

A k-XORSAT formula F on n boolean variables v1, . . . vn is a collection of XOR
constraints on subsets of the variables of size exactly k. An example of such a
constraint could be v1 ⊕ v2 ⊕ v3, where ⊕ stands for the XOR operation. Each
constraint is called a k-clause, or simply a clause when k is clear from the context,
and we say a clause is satisfied by an assignment of the variables if the XORSAT
constraint evaluates to true when the assignments are substituted for the variables.
We say F is satisfiable if there exists some assignment of variables such that every
clause in F is satisfied under this assignment.
k-XORSAT is different from many other constraint satisfaction problems in that

it can be interpreted as a system of linear equations. If instead of boolean variables
we let each variable take values from F2, then each clause can be converted into
a linear equation over F2 in a straightforward way. Our previous example would
change from v1⊕ v2⊕ v3 to v1 + (1− v2) + v3 = 1, or equivalently v1 + v2 + v3 = 0.
This interpretation leads to a polynomial time algorithm for finding a satisfying
assignment for an instance of a k-XORSAT formula, or for showing that none
exists, through Gaussian elimination.

1.1. Random XORSAT. Much interest lies in random instances of k-XORSAT.
Not only is it an important example in the general family of random constraint
satisfaction problems which are extensively studied in computer science, but ran-
dom XORSAT has interesting applications in physics, where it is known as the zero
temperature k-spin model [21, 15].

Random constraint satisfaction problems have been studied extensively in the
past 30 years (see Chapter 8 of [5] for a recent survey of the area). A typical ques-
tion asks for the probability of some property holding for a CSP chosen uniformly at
random, on n variables with f(n) clauses, as n tends to infinity. When this prob-
ability tends to 1, we say this property holds with high probability, or w.h.p. for
short. The most natural property to ask is satisfiability—how many clauses can we
to pick while still ensuring the formula is satisfiable with high probability? How
many do we need to pick to ensure it is unsatisfiable with high probability? Other
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properties, such as algorithms succeeding, or the solution space taking on certain
structure are also well studied (see e.g. [2, 8] and [3, 16] respectively).

Perhaps the most famous problem in random constraint satisfaction is the sat-
isfiability threshold for k-SAT. It is believed that for each k ≥ 3 there exists come
rk such that a random k-SAT equation on n vertices with cn clauses is

(i) with high probability satisfiable if c < rk, and
(ii) with high probability unsatisfiable if c > rk.

Recently in [13] this was shown to be true for very large k, but the question remains
open for smaller cases.

In the case of k-XORSAT, such a result is known. For k = 3, the 3-XORSAT
satisfiability threshold, which we denote csat, was first shown in [14]. The authors
examined what is called the 2-core of the formula, the largest subformula in which
every variable is in at least two clauses. The aptly named 2-core contains all of the
‘difficulty’ in satisfying the formula: If a variable is present in only one clause, then
that clause can always be satisfied by a good choice of that variable, without having
any effect on other clauses. Thus the subformula obtained by removing that one
variable and the clause that contains it will be satisfiable iff the original formula
was satisfiable. Iterating this, if we repeatedly remove any variables which are in
at most one clause, we end up with the 2-core, which is satisfiable iff the original
formula was.

By [22] we know that w.h.p. the 2-core of a random 3-XORSAT instance with
cn clauses on n variables contains(

1− e−x(1 + x)
)
n+ o(n)

variables, and
x

3

(
1− e−x

)
n+ o(n)

clauses, where x is the largest solution to

6c =
2x

(1− e−x)2
.

It was shown in [14] that if the 2-core of a random 3-XORSAT formula contains
more clauses than variables, then it is unsatisfiable with high probability, while
if the 2-core contains fewer clauses than variables, then it is satisfiable with high
probability. Showing satisfiability was much harder, and required maximizing a
complicated function to approximate the second moment of the number of satisfying
assignments. The 2-core formulas above allow us to compute csat as the value of c
when the number of clauses and variables in the 2-core are equal.

While only the k = 3 case of random k-XORSAT satisfiability was tackled in [14],
the authors stated that the same method will work for larger k. In [12] a similar
second moment calculation showed that for random k-XORSAT with k > 3, the
satisfiability threshold is the point where the number of clauses in the 2-core exceeds
the number of variables.

An alternate proof of the k-XORSAT threshold was more recently used in [23],
relying instead on the linear system interpretation to examine the number of sets of
equations which may lead to a contradiction. The formula is reduced to the 2-core
before analysis in this paper as well.
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1.2. Algorithms and the Spine. Although finding the k-XORSAT satisfiability
threshold seems simpler than finding the k-SAT threshold, the reason for this is not
the polynomial time algorithm which can find a satisfying assignment for XORSAT.
In [9] the authors examined what makes the proof of the satisfiability threshold for 3-
XORSAT in [14] work, and defined an NP-complete CSP for which a similar second
moment calculation shows the satisfiability threshold. Like the second moment
calculation in [14], the global maximum of a complicated function is determined
over many pages of calculations, some of which are delegated to a computer-aided
proof.

While Gaussian elimination can solve any instance of XORSAT, no other efficient
algorithms are known for random XORSAT which do not rely on this linear system
structure in some way.

For example, in [17], WalkSAT is tested for a variety of NP-complete CSPs
and random 3-XORSAT, near their respective satisfiability thresholds. WalkSAT
is an algorithm which tries to satisfy a given formula by first picking a random
assignment, and then trying to improve this assignment by picking an unsatisfied
clause uniformly at random, and flipping the assignment for a variable in the clause.
The flipped variable is usually chosen to minimize the number of unsatisfied clauses
after the step.

The mean number of steps taken by WalkSAT was examined numerically in [17],
as the number of variables is increased. Out of all the random CSPs tested, random
3-XORSAT took the greatest number of steps by several orders of magnitude.

One reason for this is a special type of symmetry of the clauses: Suppose we have
some XORSAT formula, and an assignment for the variables. Flipping the value of
one variable changes the status of all clauses it contains—if a clause was satisfied
before, it becomes unsatisfied after the flip, and vica versa. This is not true for
SAT, for example, where one variable alone can satisfy a clause, and changing other
variables will not make it unsatisfiable.

A special case of finding solutions for rare satisfiable instances of random CSPs
above the satisfiability threshold is examined in [5], where simple message-parsing
algorithms work for random k-SAT, but no local or decimation-based algorithms
take less than an exponential number of steps for random k-XORSAT.

Other algorithms are known to be hard for both random XORSAT and random
SAT. For example, DPLL algorithms, introduced in [11], assign a value to some
variable in each step, after which the formula is reduced to the remaining variables,
with the clauses appropriately modified. This step is then repeated. Variants of
DPLL pick the variable to be set according to different heuristics, and might allow
backtracking to occur. See [1] and [2] for analysis of such algorithms on k-SAT.

Two common DPLL heuristics for random k-SAT are examined for random k-
XORSAT in [10] and [8]. In the unit clause heuristic, variables present in 1-clauses
are picked first and are set to satisfy those clauses, and if no 1-clauses are present,
then variables are picked and set uniformly at random. In the generalized unit
clause heuristic, a variable is picked uniformly from a smallest clause in the formula,
and set to satisfy the clause if it is of size 1, or set uniformly to either true or false
otherwise. Both heuristics are shown to take exponential time to find a satisfying
assignment well below the satisfiability threshold.

A DPLL algorithm will fail or will have to backtrack if a variable is set ‘wrong’,
that is in all solutions of the remaining formula, the variable takes on the other
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value. It is natural to keep track of the set S of variables which only take on one
value in the formula, so that they can be avoided. As we will later see, S only
depends on which variables are in each clause, not their values. Some choices of
values for these clauses will lead to a satisfiable formula, while others will not. The
set S will be constant among all of these satisfiable formulas, and we will show that
there is a simple structural reason for these variables being in this set, which is
independent of whether the formula is satisfiable or not. Therefore it is useful to
define this set in a way which is already independent of satisfiability.

This brings us to the definition of the spine, the main topic of interest of this
paper. It was introduced in [6] as a tool to study the resolution complexity of
2-SAT, and the definition carries over to XORSAT:

Definition. A variable v in the formula F is in the spine iff there is a satisfiable
subformula H where the value of v is constant among all satisfying assignments.

This definition for the spine allows us to talk about the spine past the satisfia-
bility threshold. Although we motivated the spine as a set to keep an eye on during
the execution of algorithms, it is much more versatile. Since adding clauses can
only increase the size of the spine, it proved to be a good set to study very close to
the satisfiability threshold of 2-SAT in [6], to gain knowledge of that satisfiability
transition. Moreover, it provides knowledge about the structure of the solution
space of a formula. A large spine limits the solutions to live in a small subspace
of all assignments, while a very small spine can only be achieved through either a
large number of solutions, or solutions which differ greatly from each other.

The spine of an XORSAT instance F is determined only by which variables are
in each clause; whether the variables are negated or not does not make a difference.
Thus the spine of a formula will remain the same, even if we change each XOR
clause to contain no negations, ensuring that the formula is satisfiable (with the all
1 assignment).

To see this suppose v is in the spine of F with H being a corresponding subfor-
mula as per the definition of the spine, and view H as a set of linear equations over
F2. Each linear equation is of the form va1 + va2 + . . .+ vak = {0, 1}, and since H
has a solution it is consistent. However, adding one of v = 0 or v = 1 will make the
system inconsistent, so there must be some subset of equations which sum to v = 1
or v = 0. This gives an alternate definition for the spine, as the set of variables v
for which there exists a subset of linear equations which sum to v = 0 or v = 1.

This inspires yet another way of looking at a k-XORSAT formula. For each
formula F we define a corresponding k-uniform hypergraph G(F) on the variables,
where we add one edge for each clause, containing the variables the clause contains.
We lose the right hand sides of the linear equations when we look at F this way,
but we retain all other structure. We can rephrase the spine using this hypergraph:
a variable v is in the spine of the formula F iff G(F) contains a (not necessarily
induced) subgraph in which only v has odd degree. To see why this is equivalent,
consider summing the linear equations corresponding to the hyperedges in the sub-
graph. Either v = 0 or v = 1 falls out as the result, since all other variables appear
an even number of times and cancel out, as we are in F2. Conversely, if v is in the
spine we know v = 0 or v = 1 can be obtained as a sum of of linear equations corre-
sponding to a subset of clauses. Since all other variables cancel out, each variable
must be in an even number of these equations. Thus taking the edges corresponding
to these equations will give a hypergraph where only v has odd degree.
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We generalize the spine using these observations, to define an implied `-clause of
an XORSAT formula F as a set of ` variables va1 , va2 , . . . va` such that the following
equivalent conditions hold:

(1) There exists a satisfiable subformula where the value of va1 ⊕ va2 ⊕ . . .⊕ va`
is constant among all satisfying assignments.

(2) When viewing F as a linear system, there exists a subset of equations which
sum to either va1 + va2 + . . . va` = 0 or va1 + va2 + . . . va` = 1.

(3) There exists a subgraph of the corresponding hypergraph G(F) where only
the variables va1 , va2 , . . . va` have odd degree.

Elements of the spine are exactly the variables which lie in implied 1-clauses.

The spine of general constraint satisfaction problems was examined in [20], but it
was generalized in a way that only agrees with the spine for constraints in conjunc-
tive normal form (i.e. SAT). For all other CSPs, the set examined is only guaranteed
to contain the spine, but the converse is usually false.

2. Results

Our main result states that the size of the spine of 3-XORSAT exhibits a sharp
threshold at the point where satisfiability does.

Theorem 1. (a) For any c > csat there exists a δ > 0 such that the size of the
spine in a random 3-XORSAT instance with cn clauses is w.h.p. at least δn.
(b) For any c < csat the size of the spine in a random 3-XORSAT instance with cn
clauses is o(n2/3) w.h.p.

This statement, with 3-XORSAT replaced with k-XORSAT appears in [20], but
without a correct proof. Their argument works for a small class of CSPs, including
k-SAT but not k-XORSAT. In k-SAT each clause is an OR of variables, so every
variable in a minimal unsatisfiable subformula will be in the spine; we sketch the
argument from [20]:
LetM be a minimal unsatisfiable subformula of a k-SAT instance. If X is a clause
in M, then X must be true in all satisfying assignments of M \ X. Since the
negation of X is an AND of variable assignments, these variables must take on only
one value in all satisfying assignments of M \ X, meaning that they must be in
the spine. By the classic result [7], a minimal unsatisfiable subformula is w.h.p. at
least of linear size in random k-SAT, which leads to a linear sized spine.

The error in [20] is that while for random k-XORSAT a minimal unsatisfiable
formula is still linear sized, it might have a small spine! For example, when k is
even, the spine will always be empty.

In fact an XORSAT formula F with only even size clauses has no implied `-
clauses for any odd `. This is easy to see by the hypergraph formulation of the
handshaking lemma. For any subformula H of F we know∑

x∈v(G(H))

deg(x) =
∑

e∈G(H)

|e|.

Since the right hand sum is even, we cannot have an odd number of odd degree
vertices.

However, the statement of Theorem 1 should be true for odd k > 3. Moreover,
the size of the spine below the satisfiability threshold seems to be O(1), but we
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were not able to show this. Instead, we use a simple concentration bound to show
Theorem 1(b).

The size of the spine of random 3-XORSAT was computed using numerical ex-
periments in [25]. After ensuring that the all zero assignment is a satisfying as-
signment, experiments were run to find what fraction of variables are fixed to 0 in
every satisfying assignment, as the number of clauses is increased. These variables
will clearly be contained in the spine. Moreover, since the all zero assignment is
satisfying, there will be no variables that take the value 1 in all satisfying assign-
ments, so the set of these variables will be the spine! The numeric results indicate
that before the satisfiability threshold is passed, the spine is very small, and tends
to 0 as the number of variables grows, while a constant fraction of the variables are
in the spine immediately after the satisfiability threshold. Theorem 1 makes these
observations rigorous.

Theorem 1 was partially motivated by a study of a DPLL type algorithm in
[24]. Although Theorem 1 is not strong enough to justify their observations which
are in a mixed 2- and 3-XORSAT setting, we discuss what is needed and how an
extension of Theorem 1 could be shown in Section 6.

We prove Theorem 1(a) in Section 5, relying on a series of results. The first step,
which might be of interest in its own, is

Theorem 2. For each c > csat there exists a δ > 0 such that the number of implied
3-clauses in a random 3-XORSAT instance with cn clauses is almost surely at least
δn3.

We prove this in Section 3. Intuitively this says that a constant fraction of
triples are bound by some implicit constraint past the satisfiability threshold. The
XORSAT formula being a random formula is necessary, as one can easily construct
a 3-XORSAT formula with cn clauses and only cn implied 3-clauses, for example
by using only (cn)1/3 variables among all clauses.

We move down from implied 3-clauses to implied 2-clauses using the following
key linear algebra lemma, which is proven in Section 4. Recall that the Hamming
weight of a vector in Fn2 is the number of non-zero entries it has, and the Hamming
distance between two vectors is the number of entries they differ in.

Lemma 3. Let V be a subspace of Fn2 , and let 1 ≤ i ≤ n. Suppose V contains d
vectors of Hamming weight 3 which are non-zero at the ith entry. Then V contains
at least d− n

2 vectors of Hamming weight 2.

We will translate implied 3-clauses to vectors of Hamming weight 3, and apply
this lemma with their span as V . The resulting Hamming weight 2 vectors will then
correspond to implied 2-clauses, and if we know that a formula has Θ(n2) implied
2-clauses, a simple argument will yield Theorem 1(a).

The result of d− n
2 vectors of Hamming weight 2 is tight. The existence of single

error correcting Hamming codes shows this. A single error correcting Hamming
code V is a subspace of Fn2 with special properties (see any standard coding theory
textbook e.g. [26]). Of these properties, we will use the following:

(i) V contains no vectors of Hamming weight 1 or 2.
(ii) Any vector in Fn2 is at most Hamming distance 1 away from some vector in

V .
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We will show that for every i these codes contain
⌈
n−1
2

⌉
vectors of Hamming weight

3 which are non-zero at the ith entry, but no vectors of Hamming weight 2.
Let V be a single error correcting Hamming code. Fix some 0 < i ≤ n, and

consider all Hamming weight 2 vectors in Fn2 which are non-zero at the ith entry
(these will not be in V ). This is a set of n− 1 vectors, and by property (ii) above
each vector in this set will have a vector in V at Hamming distance 1 away from
it. By property (i), these vectors in V which are Hamming distance 1 away can
only be Hamming weight 3 vectors which are non-zero at the ith entry! Since one
weight 3 vector can only ‘cover’ 2 vectors from this set, there must be at least

⌈
n−1
2

⌉
Hamming weight 3 vectors which are non-zero in the ith entry.

3. Proof of Theorem 2

Recall that the 2-core of a 3-XORSAT formula F is the largest subformula on
a subset of the variables in which every variable is in at least two clauses. As
mentioned in the introduction, the satisfiability threshold was shown by inspecting
the 2-core. As the density of a random formula increases, so does the density of its
2-core. The satisfiability threshold is the point where the density of the 2-core is 1.

A clause x is said to be dependent in a k-XORSAT formula F if x is an implied
clause in F \x, otherwise it is called independent. Note that a k-XORSAT formula
with no dependent k-clauses is always satisfiable, to see this think of the formula
as a system of linear equations; since each clause is independent, no sum of any
subset of equations can contradict another equation in the system. In other words,
the system is of full rank, and always has a solution.

On the other hand, if we are given a satisfiable formula and we add a clause
which is dependent, we may or may not make the formula unsatisfiable, depending
on the right hand side of the linear equation it corresponds to. If this is chosen
uniformly at random, then the formula will become unsatisfiable with probability
1/2. Note however that we cannot have more than n independent clauses on n
variables, by the usual dimension bound from linear algebra.

Lemma 4. When 0 < γ < 0.001, the 2-core of a random 3-XORSAT formula on n
vertices with (csat−γ)n clauses lies on at least 0.6n vertices and has density greater
than 1− 2γ.

Proof. We make use of results on the 2-core from [22] mentioned in the first section.
Recall that if we define x as the largest solution to the equation

(1) 6(csat − γ) =
2x

(1− e−x)2
,

then the number of variables in the 2-core is w.h.p.(
1− e−x(1 + x)

)
n+ o(n),

and the number of clauses in the 2-core is w.h.p.

x

3

(
1− e−x

)
n+ o(n).

Note that a smaller γ leads to a larger x, and for 0 < γ < 0.001 the formula for the
number of variables increases with x. Thus it suffices to show that when γ = 0.001,
the size of the 2-core is at least 0.6n, which is a straightforward calculation.
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To see that the density is always greater than 1− 2γ, denote the ratio of clauses
to variables by r,

(2) r :=
x
3 (1− e−x)

1− e−x(1 + x)
.

We will show that ∂r
∂γ < −2 for 0 < γ < 0.001. Recall that csat was defined as the

value of c when r = 1, so when γ = 0 we have r = 1. Together these two facts show
that for any 0 < γ < 0.001, the value of r is at most 1− 2γ.

We first determine ∂x
∂γ from (1):

−6 =
2e2x(ex − 2x− 1)

(ex − 1)3
· ∂x
∂γ
,

so
∂x

∂γ
=

−3(ex − 1)3

e2x(ex − 2x− 1)
.

Then from (2) we have

∂r

∂x
=
e2x − e−x(x2 + 2) + 1

3(x− ex + 1)2
.

Thus
∂r

∂γ
=
∂r

∂x

∂x

∂γ
= − (ex − 1)3(e2x − ex(x2 + 2) + 1)

e2x(ex − 2x− 1)(x− ex + 2)2
.

When 0 < γ < 0.001, we have 2.14 < x < 2.15. It is easy to check that ∂r
∂γ is

increasing in this interval, so its value at x = 2.15 will yield an upper bound here.
The result is less than −2, so ∂r

∂γ < −2 when 2.14 < x < 2.15, and thus when
0 < γ < 0.001.

�

Proof of Theorem 2. Fix some 0 < γ < 0.001. We pick a random 3-XORSAT
formula F with (csat − γ)n clauses. This formula will be satisfiable with high
probability. We will add 11γn clauses to this formula one by one, uniformly at
random, and examine where the clauses fall during this process, which will make
the resulting formula unsatisfiable with high probability. Define the following sets
of clauses:

Let C be the 2-core of F , and let S denote the set of vertices this 2-core contains.
Let Z be the set of all implied 3-clauses in C.
Let I be the largest set of independent clauses in C. Since our formula is below

the satisfiability threshold, with high probability it is satisfiable. Recall that any
random dependent clause makes the formula unsatisfiable with probability 1/2, so
we must have I = C.

As we add clauses to our formula one at a time, we define the following sets as
well:

Let Fi denote the entire formula after the ith edge has been added.
Let Ci denote the subformula on S, after the ith step.
Let Zi be defined the following way: Let c := 0.0026. We will always have

|Zi| = cn3. If the number of implied 3-clauses in Ci is at least cn3, then let Zi be
a uniformly selected cn3 sized subset of them. If the number of implied 3-clauses
in Ci is less than cn3, then Zi contains these implied 3-clauses, and the rest of the
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clauses are selected uniformly at random from all possible 3-clauses that can appear
on S.

Let Ii be defined the following way: I0 := I. During the process, on the ith
round we define Ii := Ii−1, but we also add the ith edge to Ii if it is not in Zi−1
but is in S.

With these sets in hand, we can outline what we are interested in during the
process. We want to show that the number of implied 3-clauses is larger than cn3.
Note that if this is not true, then no clause added to Ii lands on an implied 3-clause,
by our definition of Zi. Since an added clause can only be dependent if it was an
implied 3-clause before being added, the set Ii will always consist of independent
clauses. However, since I is already so large, we will show that too many clauses
fall in Ii during the process, more than the total number of variables, forcing some
clauses to be dependent.

We examine the probability of the ith added edge to fall in Ii during the process.

P (ith clause is added to Ii) ≥

(
1− |Zi−1|(|S|

3

) ) · P (ith clause lands fully in S)

Note that by Lemma 4, |S| is w.h.p. at least 0.6n, so

P (ith clause is added to Ii) ≥
(

1− |Zi−1|
1
6 (0.6n)3

) (0.6n
3

)(
n
3

)
≥
(

1− |Zi−1|
0.036n3

)
0.216

=
(

1− c

0.036

)
0.216

≥ 0.2.

Note that during the ith round, whether this clause is added to Ii or not does not
depend on i in any way. Furthermore, it is independent of all previous rounds. Thus
if we letX denote the random variable corresponding to the number of clauses added
to Ii for all i during the run of this process, it will follow a binomial distribution:

X ∼ BIN(11γn, p),

where p > 0.2. As we run the process at least 2.2γn clauses are expected to land in
one of the Ii. By Lemma 4 the size of C is at least (1−2γ)|S| with high probability,
and since I = C with high probability, adding these 2.2γn clauses will make the
expected size of I11γn at least |I|+ E[X] ≥ (1 + 0.2γ)|S|.

We can show concentration for X, using a Chernoff bound (see [18]):

P (X ≤ 2.1γn) ≤ e−2.2n(1− 2.1
2.2 )

2
/3 ≤ e−0.001n.

Thus with high probability I11γn is of size at least (1 + 0.1γ)|S|. However, we
cannot have an independent set of size greater than |S|, so the only way I11γn
could be so large if there were some implied 3-clauses which were not contained in
Zi, meaning that there were more than cn3 implied 3-clauses!

Although we have only shown that we have cn3 implied 3-clauses for densities
between csat and csat + 0.001, this is enough. As we add more clauses, the number
of implied 3-clauses cannot decrease, so any random formula with larger densities
will have cn3 implied 3-clauses. �
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4. Proof of Lemma 3

Proof. Suppose a vector space V ⊆ Fn2 is given containing d vectors of Hamming
weight 3 which are non-zero at the ith entry. Define a 3-uniform hypergraph H on
[n] where an edge is present for each vector with Hamming weight 3. The ith vertex
will have d edges on it, that is, it has degree at least d. Define an auxillary graph
Gi on [n] \ {i}, where an edge {x, y} is present iff {i, x, y} is an edge of H. Note
that each edge of Gi corresponds to an edge of H which corresponds to a vector in
V .

If Gi contains an odd cycle a1, a2, . . . a2k+1, then H must contain edges

{i, a1, a2}, {i, a2, a3}, . . . {i, a2k, a2k+1}, {i, a2k+1, a1}.

Each ai appears in two edges, and i appears in all 2k + 1 edges. Thus the sum
of the d corresponding vectors will be the ith unit vector, as all the ai cancel out.
Therefore the ith unit vector must be in V , and we can form d Hamming weight 2
vectors by summing the ith unit vector with the d Hamming weight 3 vectors.

Now we assume Gi is bipartite. Note that if x and y are connected by an odd
length path, then {x, y} must be an edge in Gi. To see this sum the corresponding
vectors in V as before, the only odd degree vertices will be x, y, and i. Thus V
contains the vector which is non-zero at exactly those entries.

This means that Gi is a disjoint union of complete bipartite subgraphs A1 ∪
B1, . . . Ak ∪ Bk. Note that if x and y are connected by a path of length two,
then V contains the vector which is non-zero exactly at x and y. Thus V contains∑k
j=1

(|Aj |
2

)
+
∑k
j=1

(|Bj |
2

)
vectors that are non-zero at exactly two entries. We want

to show that this sum is close to
∑k
j=1 |Aj ||Bj | = d. We compare each term of the

two sums,

|Aj ||Bj | −
(
|Aj |

2

)
−
(
|Bj |

2

)
=
|Aj |+ |Bj |

2
− 1

2
(|Aj | − |Bj |)2 ≤

|Aj |+ |Bj |
2

.

Thus the difference in the sums is 1
2

∑
j |Aj | + |Bj | ≤

n
2 , so V contains at least

d− n
2 vectors that are non-zero at exactly two entries. �

Note that one can make this lemma more precise by replacing the −n2 term with

− |Ni|
2 , where Ni is the set of vertices that lie in a triple where the ith entry is

non-zero. The proof remains identical, but the simpler statement of the lemma
suffices for our purposes.

5. Proof of Theorem 1

Suppose some 3-XORSAT formula has δn3 implied 3-clauses for some δ > 0.
We can translate each 3-clause into a vector in Fn2 , which is non-zero in 3 positions
corresponding to the 3 variables it encompassed. Now we can use the following
corollary of Lemma 3 with V as the span of these vectors.

We adapt Lemma 3 to talk about implied clauses instead of vector spaces.

Corollary 5. Let F be a 3-XORSAT formula which contains cn3 implied 3-clauses
for some c > 0. Then F contains at least 3cn2 − n/2 implied 2-clauses.

Proof. Suppose F contains cn3 implied 3-clauses. In order to use the lemma, we
need to define a vector space V . Let each implied 3-clause correspond to a vector
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in Fn2 , which is non-zero in 3 the positions corresponding to the 3 variables it
encompassed. Let V be the span of these vectors.

Claim. V contains 3cn2 − n/2 vectors of Hamming weight 2.

Proof of claim. To show this we just need to find an i which is non-zero in 3cn2

vectors of Hamming weight 3 in V , and apply Lemma 3. As before, define the
corresponding 3-uniform hypergraph H where an edge is added for each vector of
Hamming weight 3, on the entries which are non-zero. H will have cn3 edges, so
the total degree in H is 3cn3. Since there are n vertices, one vertex must have
degree at least 3cn2. We can let i be the entry corresponding to this vertex, since
each edge it lies in corresponds to a vector of Hamming weight 3 which is non-zero
at the ith entry. �

All that remains is to show that each Hamming weight 2 vector in V corresponds
to an implied 2-clause. We will rely on the linear system definition for implied
clauses. Suppose x is a Hamming weight 2 vector in V . Recall that for each
implied 3-clause there is a set of linear equations whose sum cancels out all but
the three variables. Thus if x is the sum of some vectors in V corresponding to
implied 3-clauses, then the sum of all of the linear equations will yield a set of linear
equations which cancels out all but the variables which are non-zero in x. In other
words, every vector in V corresponds to an implied clause. �

Now we have all the tools for our main result.

Proof of Theorem 1(a). Pick any γ > 0, and let c = csat + γ. By Theorem 2 and
Corollary 5 above, a random 3-XORSAT instance with cn clauses will w.h.p. have
at least δn2 implied 2-clauses for some δ > 0. Suppose we add γn more 3-clauses
to our formula, uniformly at random. Each clause will have a constant probability
C > 0 to land in a way such that two of the variables it covers are contained in
an implied 2-clause. To see this, draw the random 3-clause one variable at a time.
There are n(n− 1)/2 ways to draw the first two variables, so with probability 1/2δ
the first two variables already form an implied 2-clause. If this happens, the third
vertex becomes (or remains) a member of the spine.

For convenience we will allow adding the same clause multiple times. Since there
are

(
n
3

)
choices for which three variables a clause binds, and at each point at most

(c+ 2γ)n are occupied, the probability of a clause landing on an occupied triple is

1− (c+ 2γ)n(
n
3

) ≈ 1− 6(c+ 2γ)

n2
.

Over the course of adding γn clauses, the probability that at least one clause lands
on an occupies triple is at most

1−
(

1− 6(c+ 2γ)

n2

)γn
= o(1).

Thus we can safely ignore these cases—if a property holds with probability p when
allowing the same clause to be added multiple times, it will hold with probability
at least (1− o(1))p without it.

With this assumption, the random variable X corresponding to the number of
3-clauses which fall on these δn2 known implied 2-clauses when adding γn clauses
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follows a Binomial distribution:

X ∼ BIN(γn,C).

A simple Chernoff bound gives

P (X ≤ 1

2
Cγn) ≤ e−Cγn/12,

where the right hand side tends to 0 very quickly as n grows. Thus w.h.p. we will
have at least Cγ

2 n 3-clauses fall on these implied 2-clauses.

Each time a 3-clause landed on one of these δn2 2-clauses, the third variable was
uniformly chosen among all possible variables. Since each edge was added indepen-
dently, this gives a uniform distribution for the variables this process guarantees
to be in the spine. This is the same as if we picked these variables uniformly at
random with replacement, 1

2Cγn times. With high probability we will not have
much overlap: Picking the variables one by one, each time we will pick an unoccu-
pied variable with probability at least 1− 1

2Cγ. Thus the probability of picking at

least 1
4Cγn unique variables is at least as much as the probability that a random

binomial variable Y ∼ BIN
(
1
2Cγn, 1−

1
2Cγ

)
will be at least 1

4Cγn. This, by the
usual Chernoff bound gives

P (Y ≤ 1

4
Cγn) ≤ e−C

′n,

where

C ′ =
1
2Cγ(2(1− 1

2Cγ)− 1)2

12(1− 1
2Cγ)

is a constant greater than 0 as long as 1
2Cγ <

1
2 , which is true as C < 1 and γ < 1.

This shows that for any γ > 0, w.h.p. a random 3-XORSAT instance with
(csat + 2γ)n clauses has a spine of size cn for some c = c(γ) > 0. �

Proof of Theorem 1(b). We need to show that below the satisfiability threshold, we
almost surely have a small spine.

Suppose that for a γ > 0 with some constant probability p > 0 a random 3-
XORSAT formula with (csat−2γ)n clauses has a spine of size at least cn2/3 for some
c > 0. Choose F uniformly among all 3-XORSAT formulas with (csat−2γ)n clauses
which has a spine of size at least cn2/3. We will add γn more 3-clauses uniformly
at random to F , such that the formula is still below the satisfiability threshold. If
we can show that with constant probability q the formula becomes unsatisfiable,
that implies that a random formula with (csat − γ)n clauses is unsatisfiable with
probability pq > 0, a constant which does not depend on n. This leads to a
contradiction, as below the satisfiability threshold a random formula is satisfiable
with probability tending to 1 as n grows.

Now we examine the process. Each edge has probability(
cn2/3

3

)(
n
3

) =
c′

n

of landing entirely in the spine, where c′ > 0 depends only on c. Thus the probability
of making the formula F unsatisfiable is at least

1−
(

1− c′

2n

)γn
.
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This comes from the fact that if a clause lands entirely in the spine, then it has
probability 1/2 of making the entire formula unsatisfiable. Since the value of this

tends to 1 − e−c′γ/2, for large enough n the probability of making F unsatisfiable
is at least (1 − e−c

′γ/2)/2, a constant which does not depend on n. This is a
contradiction as our formula was chosen uniformly at random at a density smaller
than the satisfiability threshold, so it should be satisfiable with probability that
tends to 1. �

6. Mixed Formulas

Although the spine was introduced as a set of possible ‘bad choices’ during the
run of a DPLL type algorithm, it is rare that an intermittent formula consists purely
of clauses of size 3. Instead it will contain clauses of size 1, 2, and 3.

In [24], an algorithm similar to DPLL is inspected on random instances of 3-
XORSAT. This algorithm uniformly chooses a variable at random, then sets it to
satisfy any simple logical implications that are found, or uniformly at random if
none are found. Then the formula is reduced, and this step is iterated.

These variables with ‘simple logical implications’ are the variables which would
be set a certain way if we satisfied all 1-clauses repeatedly in the intermittent for-
mula. For convenience we will call the formula resulting from repeatedly satisfying
1-clauses while they exist the reduced intermittent formula. This will only contain
clauses of size 2 and 3.

A detailed analysis of the algorithm is present in [24], under some assumptions
and with some rigour missing. The statement which motivated this study of the
spine is restated here in a more convenient way, with some details omitted:

Hypothesis 6. There is a linear sized discontinuity in the size of the spine1 of
the intermittent formula at the point where the 2-core of the reduced intermittent
formula contains more clauses than variables.

It is also stated that while the 2-core of the reduced intermittent formula contains
less clauses than variables, the only variables in the spine are ones in the intermittent
formula but not in the reduced intermittent formula. These variables will always be
in the spine; this is because 1-clauses are implied 1-clauses, and variables in implied
1-clauses are exactly the variables in the spine.

When reduced to the reduced intermittent formula, Hypothesis 6 states there
will be an empty spine before the point where the 2-clause passes density 1, and
a linear number of them after. This looks very similar to Theorem 1, but with
satisfiability in terms of the 2-core. To prove the hypothesis using the techniques
in this paper, a statement relating the density of the 2-core and satisfiability is
needed.

Hypothesis 7. Suppose a random XORSAT formula F with c2n clauses of size
2 and c3n clauses of size 3 has a 2-core which w.h.p. contains less clauses than
variables. Then w.h.p. F is satisfiable.

Such a result is not known. A second moment calculation like the one used in [14]
and [9] seems more difficult here than in those cases, as the function to maximize
loses some nice properties when mixed size clauses are present.

1The set examined in [24] is actually called the backbone, but it is equal to the spine in this
case.
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The methods in this paper cannot show that the spine will be empty w.h.p. be-
fore the satisfiability threshold. However, if Hypothesis 7 were known, our proof
techniques could be adapted to show Hypothesis 6, through the following statement:

Hypothesis 8. Fix c2 > 0, and let c∗3 denote the satisfiability threshold for a
random XORSAT formula with c2n 2-clauses and c∗3n 3-clauses2. Then
(a) for any c3 > c∗3 there exists a δ > 0 such that the spine of a random XORSAT
instance with c2n 2-clauses and c3n 3-clauses is w.h.p. of size at least δn.
(b) for any c3 < c∗3 the spine of a random XORSAT instance with c2n 2-clauses
and c3n 3-clauses is o(n2/3) w.h.p.

The only significant difference between the proof of Theorem 1 and Hypothesis 8
would be Lemma 4. An analysis of the 2-core of a random mixed XORSAT formula
with c2n 2-clauses and c3n 3-clauses would have to be carried out, analogously to
the random 3-XORSAT case in [22]. Once expressions for the number of vertices
in the 2-core and the number of clauses in the 2-core are obtained, what needs to
be shown is that close to the point where the number of vertices is equal to the
number of clauses, the ratio of clauses to variables changes at a bounded rate as
the number of 3-clauses increases.

The 2-core of the reduced intermittent formula in [24] is analyzed in the appendix
of that paper. However, we would need a more general result on 2-cores of arbitrary
random mixed 2- and 3-XORSAT formulas in our proof. However, since this would
only prove Hypothesis 8 if we had a proof for Hypothesis 7, which seems out of
reach, no further work in this direction is considered here.
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