
1

© Steve Easterbrook, 2002 1

University of Toronto Department of Computer Science

Requirements Engineering:
finding out what customers really need

Prof. Steve Easterbrook

Dept of Computer Science
University of Toronto

sme@cs.toronto.edu

2

University of Toronto Department of Computer Science

© Steve Easterbrook, 2002

Outline
➜ Case Study: Mars Polar Lander

➜ Basics of Requirements Engineering
�more than just modeling!
� roadmap of current research

➜ Where do requirements come from?

➜ How are requirements communicated?

➜ How do requirements evolve?

➜ Further Reading

2

3

University of Toronto Department of Computer Science

© Steve Easterbrook, 2002

Mars Polar Lander
➜ Launched

� 3 Jan 1999

➜ Mission
� Land near South Pole
� Dig for water ice with a robotic

arm

➜ Fate:
� Arrived 3 Dec 1999
� No signal received after initial

phase of descent

➜ Cause:
� Several candidate causes
� Most likely is premature engine

shutdown due to noise on leg
sensors

4

University of Toronto Department of Computer Science

© Steve Easterbrook, 2002

What happened?
➜ Investigation hampered by

lack of data
� spacecraft not designed to send

telemetry during descent
� This decision severely criticized by

review boards

➜ Possible causes:
� Lander failed to separate from cruise

stage (plausible but unlikely)
� Landing site was too steep (plausible)
� Heatshield failed (plausible)
� Loss of control due to dynamic

effects (plausible)
� Loss of control due to center-of-

mass shift (plausible)
� Premature Shutdown of Descent

Engines (most likely!)
� Parachute drapes over lander

(plausible)
� Backshell hits lander (plausible but

unlikely)

3

5

University of Toronto Department of Computer Science

© Steve Easterbrook, 2002

Premature Shutdown Scenario
➜ Cause of error

� Magnetic sensor on each leg senses touchdown
� Legs unfold at 1500m above surface

� transient signals on touchdown sensors during unfolding
� software accepts touchdown signals if they persist for 2 timeframes
� transient signals likely to be this long on at least one leg

➜ Factors
� System requirement to ignore the transient signals

� But the software requirements did not describe the effect
� s/w designers didn’t understand the effect, so didn’t include the requirement

� Engineers present at code inspection didn’t understand the effect
� Not caught in testing because:

� Unit testing didn’t include the transients (based on S/W reqts)
� Sensors improperly wired during integration tests (no touchdown detected!)
� Full test not repeated after re-wiring

➜ Result of error
� Engines shut down before spacecraft has landed

� When engine shutdown s/w enabled, flags indicated touchdown already occurred
� estimated at 40m above surface, travelling at 13 m/s
� estimated impact velocity 22m/s (spacecraft would not survive this)
� (c.f. nominal touchdown velocity 2.4m/s)

6

University of Toronto Department of Computer Science

© Steve Easterbrook, 2002

FLIGHT SOFTWARE REQUIREMENTS
3.7.2.2.4.2 Processing

a. The lander flight software shall cyclically check the

state of each of the three touchdown sensors (one pe

at 100 Hz during EDL.

b. The lander flight software shall be able to cyclically

check the touchdown event state with or without

touchdown event generation enabled.

c. Upon enabling touchdown event generation, the land

 flight software shall attempt to detect failed sensors

marking the sensor as bad when the sensor indicates

“ touchdown state” on two consecutive reads.

d. The lander flight software shall generate the landing

 event based on two consecutive reads indicating

touchdown from any one of the“good” touchdown

sensors.

.

SYSTEM REQUIREMENTS

1) The touchdown sensors shall be sampled at 100-Hz rate.

The sampling process shall be initiated prior to lander entry

to keep processor demand constant.

However, the use of the touchdown sensor data shall not

begin until 12 meters above the surface.

2) Each of the 3 touchdown sensors shall be tested

automatically and independently prior to use of the

touchdown sensor data in the onboard logic.

The test shall consist of two (2) sequential sensor readings

showing the expected sensor status.

If a sensor appears failed, it shall not be considered in the

descent engine termination decision.

3) Touchdown determination shall be based on two

sequential reads of a single sensor indicating touchdown.

Figure 7-9. MPL System Requirements Mapping to Flight Software Requirements

X

Adapted from the “Report of the Loss of the Mars Polar Lander
and Deep Space 2 Missions -- JPL Special Review Board (Casani Report) - March 2000”.

See http://www.nasa.gov/newsinfo/marsreports.html

4

7

University of Toronto Department of Computer Science

© Steve Easterbrook, 2002

Requirements Engineering
➜ A definition of RE:

� “RE is concerned with identifying the purpose of a software system…
� “…and the contexts in which it will be used.
� “Hence, RE acts as the bridge between:

� “the real world needs of users, customers, and other constituencies affected by
a software system…

� “…and the capabilities and opportunities afforded by software-intensive
technologies.”

[RE’01 call for papers
see www.re01.org]

➜ But what is a requirement?
� “A condition or capability that must be met or possessed by a system or

system component to satisfy a contract, standard, specification, or other
formally imposed document…

� “…The set of all requirements forms the basis for subsequent development
of the system or system component”.

[IEEE Std]

8

University of Toronto Department of Computer Science

© Steve Easterbrook, 2002

Traditional RE focuses on modelling

Structured analysis Behavioural analysis

Object models

5

9

University of Toronto Department of Computer Science

© Steve Easterbrook, 2002

But “modelling” is not enough
➜ S/W modelling is a technical activity…

� preciseness
� completeness
� consistency

➜ …but RE is a social activity…

➜ …and all models are approximations:

�models of the social world are inherently subjective
� and we have little scope for empirical validation

Lkjoijasd
eprojp
aer
eokpoaipoekrg
aergokp

Rteaertcv
aertav
aergWEAR
aerg
ergaergaergaer

Rteaertcv
aertav
aergWEAR
aerg
ergaergaergaer

Rerewe
wewrtw
wrtsds
ewtwreeqw
erweqwrq

The
World

Shared
properties

Properties of the model
(but not the world)

Properties of the world
(but not the model)

The
Model

10

University of Toronto Department of Computer Science

© Steve Easterbrook, 2002

Example: which is the better model?
ATM Model A

User ATM Bank

Insert Card
Prompt for PIN#

Type PIN#
Req Validation

Display Menu
Confirm Valid

Request Cash

Prompt for amount

Enter amount
Sufficient funds?
Confirm funds

Dispense Cash

Display Menu

End Transaction

Withdraw funds

Return Card

ATM Model B

User ATM Bank

Insert Card
Prompt for PIN#

Type PIN#
Req Validation

Display Menu
Confirm Valid

Request Cash

Prompt for amount

Enter amount
Sufficient funds?

Confirm funds

Dispense Cash

Another Trans?
Decline

Withdraw fundsReturn Card
Print Receipt

Print Receipt

6

11

University of Toronto Department of Computer Science

© Steve Easterbrook, 2002

RE: A Roadmap
How do we gather requirements
information?
� Identify:

� boundaries, stakeholders, views, goals,
scenarios

�Techniques:
� Interviews/questionnaires/focus groups for

large user bases
� Ethnographic techniques for socially-

embedded systems
� Prototyping and participatory design for

poorly understood systems

How do we analyze this
information?
� Can’t escape some modelling…

How do we get agreement about
the requirements?
� Validate models by making

observations of the world
� Support negotiation where there are

divergent views/goals

How do we communicate the
requirements?
� Careful mix of natural and formal

languages
� formal languages are precise and
unambiguous
� natural languages are more readable

� Traceability: forward and backward

How do we keep the
requirements up to date?
� Manage change as the real world

needs change
� Manage variations across product

families

12

University of Toronto Department of Computer Science

© Steve Easterbrook, 2002

Requirements Elicitation
➜ Starting point

� Some notion that there is a “problem” that needs solving
� e.g. dissatisfaction with the current state of affairs
� e.g. a new business opportunity
� e.g. a potential saving of cost, time, resource usage, etc.

� A Requirements Engineer is an agent of change

➜ The requirements engineer must:
� identify the “problem”/”opportunity”

� Which problem needs to be solved? (identify problem Boundaries)
� Where is the problem? (understand the Context/Problem Domain)
� Whose problem is it? (identify Stakeholders)
� Why does it need solving? (identify the stakeholders’ Goals)
� How might a software system help? (collect some Scenarios)
� When does it need solving? (identify Development Constraints)
� What might prevent us solving it? (identify Feasibility and Risk)

� elicit enough knowledge
� ...sufficient to analyze requirements for validity, consistency,

completeness, etc.
� i.e. become an expert in the problem domain

� although ignorance is important too [Berry]

7

13

University of Toronto Department of Computer Science

© Steve Easterbrook, 2002

Difficulties of Elicitation
➜ Thin spread of domain knowledge

� The knowledge might be distributed across many sources
� It is rarely available in an explicit form (I.e. not written down)

� There will be conflicts between knowledge from different sources
� People have conflicting goals
� People have different understandings of the problem

➜ Tacit knowledge (The “say-do” problem)
� People find it hard to describe knowledge they regularly use

� Descriptions may be inaccurate rationalizations of expert behaviour

➜ Limited Observability
� The problem owners might be too busy solving it using the existing system
� Presence of an observer may change the problem

� E.g. the Probe Effect and the Hawthorne Effect

➜ Bias
� People may not be free to tell you what you need to know

� Political climate & organisational factors matter
� People may not want to tell you what you need to know

� The outcome will affect them, so they may try to influence you (hidden agendas)

14

University of Toronto Department of Computer Science

© Steve Easterbrook, 2002

Elicitation Techniques
➜ Traditional Approaches

� Introspection
� Existing Documents
� Data Analysis
� Interviews

�Open-ended
�Structured

� Surveys / Questionnaires
� Group elicitation

�Focus Groups
�Brainstorming
�JAD/RAD workshops

� Prototyping

➜ Representation-based
approaches
� Goal-based
� Scenario-Based
� Use Cases

➜ Contextual (social)
approaches
� Ethnographic techniques

�Participant Observation
�Enthnomethodology

� Discourse Analysis
�Conversation Analysis
�Speech Act Analysis

� Participatory Design
� Sociotechnical Methods

�Soft Systems Analysis

➜ Cognitive approaches
� Task analysis
� Protocol analysis
� Knowledge Acquisition Techniques

�Card Sorting
�Laddering
�Repertory Grids
�Proximity Scaling Techniques

8

15

University of Toronto Department of Computer Science

© Steve Easterbrook, 2002

Software Requirements Specification

➜ Purpose
� Communicates an understanding of

the requirements
�explains both the application domain
and the system to be developed

� Contractual
�May be legally binding!
�Expresses an agreement and a
commitment

� Baseline for evaluating subsequent
products

�supports system testing, verification
and validation activities
�should contain enough information to
verify whether the delivered system
meets requirements

� Baseline for change control
�requirements change, software evolves

➜ Audience
� Users, Purchasers

�Most interested in system requirements
�Not generally interested in detailed
software requirements

� Systems Analysts, Requirements
Analysts

�Write various specifications that inter-
relate

� Developers, Programmers
�Have to implement the requirements

� Testers
�Determine that the requirements have
been met

� Project Managers
�Measure and control the analysis and
development processes

➜ How do we communicate the Requirements to others?
� It is common practice to capture them in an SRS

� But an SRS doesn’t need to be a single paper document...

16

University of Toronto Department of Computer Science

© Steve Easterbrook, 2002

Desiderata for Specifications
➜ Valid (or “correct”)

� Expresses actual requirements

➜ Complete
� Specifies all the things the system

must do
� ...and all the things it must not do!
� Conceptual Completeness

� E.g. responses to all classes of input

� Structural Completeness
� E.g. no TBDs!!!

➜ Consistent
� Doesn’t contradict itself

� I.e. is satisfiable

� Uses all terms consistently
� Note: inconsistency can be hard to

detect
� especially in timing aspects and

condition logic
� Formal modeling can help

➜ Necessary
� Doesn’t contain anything that isn’t

“required”

➜ Unambiguous
� Every statement can be read in

exactly one way
� Clearly defines confusing terms

� E.g. in a glossary

➜ Verifiable
� A process exists to test satisfaction

of each requirement
� “every requirement is specified

behaviorally”

➜ Understandable (Clear)
� E.g. by non-computer specialists

➜ Modifiable
� It must be kept up to date!

Source: Adapted from Blum 1992, pp164-5 and the IEEE-STD-830-1993

9

17

University of Toronto Department of Computer Science

© Steve Easterbrook, 2002

Typical mistakes
�Noise

� the presence of text that carries no
relevant information to any feature of the
problem.

� Silence
� a feature that is not covered by any text.

�Over-specification
� text that describes a feature of the

solution, rather than the problem.

� Contradiction
� text that defines a single feature in a

number of incompatible ways.

� Ambiguity
� text that can be interpreted in at least

two different ways.

� Forward reference
� text that refers to a feature yet to be

defined.

�Wishful thinking
� text that defines a feature that cannot

possibly be validated.

� Jigsaw puzzles
� e.g. distributing requirements across

a document and then cross-
referencing

� Duckspeak requirements
�Requirements that are only there to

conform to standards

� Unnecessary invention of terminology
�E.g., ‘the user input presentation

function’, ‘airplane reservation data
validation function’

� Inconsistent terminology
� Inventing and then changing

terminology

� Putting the onus on the development
staff
�i.e. making the reader work hard
to decipher the intent

�Writing for the hostile reader
�There are fewer of these than

friendly readers

Source: Adapted from Kovitz, 1999

18

University of Toronto Department of Computer Science

© Steve Easterbrook, 2002

Traceability Tools
➜ Approaches:

� hypertext linking
� hotwords are identified manually, tool

records them

� unique identifiers
� each requirement gets a unique id;

database contains cross references

� syntactic similarity coefficients
� searches for occurrence of patterns of

words

➜ Limitations
� All require a great deal of manual

effort to define the links
� All rely on purely syntactic

information, with no semantics or
context

➜ Examples
� single phase tools:

�TeamWork (Cadre) for structured
analysis

� database tools, with queries and
report generation

�RTM (Marconi)
�SLATE (TD Technologies)
�DOORS (Zycad Corp)

� hypertext-based tools
�Document Director
�Any web browser

� general development tools that
provide traceability

�RDD-100 (Ascent Logic) - documents
system conceptual models
�Foresight - maintains data dictionary
and document management

Source: Adapted from Palmer, 1996, p372

10

19

University of Toronto Department of Computer Science

© Steve Easterbrook, 2002

Limitations of Current Tools
➜ Informational Problems

� Tools fail to track useful traceability information
� e.g cannot answer queries such as “who is responsible for this piece of

information?”

� inadequate pre-requirements traceability
� “where did this requirement come from?”

➜ Lack of agreement…
� …over the quantity and type of information to trace

➜ Informal Communication
� People attach great importance to personal contact and informal

communication
� These always supplement what is recorded in a traceability database

� But then the traceability database only tells part of the story!
� Even so, finding the appropriate people is a significant problem

Source: Adapted from Gotel & Finkelstein, 1993, p100

20

University of Toronto Department of Computer Science

© Steve Easterbrook, 2002

Laws of Program Evolution
➜ Continuing Change

� Any software that reflects some external reality undergoes continual change
or becomes progressively less useful

� The change process continues until it is judged more cost effective to replace the
system entirely

➜ Increasing Complexity
� As software evolves, its complexity increases…

� …unless steps are taken to control it.

➜ Fundamental Law of Program Evolution
� Software evolution is self-regulating with statistically determinable trends

and invariants

➜ Conservation of Organizational Stability
� During the active life of a software system, the work output of a

development project is roughly constant (regardless of resources!)

➜ Conservation of Familiarity
� During the active life of a program the amount of change in successive

releases is roughly constant

Source: Adapted from Lehman 1980, pp1061-1063

11

21

University of Toronto Department of Computer Science

© Steve Easterbrook, 2002

Requirements Growth
➜Davis’s model:

�User needs evolve continuously
�Represent this as a graph

showing growth of needs over
time

�May not be linear or continuous
(hence no scale shown)

�Traditional development always
lags behind needs growth
� first release implements only

part of the original requirements
� functional enhancement adds new

functionality
� eventually, further enhancement

becomes too costly, and a
replacement is planned

� the replacement also only
implements part of its
requirements,

� and so on...

Time
Fu

nc
ti

on
al

it
y

User needs

ide
nti

fy
req

uir
em

en
ts

fir
st

rel
ea

se

en
ha

nce
men

t p
ha

se

fre
ez

e a
nd

 re
pla

ce

rep
lac

em
en

t d
eli

ver
ed

en
ha

nce
men

t p
ha

se

conventional
development

Lateness

Shortfall

Inappropriateness

Longevity

Adaptability

(shaded area)

(slope of line)

Source: Adapted from Davis 1988, pp1453-1455

22

University of Toronto Department of Computer Science

© Steve Easterbrook, 2002

Summary
➜ Requirements Engineering is hard

� Junction of technical, social, and organisational worlds
� RE is about change, and change is politically sensitive
� And getting it wrong is expensive!

➜ Current challenges for RE
� Elicitation is a socially-embedded problem
� Communication is more than writing a specification
� Coping with change is a huge problem
� Requirements Engineering have to live with inconsistency

12

23

University of Toronto Department of Computer Science

© Steve Easterbrook, 2002

Further Reading
B. A. Nuseibeh and S. M. Easterbrook, "Requirements

Engineering: A Roadmap",
In A. C. W. Finkelstein (ed) “The Future of Software Engineering“ ACM Press
http://www.cs.toronto.edu/~sme/papers/2000/ICSE2000.pdf

Book reviews at:
http://easyweb.easynet.co.uk/~iany/reviews/reviews.htm

Michael Jackson “Software Requirements & Specifications,
a lexicon of practice, principles and prejudices”.
Addison-Wesley, 1995

Benjamin L. Kovitz “Practical Software Requirements
A Manual of Content & Style”. Manning, 1999

