
Beehive: Towards a Simple Abstraction for Scalable

Software-Defined Networking

Soheil Hassas Yeganeh
Department of Computer Science

University of Toronto, Toronto, Canada
soheil@cs.toronto.edu

Yashar Ganjali
Department of Computer Science

University of Toronto, Toronto, Canada
yganjali@cs.toronto.edu

ABSTRACT
Simplicity is a prominent advantage of Software-Defined
Networking (SDN), and is often exemplified by implement-
ing a complicated control logic as a simple control applica-
tion on a centralized controller. In practice, however, SDN
controllers turn into distributed systems due to performance
and reliability limitations, and the supposedly simple control
applications transform into complex logics that demand
significant effort to design and optimize.

In this paper, we present Beehive, a distributed control
platform aiming at simplifying this process. Our proposal
is built around a programming abstraction which is almost
identical to a centralized controller yet enables the platform
to automatically infer how applications maintain their state
and depend on one another. Using this abstraction, the
platform automatically generates the distributed version of
each control application, while preserving its behavior. With
runtime instrumentation, the platform dynamically migrates
applications among controllers aiming to optimize the con-
trol plane as a whole. Beehive also provides feedback to
identify design bottlenecks in control applications, helping
developers enhance the performance of the control plane.
Our prototype shows that Beehive significantly simplifies the
process of realizing distributed control applications.

Categories and Subject Descriptors
C.2 [Computer-communication networks]: Net-
work Architecture and Design

General Terms
Design

1. INTRODUCTION
In large-scale software-defined networks, distributed

control platforms are employed for the reasons of scale
and resilience [8]. Albeit instrumental for scalability,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotNets-XIII, October 27–28, 2014, Los Angeles, CA, USA.
Copyright 2014 ACM 978-1-4503-3256-9/14/10 ...$15.00.
http://dx.doi.org/10.1145/2670518.2673864

existing distributed control platforms do not hide the
complexities in realizing a scalable control plane and
pass on many design and scalability challenges to
network programmers.
To come up with a scalable design, network program-

mers need to measure control applications, find design
bottlenecks, and manually optimize the control plane.
They also need to deal with the common complications
of distributed systems (such as timing, consistency,
synchronization and coordination) that are admittedly
pushed into control applications [13]. This directly
obviates the promised simplicity of SDN.
In this paper, we aim at realizing a distributed

control platform that is straightforward to program
and instrument, comparable to centralized controllers
in simplicity. To that end:
1. We propose a programming abstraction for the con-

trol plane that is similar to centralized controllers
yet enables us to automatically infer important char-
acteristics of control applications, including their
interdependencies and how they maintain their state.

2. We present the design and implementation of Bee-
hive’s distributed control platform that automati-
cally generates and deploys the distributed version of
the control applications developed using the proposed
abstraction. We ensure that this transformation
preserves the intended behavior of the application
when distributed over multiple physical machines.
Beehive’s control platform instruments control ap-
plications at runtime, dynamically optimizes their
placement, and provides useful feedback to identify
design bottlenecks.
We demonstrate that our system is simple and in-

tuitive, yet covers a variety of scenarios ranging from
implementing di↵erent network applications (e.g., Net-
work Virtualization and Routing) to emulating existing
distributed controllers (such as ONIX [11] and Kan-
doo [7]). We have evaluated our control platform
for several applications including network virtualiza-
tion, routing, and tra�c engineering. Using a tra�c
engineering example, we show how our proposal can
dynamically optimize the control plane and provide
feedback to improve the application’s design.

1

2. ABSTRACTION
One of the most challenging steps in transforming

a centralized application into its distributed identical
twin is finding a distribution mechanism for the appli-
cation’s state that preserves the application’s behav-
ior. This information is quite subtle and di�cult to
extract from an application written in a general purpose
programming language. For that reason, we propose
a programming abstraction for developing control ap-
plications that enables our framework to automatically
infer how the application state is accessed and modified.
We intentionally designed this abstraction to be similar
to and as simple to use as centralized controllers.

As depicted in Figure 1, we model a control ap-
plication as a set of functions that are triggered by
asynchronous messages and can emit further messages
to communicate with other functions. To process a
message, a function accesses the application state which
is defined in the form of dictionaries (i.e., key-values)
with support for transactions. Application functions
are arbitrary programs which have to explicitly specify
the entries of the state they require for processing a
message. Any data stored outside the application’s
state is ephemeral.

Application A

Function1 Functionn

Incoming Messages MMM

State SmState S1

MMMM

Emitted
Messages

…

…

��

K V

��

K V

Figure 1: Applications are modeled as stateful

functions exchanging asynchronous messages.

Let us demonstrate this abstraction for a simple
tra�c engineering example.

Example: Tra�c Engineering. As shown in Fig-
ure 2, a naive Tra�c Engineering (TE) can be modeled
as four main functions at its simplest: (i) Init that
initializes the flow statistics of a switch. (ii) Query

that periodically queries switches. (iii) Collect that
collects replies to flow queries and populates the time-
series of flow statistics in the S dictionary. (iv) Route
that re-steers tra�c using OpenFlow FlowMod [14]
messages if there is a significant change in the tra�c.
These functions share the dictionary S that stores flow
statistics of each switch as an entry.

These four functions are invoked in response to
asynchronous messages (denoted by on). For ex-
ample, Init is invoked when an OpenFlow driver
emits a SwitchJoined message, Collect upon receiv-
ing StatReplys, and Route every 1 second. To invoke
a function, one explicitly requests all or some entries
in state dictionaries (denoted by with), or invokes the
function for each entry (using foreach).

1 app TrafficEngineering:

2 state:

3 S /* Flow Stats */, T /* Topology */
4 func Init(switch, sEntry):

5 sEntry.set(FlowStat(switch))
6 func Query(switch):

7 emit(FlowStatQuery(switch))
8 func Collect(reply, sEntry):

9 sEntry.Append(All flow stats in reply)
10 func Route(S, T):

// � is a user defined threshold.
11 if Change in S > � then

12 Use T to reroute flows.

13 on SwitchJoined(joined):

14 with S[joined.switch] as entry:

15 Init(joined.switch, entry)

16 on TimeOut(1sec):

17 for each switch in S:

18 Query(switch)

19 on StatReply(reply):

20 with S[reply.switch] as mEntry:

21 Collect(reply, mEntry)

22 on TimeOut(1sec):

23 with S and T:

24 Route(S, T)

// Details on handling switch and link
discovery is omitted for brevity.

Figure 2: This simple Tra�c Engineering appli-

cation stores flow stats and the network topology

respectively in the S and T dictionaries, periodically

collects stats, and accordingly reroutes tra�c.

In our example, to query each switch every second, we
simply invoke Query for each key in S. Upon receiving
the flow statistics of a switch, we invoke Collect using
the single entry representing the tra�c data of that
switch (i.e., S[e.switch]).
In addition to these functions, TE builds its own

view of the network topology whenever a switch joins
the network or when a link is detected by a discovery
application. The topology data is stored in the T

dictionary and is only used as a whole by Route. This
application installs default routes to ensure reachability.

Inter-Dependencies. Application functions can de-
pend on one another in two ways: (i) they can either
exchange messages, or (ii) access a shared state (only
if they belong to the same application). In our TE
example, the functions depend on each other by sharing
S. Init, Collect, Query, and Route depend on
an OpenFlow driver that emits SwitchJoineds and
StatReplys and can process Querys and FlowMods.
Functions of two di↵erent applications communicate

using messages and cannot share state. This is not a
limitation, but a programming paradigm that fosters
scalability (as advocated in Haskell, Erlang, Go, and
Scala). Dependencies based on events result in a better
decoupling of functions, and hence can give the platform
the freedom to optimize the control plane placement.
That said, to support stateful control applications,
functions inside an application can share state.

State & Distributed Applications. We inten-

2

tionally designed this abstraction almost identical to
the usual centralized controllers. Our ultimate goal,
however, is to use this abstraction in transforming
applications to their distributed counterparts. More
specifically, consider a network in which we have multi-
ple physical machines each running a controller of our
distributed control platform. We want to utilize the
resources of all these controllers to run the functions of
our control applications. For example, we want to run
Query and Collect on as many controllers as we can,
hopefully querying a switch on its master controller to
lower latency and to scale.

That process is trivial for stateless applications: we
can merely replicate all functions on all controllers. In
contrast, this process is challenging when we deal with
stateful applications. To realize a valid, distributed
version of a control application, we need to make sure
that all control functions, when distributed on several
controllers, have a consistent view of their state.

In general, to preserve state consistency, we need to
ensure that each key in each application dictionary is
accessed on only one controller (i.e., by only one in-
stance of the control application). For example, suppose
that we have an application A with two functions f1
and f2 that respectively handle messages m1 and m2.
Moreover, assume that, to process m1 and m2, f1 accesses
K1 = {k11 · · · k1n} and f2 accesses K2 = {k21 · · · k2m}. If
K1 \ K2 6= ;, the platform must guarantee that the keys
in K1 [K2 are always accessed by only one instance
of the control application and also m1 and m2 are
processed by the same instance. Otherwise, we will have
an eventually consistent application state at its best
(assuming the application detects and resolves potential
conflicts in its state), or a chaotic, invalid control logic.

In our naive TE example, Query and Collect access
the flow statistics data (i.e., the S dictionary) on a
per switch basis, whereas Route accesses the whole
dictionary. If there was no Route, the flow statistics
dictionary could be distributed among controllers by
assigning the flow statistics of each switch (i.e., an entry
in S) to one controller. In such a setting, Query queries
a switch on one controller and Collect updates the flow
statistics of that switch on the same controller.

Having said that, since Route requires the whole
dictionary, we have to collocate all keys on the same
controller. This essentially means that Route and
any function that shares state with Route would be
e↵ectively centralized. This illustrates that our naive
TE application cannot scale well, or at least, there is
no benefit gained from using a distributed controller
based on the current design. We will later illustrate how
our control platform provides useful feedback to resolve
such a design-level scalability issue by decoupling Route
from other functions. Moreover, once such a design
bottleneck is resolved, our control platform will auto-
matically optimize the placement of control functions.

3. CONTROL PLATFORM
We have designed and implemented Beehive’s control

platform as the runtime environment for the proposed
programming abstraction. This platform is the target
onto which Beehive automatically compiles control
applications. This distributed platform provides two
important functionalities at its core: (i) concurrent
and consistent state access in a distributed fashion,
and (ii) runtime instrumentation and optimization of
distributed applications.

Hives and Cells. In Beehive, a controller is denoted
as a hive that maintains applications’ state in the form
of cells. Each cell is a key-value in a specific state
dictionary: (dict, key, val). For instance, our TE
application (Figure 2) has a cell for the flow statistics
of each switch SWi in the form of (S, SWi, StatSWi).
To preserve consistency, we need to ensure that each

cell is accessed on only one hive. For the TE application,
as an example, there should be only one hive in the
platform that stores the flow statistics of a particular
switch, say SWi. To preserve consistency, only on that
hive, we should invoke Collect and Init for StatReply
and SwitchJoined messages for SWi. In more complex
cases, as discussed in Section 2, we may have several
cells that must be collocated on the same hive. In
our example, due to the subpar design, Route uses
the whole dictionary, which mandates storing all flow
statistic cells on the same hive. In Section 5, we
demonstrate how the platform provides feedbacks to
detect this issue, and how it can be solved by a simple
application redesign.

Bees. For each set of cells that must be collocated,
we create an exclusive light-weight thread of execution,
called a bee. Upon receiving a message, a hive finds the
particular cells required to process that message in a
given application and, consequently, relays the message
to the bee that exclusively owns those cells. A bee, in
response to a message, invokes the respective function
and provides its cells as the application’s state.

Hive on Machine 3
App A App B

Hive on Machine 1

App A

Func 1

Func 2

Map 1

Map 2

Hive on Machine 2

App A App B

MM

M

Messages

Will be processed
by the red Bee
using A’s Func 1.

App B

Func 1
Map 1

M

Figure 3: In Beehive, each hive (i.e., controller)

maintains the application state in the form of cells

(i.e., key-values). Cells that must be collocated are

exclusively owned by one bee. Messages mapped to

the same cell(s) are processed by the same bee.

For example, once it received the SwitchJoined for
switch SWi, the platform relays the message to the

3

bee that exclusively owns cell (S, SWi, StatSWi). Then,
the bee invokes Init for that message. Similarly,
the same bee handles consequent StatReplys for SWi.
This ensures that Collect and Init share the same
consistent view of the state dictionary S and their
behavior is identical to when they are deployed on a
centralized controller, even though they might be phys-
ically distributed over di↵erent controllers (i.e., hives).

Cells owned by a bee are basically the keys that
must be accessed on the same hive. Those cells are
application-defined and can be automatically inferred
from the programming abstraction. To find the cells
required for processing a message, the control platform
automatically generates a Map for each application:
Map(A, M) is a function generated for application A that
maps a message of type M to a set of cells: simply a set of
keys in application dictionaries {(D1, K1), . . . , (Dn, Kn)}.
We call this set, the mapped cells of message M in
application A. This set is application-specific and is
inferred based on the keys in with and foreach clauses
in the programming abstraction.

As shown in Figure 3, to preserve consistency, Bee-
hive guarantees that all messages with intersecting
mapped cells for application A are processed by the
same bee using A’s functions. For instance, consider two
messages that are mapped to {(Switch, 1), (Mac, FF...)}
and {(Switch, 1), (Port, 12)} respectively by a con-
trol application. Since these two messages share the
cell (Switch, 1), the platform guarantees that both
messages are handled by the same bee.

This way, the platform ensures that each part of
the application state is owned by one single thread of
execution on the distributed control plane. In other
words, the platform prevents two di↵erent bees from
modifying or reading the same part of the state.

Life of a Message. On each hive, messages are
either generated upon receiving data over IO channels,
or emitted by a function. Upon receiving a message,
the hive passes the message to the generated Map

functions of all applications that are triggered by that
particular type of message. For each application, using
a distributed locking mechanism (e.g., Chubby [4]), the
hive finds the bee that owns at least one cell in the
application’s mapped cells. If there is such a bee (either
on the local hive or on a remote hive), the message is
accordingly relayed. Otherwise, the local hive creates a
new bee, assigns the cells to it, and relays the message.

Migration of Bees. Beehive provides the functional-
ities to migrate a bee from one hive to another along
with its cells. This is instrumental in fault-tolerance and
optimization. To migrate a bee, Beehive first stops the
bee and bu↵ers all incoming messages. It then moves
the cells to the target hive. Then, a new bee is created
on the remote host to own the migrated cells. At the
end, bu↵ered messages are drained to the new bee.

Runtime Instrumentation. Control functions that
access a minimal state would naturally result in a well-
balanced load on all controllers in the control platform
since such applications handle events in small silos. In
practice, however, control functions depend on each
other in subtle ways. This makes it di�cult for network
programmers to detect and revise design bottlenecks.
Sometimes, even with apt designs, suboptimalities

incur because of changes in the workload. For example,
if a virtual network is migrated to another data center,
the functions controlling that virtual network should
also be moved with it to minimize latency.
There is clearly no e↵ective way to define a concrete

o✏ine method to optimize the control plane placement.
For that reason, we rely on runtime instrumentation of
control applications. This is feasible on our platform
since we have a well-defined abstraction for control
functions, their state, and respective messages.
Our runtime instrumentation system measures the re-

source consumption of each bee along with the number
of messages it exchanges with other bees. For instance,
we measure the number of messages that are exchanged
between an OpenFlow driver accessing the state of a
switch and a virtual networking application accessing
the state of a particular virtual network. This metric
essentially indicates the correlation of each switch to
each virtual network. We also store provenance and
causation data for messages. For example, we store
that packet out messages are emitted by the learning
switch application upon receiving 80% of packet in’s.
We measure runtime metrics on each hive locally,

and periodically aggregate them on a single hive. This
merged instrumentation data is further used to find
the optimal placement of bees and is also utilized for
application analytics. We implemented this mechanism
using the proposed abstraction as a control application.

On Optimal Placement. Finding the optimum
placement of bees is NP-Hard, as the facility location
problem can be reduced to it. In addition to the
computational complexities, there are lots of subtle
performance side-e↵ects in changing the placement of
bees. Thus, to improve the initial placement, we employ
a greedy heuristic aiming at processing messages close
to their source. Suppose we have two hives H1 and H2.
We migrate B1 running on H1 to H2, if the majority of
messages processed by B1 are from bees deployed on H2
and H2 has enough capacity to host the cells of B1. We
note that, using our platform, it is straightforward to
implement other optimization strategies.

Implementation. We have implemented a prototype
of Beehive in Go, which is available on [1]. Boilerplates,
such as serialization/deserialization, queueing, paral-
lelism, synchronization, and distributed locking are all
provided by the platform. We will present a preliminary
evaluation of Beehive in Section 5.

4

4. USE CASES
In this section, we present how important SDN use-

cases are implemented using Beehive. We keep our
discussion brief and high level as we present a complete
example for TE in Section 5.

Centralized Applications. A centralized application
is a composition of functions that require the whole
application state in one physical location. In our
framework, a function is centralized if it accesses the
whole dictionaries to handle messages. As discussed
earlier in Section 3, for such a function, Beehive
guarantees that the whole state, i.e., all cells of that
application, are assigned to one bee. It is important
to note that, since applications do not share state, the
platform may place di↵erent centralized applications on
di↵erent hives to satisfy extensive resource requirements
(e.g., a large state).

Kandoo. At the other end of the spectrum, there are
local control applications proposed in Kandoo [7] that
use the local state of a single switch to process frequent
events. The functions of a local control application use
switch IDs as the keys in their state dictionaries and, to
handle messages, access their state using a single key.
As such, Beehive conceives a cell for each switch and
allocates one bee for each cell. In practice, this results
in local functions being replicated on all controllers to
handle switches local to that controller.

An important advantage of Beehive, over Kandoo,
is that it automatically pushes control functions as
close as possible to the source of messages they process
(e.g., switches for local applications). In such a setting,
network programmers do not deliberately design for a
specific placement. Instead, the platform automatically
optimizes the placement of local applications. This
is in contrast to proposals like Kandoo where the
developer has to decide on function placement (e.g.,
local controllers close to switches).

ONIX’s NIB [11]. NIB is basically an abstract
graph that represents networking elements and their
interlinking. To process a message in a NIB manager,
we only need the state of a particular node. As such,
each node would be equivalent to a cell managed by
a single bee in Beehive. With that, all queries (e.g.,
flows of a switch) and update messages (e.g., adding
an outgoing link) on a particular node in NIB will be
handled by the node’s bee in the platform.

Network Virtualization. Typically, network virtu-
alization applications (such as NVP[10]) process mes-
sages of each virtual network independently. Such
applications can be modeled as a set of functions
that, to process messages, access the state using a
virtual network identifier as the key. This is basically
sharding messages based on virtual networks, with
minimal shared state in between the shards. Each

shard basically forms a set of collocated cells in Beehive
and the platform guarantees that messages of the same
virtual network are handled by the same bee.

Routing. A distributed routing application can be
easily defined in Beehive by storing the RIBs on a
prefix basis or based on source and/or destination. This
results in fine-grain cells that can be automatically
placed throughout the platform to scale. Furthermore,
approaches such as Portland [16] and Seattle [9] can be
easily implemented in a distributed fashion.

5. EVALUATION
We have implemented several applications including

routing, network virtualization, and Kandoo using our
prototype. In this section, for the sake of space, we
use our TE example to evaluate Beehive. We have
simulated a cluster of 40 controllers and 400 switches in
a simple tree topology. We initiate 100 fixed-rate flows
from each switch, and instrument the TE application.
Here, 10% of these flows have a rate more than a user-
defined re-routing threshold (i.e., � in Figure 2).

Naive TE. Instrumenting the TE implementation in
Figure 2, Beehive provides the network programmer
with feedbacks on how the application functions behave
as a distributed system. For example, the platform
provides the number of messages exchanged between
bees (as summarized in Figure 4a) and their bandwidth
consumption (depicted in Figure 4d).
From this analytical data, one can easily observe that

most messages are sent to/from the bees on only one
hive. The detailed instrumentation data (not shown
here) also indicate that Collect and Query are always
invoked by the same bee because of sharing cells with
Route. Accordingly, control channel consumption is
relatively high considering the size of the simulated
network. This shows that our design is e↵ectively
centralized on only one bee, and cannot scale well due
to the strong coupling among its functions.
We have two alternatives to address this issue: (i) We

can redesign Route to use a small portion of the state for
re-routing, or (ii) we can decouple Route from Collect

and Query by eliminating the shared state. Here, we
discuss the latter as it is simpler to explain.

Decoupling Functions. To decouple TE functions,
the programmer needs to create a separate dictionary
for Route, and send aggregated events from Collect to
notify Route about flow stat updates. That is, Collect
sends updates to Route when the flow’s bandwidth
consumption passes a threshold. This simply eliminates
the need to collocate Collect/Query with Route.
Instrumenting the new design, the network program-

mer observes that most messages are now processed
locally (the diagonal line in Figure 4b) but we still have
occasional communications to/from the hive that hap-
pens to host the centralized bee for Route (the cross in

5

Hives (1−40)

H
ive

s
(1
−4

0)

(a)

Hives (1−40)

H
ive

s
(1
−4

0)

(b)

Hives (1−40)

H
ive

s
(1
−4

0)

(c)

0
40

0
10

00
BW

 (K
B/

s)

(d)

0
40

0
10

00
BW

 (K
B/

s)

(e)

0
40

0
10

00
BW

 (K
B/

s)

(f)

Figure 4: Inter-hive tra�c matrix and control

channel bandwidth consumption of TE when the

functions are centralized (a & d), when decoupled

(b & e), and when optimized at runtime (c & f).

Figure 4b). Accordingly, as shown in Figure 4e, control
channel consumption is significantly improved.

Optimization. To demonstrate how Beehive can
dynamically optimize the control plane, we artificially
assign the cells of all switches to the bees on the first
hive. Once our runtime instrumentation collects enough
data about the futile communications over the control
channels, it starts to migrate the bees invoking Collect
and Query to hives directly connected to each switch.
In particular, it migrates the cell (S, SWi, StatSWi) next
to the OpenFlow driver that controls SWi.

As shown in Figure 4c and Figure 4f, this live
migration of control plane functions localizes message
processing and results in considerable improvement in
control channel consumption. The largest spike in Fig-
ure 4f correlates to replicating cells to the other hives.
Note that this is all done automatically at runtime
with no manual intervention and, after optimization,
application’s behavior is identical to Figures 4e and 4b.

6. DISCUSSION
How does Beehive compare with existing pro-
posals? Existing distributed controllers focus on
tools for distributed programming (e.g., an eventually
consistent network graph in ONIX [11]) or balancing the
dataplane load among controllers [6]. The focus of these
proposals is mostly scalability, and simplified network
programming is not necessarily an objective there.
Moreover, there are domain specific language proposals
(e.g., bloom [2]) to simplify distributed programming.
Although vaguely similar in goals, Beehive focuses
on familiar programming constructs with a simple
abstraction for storing the application state.

Do applications interplay well in Beehive? In a
large-scale network, the control plane is an ensemble
of control applications managing the network as a
cohesive whole. For the most part, these applications
have interdependencies. No matter how scalable an
application is on its own, heedless dependency on
a poorly designed application may result in subpar

performance. For instance, a local application that
depends on messages from a centralized application
might not scale well. Beehive cannot automatically fix
a poor design, but provides analytics to highlight the
design bottlenecks of control applications, thus helping
the developers identify and resolve design issues.
Moreover, as shown in STN [5] and Corybantic [15],

there can be conflicts in the decisions made by di↵erent
control applications. Although we do not propose a
solution for that issue, these proposals can be easily
adopted in Beehive. For example, one can implement
the Corybantic Coordinator as a Beehive application
and implement control modules as applications that ex-
change objective messages. With Beehive’s automatic
optimization, control modules can easily be distributed
on the platform to utilize available resources.

Can’t we simply use a distributed database?
Recent distributed control platforms delegate the com-
plexity of managing the state to an external system
(e.g., Cassandra [12] and RamCloud [17] in ONOS [3])
which leads into a simpler control platform. Delegating
such an important responsibility, however, has three
drawbacks. First, it is not straightforward to reason
about the control plane’s latency since the platform has
no control over the physical placement of the network
state. Second, communicating with an external system
incurs communication overheads both on controllers
and on control channels (note that the external datas-
tore is deployed in the control plane). Third, using an
external store, network administrators need to manage
two separate systems which hinders manageability.

7. CONCLUSION
In this paper, we have presented a framework that

simplifies the design and implementation process of
distributed control applications in SDN. Using a simple
programming abstraction, we infer shared state be-
tween application functions, and automatically compile
applications into their distributed counterparts. By
instrumenting applications at runtime, we optimize the
placement of functions, and provide feedback to the
developer helping with the design process.
We have demonstrated that our abstraction is able

to model existing distributed control planes. More-
over, our evaluations confirm that this approach can
be e↵ective in designing scalable control applications.
Moving forwards, we are enforcing the foundations of
our framework specially for fault-tolerance and smarter
optimization strategies, and we are applying this frame-
work for other control logics including routing.

8. ACKNOWLEDGEMENTS
We would like to thank Adam Zarek and our anony-

mous reviewers for their insight and helpful comments.
This work was partially funded by the NSERC SAVI
strategic network.

6

9. REFERENCES
[1] Beehive Control Platform.

http://github.com/kandoo/beehive.
[2] P. Alvaro, N. Conway, J. Hellerstein, and W. R.

Marczak. Consistency analysis in bloom: a calm
and collected approach. In CIDR, pages 249–260,
2011.

[3] P. Berde, M. Gerola, J. Hart, Y. Higuchi,
M. Kobayashi, T. Koide, B. Lantz, B. O’Connor,
P. Radoslavov, W. Snow, and G. Parulkar.
ONOS: Towards an Open, Distributed SDN OS.
In Proceedings of HotSDN ’14, pages 1–6, 2014.

[4] M. Burrows. The Chubby Lock Service for
Loosely-coupled Distributed Systems. In
Proceedings of OSDI’06, pages 335–350, 2006.

[5] M. Canini, P. Kuznetsov, D. Levin, and
S. Schmid. Software Transactional Networking:
Concurrent and Consistent Policy Composition.
In Proceedings of HotSDN’13, pages 1–6, 2013.

[6] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman,
and R. Kompella. Towards an elastic distributed
sdn controller. In Proceedings of HotSDN’13,
pages 7–12, 2013.

[7] S. Hassas Yeganeh and Y. Ganjali. Kandoo: A
framework for e�cient and scalable o✏oading of
control applications. In Proceedings of
HotSDN’12, pages 19–24, 2012.

[8] B. Heller, R. Sherwood, and N. McKeown. The
controller placement problem. In Proceedings of
HotSDN’12, pages 7–12, 2012.

[9] C. Kim, M. Caesar, and J. Rexford. Floodless in
seattle: A scalable ethernet architecture for large
enterprises. In Proceedings of the SIGCOMM’08,
pages 3–14, 2008.

[10] T. Koponen, K. Amidon, P. Balland, M. Casado,
A. Chanda, B. Fulton, I. Ganichev, J. Gross,
N. Gude, P. Ingram, E. Jackson, A. Lambeth,
R. Lenglet, S.-H. Li, A. Padmanabhan, J. Pettit,
B. Pfa↵, R. Ramanathan, S. Shenker, A. Shieh,

J. Stribling, P. Thakkar, D. Wendlandt, A. Yip,
and R. Zhang. Network virtualization in
multi-tenant datacenters. In Proceedings of
NSDI’14, pages 203–216, 2014.

[11] T. Koponen, M. Casado, N. Gude, J. Stribling,
L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata,
H. Inoue, T. Hama, and S. Shenker. Onix: a
distributed control platform for large-scale
production networks. In Proceedings of OSDI’10,
pages 1–6, 2010.

[12] A. Lakshman and P. Malik. Cassandra: A
decentralized structured storage system. SIGOPS
Oper. Syst. Rev., 44(2):35–40, Apr. 2010.

[13] J. McCauley, A. Panda, M. Casado, T. Koponen,
and S. Shenker. Extending SDN to Large-Scale
Networks. In Open Networking Summit, 2013.

[14] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner. Openflow: Enabling innovation in
campus networks. SIGCOMM CCR, 38(2):69–74,
Mar. 2008.

[15] J. C. Mogul, A. AuYoung, S. Banerjee, L. Popa,
J. Lee, J. Mudigonda, P. Sharma, and Y. Turner.
Corybantic: Towards the modular composition of
sdn control programs. In Proceedings of
HotNets-XII, pages 1:1–1:7, 2013.

[16] R. Niranjan Mysore, A. Pamboris, N. Farrington,
N. Huang, P. Miri, S. Radhakrishnan,
V. Subramanya, and A. Vahdat. Portland: A
scalable fault-tolerant layer 2 data center network
fabric. In Proceedings of SIGCOMM’09, pages
39–50, 2009.

[17] J. Ousterhout, P. Agrawal, D. Erickson,
C. Kozyrakis, J. Leverich, D. Mazières, S. Mitra,
A. Narayanan, D. Ongaro, G. Parulkar,
M. Rosenblum, S. M. Rumble, E. Stratmann, and
R. Stutsman. The case for ramcloud. Commun.
ACM, 54(7):121–130, July 2011.

7

