CSC 2209: CLOUD STORAGE FINAL PROJECT

DAVID SOLYMOSI AND JIMMY ZHU

1. HicH LEVEL OVERVIEW

We implemented a backup and sync service with a focus on minimizing network
traffic at the cost of local storage and computation. The files for the cloud client
and server applications can be found at:

http://www.cs.toronto.edu/~solymosi/cloud/.

The client application was responsible for keeping files on the local machine up-
to-date with the server. This was accomplished by monitoring the files for local
changes and conveying these changes to the server, as well as querying the server
for changes and updating the local files as necessary. To minimize network traffic,
instead of sending the entire updated file, the client sent the changes via a diff file
whenever possible.

The server application was responsible for storing the most up-to-date versions
of the files being monitored. This was accomplished by listening to the clients for
any changes and implementing the changes received to the files stored on the server.
The server also responded to clients’ requests for newer versions of the files. As
before, to minimize network traffic, the server sent diff files whenever possible.

The performance of our implementation was significantly better for large text
files when there were only small changes as opposed to transferring the entire file.
Due to space constraints, our experiments cannot be included in this report.

2. IMPLEMENTATION DETAILS

Our implementation of the cloud storage system was for Linux only, and relied
heavily on the workings of patch, diff, and combinediff. TCP was used, and
some details such as port number were hardcoded for this demonstrative version.

2.1. Protocol. TCP messages with a wide range of sizes need to be sent for cloud
storage to function properly, so we precede every message by a header which is
defined the same way for the client and the server, within the cloud_protocol.h
file. This header tells both the client and server the purpose of the message, the
size of the data fields accompanyimg the message (if any), and other useful pieces
of information about about the contents. See Figure [1| for a visual representation
of the header.

The cloud header starts off by specifying an 8 bit request type, that is, what
is the purpose of this message. The next field is an 8 bit user identification field
which can be used to distinguish users. This is followed by a 16 bit unsigned
integer corresponding to the file name length which is included with the message.
Following this is a 32 bit unsigned integer corresponding to a data length which is

Date: June 13, 2016.

http://www.cs.toronto.edu/~solymosi/cloud/

DAVID SOLYMOSI AND JIMMY ZHU

FI1GURE 1. Layout of the cloud header.

32
request type user id file name length
data length
old hash
old hash (cont.)
new hash
new hash (cont.)
192

also included with the message. Next are two 64 bit hash values, which can be used
as identifiers of the file the message is about. Their use will be explained below.
The header is followed by the specified number of bytes of the file name, which
is followed by the specified number of bytes of the data. A typical message will be
24 + n + m bytes long, where n is the length of the file name in question, and m is
the number of bytes that is needed to be sent.
Each message is one of the following types:

req_update, which is used to send patches when local files are updated. It
contains the filename and the patch data, and the two hash fields are used
to specify what old version of the file is being patched to what new version
of the file.

req_updatefull, which is used to send full local files. The filename is sent,
as well as the full contents of the file as data. The old hash field is unused,
but the new hash is the hash of the file sent.

req-reqgpatch, which requests a patch for a given filename. The data length
should be 0, and no data should be included after the file name. The patch
expected in return is the one that would get the file from the included old
hash to the included new hash.

req._reqfull, which requests a full file for a given filename. The data length
should be 0, and no data should be included after the file name. The old
hash and new hash fields are unused, and the newest version of the file is
expected in return.

req._delete, which indicated that a file has been deleted locally, and should
be deleted at the destination. The data length should be 0, and no data
should be included after the file name. The old hash and new hash fields
are unused.

req_uptodate, which is a confirmation message stating that a file with
the given filename is the most recent one. The hash of this newest file is
included in the new hash field, but the old hash field is unused. The data
length should be 0, and no data should be included after the file name.

CSC 2209: CLOUD STORAGE FINAL PROJECT 3

e req_checkall, which is a special type of message. File name length is
unused, and no file name is specified. The old and new hash fields are
unused. The data length is provided, and the data has a very specific
structure. It consists of a series of concatenated messages, which contain
a 16 bit unsigned integer corresponding to file name length, a 64 bit hash
field, and a file name over the number of bytes which was specified.

The purpose of this message is to let the other party know what files you
have locally stored, along with their hash values (versions), so that some
synchronization can follow.

e reqnotify, which is used to notify the other party that the synchronization
following a req_checkall type message is complete. Aside from the request
type and user identification, all other fields are unused, but the file name
length and data length should be zero. No data should follow the header.

2.2. Server. The role of the server is to store the newest versions of files, as well
as to be able to respond to requests from any client. In particular, it must respond
correctly to the various requests and sent files and patches, as well as other request
types.

The server listens for incoming connections and messages on a single port. When
a connection is established by a client, the server waits for and parses messages,
each of which is expected to start with the cloud header. How the server deals with
each message will be detailed below.

If the client closes the connection, or the client does not send new messages for
a long time, the server goes back to waiting for connections, ready to accept one
from the same or any other client.

The structure of the server is straightforward. The working directory for the
server will be .cloudserver, which will contain a stored list of hash values in a
file .crcfile, as well as a directory for each active file that has been synced to the
server by a client previously.

Each directory of a file is guaranteed to include the file curr, which is the latest
version of the file. The hash value of this file is the one that is stored in .crcfile
one directory above. The folder might also contain other files; each other file will
have a name that corresponds to a hash value. The contents of each of these files
will be a patch that updates a previous version of the file (the version whose hash
was the filename) to the latest version (which is curr).

The server deals with each type of request differently:

e When a req_update is received, we are being sent a patch. We check to see
that this patch can be applied to the latest file with the given filename, and
if it is, we apply it to curr, combine all the existing patches in the folder
with this patch, and store it as a patch to get from the version we had just
before getting the message to this new one. We update our .crcfile to
hold the hash of this newest version.

If the patch we receive cannot be applied, we reply with a req_-reqfull
for the file specified.

e When a req_updatefull is received, we are being sent a file. If we already
have a saved version of this file, we create a diff file from that one to this
received version, and proceed as in the previous case.

4 DAVID SOLYMOSI AND JIMMY ZHU

If we do not have a local version of this file, we save it as the curr file,
and update our .crcfile to include the hash of this file.

e When we receive a req_regpatch, we will reply with a req_update con-
taining the patch at $filename/$oldhash.

If that file doesn’t exist, we send a req_updatefull containing the file
$filename/curr.

e When we receive a req.reqfull, we will reply with a req updatefull
containing the file $filename/curr.

e When we receive a req-delete, we will delete the entire folder of the file
specified, and we remove the entry for the file in .crcfile.

e When we receive a req_uptodate, we must have done something right! So
we move on happily.

e When we receive a req_checkall, we will loop though the file names and
hashes given in the data part of the message.

For each message, we check if we have the file with the given filename. If
we don’t, we send a req_reqfull for the file. If we do, we check if the hash
matches with ours. If it does, we send a req_uptodate. If it doesn’t, but we
have a patch to get from that version of the file to our newest version of the
file (i.e. $filename/$hash exists), we send a req-update with that patch.
If it doesn’t but we don’t have a patch, then we send a req_reqpatch to
get from our newest version of the file to their version.

Finally, for each file that we have but was not included in this list, we
send a req_updatefull message containing the file.

e We should not receive any req-notify messages, so we ignore any incoming
messages of this type.

2.3. Client. The role of the client is to keep the local files up-to-date with those
stored on the server. In particular, it must be able to detect changes within local
files, communicate these changes to the server, as well as request more up-to-date
files from the server. On the surface, these seem like easy tasks but, as we will
see, many subtle problems may arise which required us to make assumptions on
what the client may or may not do. We will discuss how to relax and avoid these
assumptions in a later section.

To detect changes, we keep a separate directory from the main sync directory,
called the replicate directory. In the replicate directory, we store the last synced
version of all the files with the server. The main idea is to guarantee that the files
in the replicate directory are the most current copies of the files which the server
has. Given this, we can detect a change by hashing a local file and comparing it
to the hash of the file in the replicate directory (if it exists). If we detect that the
hashes are different, then we may take a diff of the main file and the replicate file,
and we may send this diff to the server via a req_update message. If the file does
not exist in the replicate directory, then we would think that the file is new and we
would send the full file to the server via a req_updatefull message. On the other
hand, if a file in the replicate directory does not exist in the main sync directory,
then we would think that the file has been deleted and we can notify the server via
a req_delete message.

The main problem is how do we guarantee that the replicate directory accurately
reflects the files on the server? Because the client application may be shut down for

CSC 2209: CLOUD STORAGE FINAL PROJECT 5

unknown periods of time, during which another client application could be run else-
where, it is clear that we cannot trust the contents of the replicate directory on start-
up even if we had succeeded in previously guaranteeing the desired property. Thus,
on start-up, the client application syncs with the server via a req_checkall mes-
sage. In response to this, the server may send req_requpdate, req_requpdatfull,
req-update, req_updatefull, and req-notifty messages. The client application
waits and processes each of the preceding 4 types of messages until it receives a
req-notify message. In particular:

e For a req_requpdate message, the client application examines the hash of
the file on the server and checks if it matches the hash of the same file
in the replicate drive. If it does match, then the client computes a patch
with the file in the replicate drive and the file in the main drive and sends
the server a req_update message with the patch. Otherwise, another client
application must have been connected since the client application last ran
and we assume that the file that the client has is the most recent and send
the file via a req_updatefull message.

e For a req.requpdatefull, the client application copies over the current
the file in the main sync drive to the replicate drive and sends the server
the full file via a req_updatefull. Note that it is possible that the file in
the main sync directory is deleted while this occurs; we assume that a file
does not get deleted while it is being synced with the server.

e For a req_update message, the client application first patches the file in
the replicate directory. If the hash of the file in the main sync directory
matches that of the hash in the message, then the file in the main sync
directory is patched as well.

e For a req updatefull message, the client application first writes the file to
the replicate directory, and then copies the file to the main sync directory.
It is possible that the client creates a file with the same name in the main
sync directory; in this case, the file in the main sync directory will be
overwritten.

Though it appears that we have gotten away with the file being modified in the
latter two cases, some users may be confused by the last case, where their change is
overwritten. Thus, it seems appropriate that we assume that a file is not modified
while it is being synced with the server.

We note that the server is passive in the sense that it does not send req_update
or req-updatefull messages unless it is sent req_checkall messages. Thus, since
there might be another instance of the client application running elsewhere and
could be modifying the files there, we must in fact periodically send req_checkall
messages to discover new files.

The full algorithm for the client is thus as follows: periodically perform full syncs
with the server via req_checkall messages, and normally sync with the server using
the replicate directory (via req-update, req_updatefull and req-delete messages
as mentioned earlier).

3. POSSIBLE IMPROVEMENTS

There are several issues with our current implementation.
First of all, other than a simple 8 bit user identification field, there is no security
within our protocol. Although currently only one set of files can be synced, this

6 DAVID SOLYMOSI AND JIMMY ZHU

could be easily changed. However, ensuring that one user only has access to their
own files would require a revised protocol.

Local security is also an issue, as both the server and the client make system
calls. If some of the commands (such as diff, patch, etc. point to different or
compromised files, then these would be executed with unknown and potentially
harmful effects. This can very easily be fixed by including the libraries for these
commands, and calling them internally.

Secondly, we have no support for directories within the sync drive and we do
not support non-text files. The former can be fixed by recursively applying our
algorithms for the client and server. The latter may be fixed by choosing a better
diff implementation which supports comparisons of binary files.

Third, the client implementation can be greatly improved. For example, instead
of scanning the entire directory for changed files, it is possible to use the inotify
library to watch for changes in files. This would involve, however, creating separate
threads for scanning and syncing and one would have to be careful with concurrency
issues. Most of the assumptions we make may be avoided by reading the entire file
into memory and working with copies of the file instead of the file directly, as well
as being careful with additional timestamping on the files.

Finally, the server currently can only handle one connection at a time. This does
not mean one client at a time, only that clients will block the listening port until
transmission is finished. This is not a big issue with small files and few clients, and
could be rectified by using select() and threading within the server.

4. CONCLUSION

We learned a lot in implementing this cloud storage application, and gained new-
found appreciation for existing applications such as Dropbox and Google Drive. As
we noted, we have many ideas for improving our project, and we may continue
developing it in the future.

	1. High Level Overview
	2. Implementation Details
	2.1. Protocol
	2.2. Server
	2.3. Client

	3. Possible Improvements
	4. Conclusion

