
1

1

Do Over or Make Do?
Climate Models as a

Software Development Challenge

Steve Easterbrook
Dept of Computer Science,

University of Toronto
http://www.easterbrook.ca/steve

My background is in software engineering, having spent the last 20
years investigating software processes in aerospace, commercial, and
scientific software development. I’m especially interested in issues of
team coordination and communication, and how these impact software
quality.



2

2

UK Met Office Hadley Centre 
(UKMO)

Max-Planck Institut für
Meteorologie (MPI-M)

National Center for 
Atmospheric Research (NCAR)

Institut Pierre-Simon Laplace
(IPSL)

I’ve spent much of the past year completing a comparative study of
software development practices at four major modeling centres. My
study at the UKMO was conducted in 2008, and I published a
preliminary paper describing my observations in the journal Computing
in Science and Engineering. I visited the other three centres for a month
each this year, and am still analyzing the data I collected, so most of
what I say today should be taken as very preliminary results. My
research methods are akin to anthropological studies: I examine the
culture, practices, and tools of modeling teams from the point of view of
an outsider, trying to make sense of why things are done in a particular
way. Which means I’m especially interested in ways of comparing and
contrasting climate modeling with other types of software engineering
that I’ve studied.



3

3

Overview
Scientific Quality ≠  Software Quality
In the current generation of Earth System Models,

scientific quality has always trumped software quality
…largely because of how theyʼre built

Does this matter?
Yes: It hampers ability to deal with scale and complexity

Choices:
Make Do - work with existing models, iteratively refine them
Do Over - rebuild the models from the ground up
or…?

(Some insights from Agile Software Practices)

Conclusion:
There are few (if any) ready-made solutions from software engineering
Instead, the community will have to build its own reflective praxis

Here’s what I want to say this afternoon. I want to make the point that
climate models are primarily judged on scientific quality rather than
software quality, and that this emphasis is entrenched in the
exploratory, iterative process by which they are developed (over a very
long period). This produces models that are getting steadily better from
a scientific point of view, but steadily worse from a software quality
point of view. This might not matter, except that the models have grown
dramatically in size and complexity over the past decade. Software
qualities that have been neglected (e.g. understandability, usability,
portability), now hamper the ability to develop the models further.
So, we could pose the question: is it time to re-build the models from
the ground up using stronger software engineering principles? I’ll try
and answer this question with a quick look at issues of modularity and
coupling in the current generation of earth system models. I’ll argue that
a “do over” is too risky, too expensive, and probably infeasible due to a
lack of available expertise. So if we’re stuck with the “make do”
approach, what can we do? I’ll argue that we can learn a lot from agile
software development practices, which emphasize people and tools
rather than processes and documentation. But I conclude that the
challenge of developing climate models has a number of unique
constraints that means other software engineering practices don’t
readily apply. So the community will have to develop it’s own set of
practices, building on what has been done already. And iterative
improvement is not only okay, it’s probably the only thing we can do.



4

4

Functionality
Suitability

Reliability

Usability

Accuracy

Fault Tolerance

Recoverability

Learnability

Operability

Attractiveness

Interoperability

Security

Maturity

Understandability

Efficiency

Maintainability

Portability

Time behaviour

Resource Utilization

Analyzability

Changeability

Stability

Testability

Adaptability

Installability

Co-existance

Replaceability

ISO/IEC 9126 Software Quality Factors

?

First, that point about software quality. Although we can broadly
categorize quality as “fitness for purpose”, it’s useful to break it down
into a number of factors, each of which might matter more or less for
different kinds of software.
For climate models, I would argue that suitability (for the scientific
questions being asked) and accuracy (in terms of model skill) have
been the driving issues, and of course, processing speed (efficiency)
has been vital.
Portability (especially installability) has been important at some centres,
particularly those which do not have their own dedicated
supercomputing facilities, and hence have been forced to make the
model run on different platforms.
But the models are doing badly on most aspects of usability and
maintainability - they’re not designed to be particularly usable or
maintainable, because there’s only a limited pool of people available to
do model development, and they’re too busy keeping up with the
science to worry about designing for maintainability or designing for
usability.



5

5

Model Improvements

- average I2 across the model group

- I2 of multi-model mean

Source: Reichler and Kim, BAMS 2008; 89: 303-311

The emphasis on getting the science right first is clearly paying off - e.g.
this analysis from Reichler and Kim shows a steady improvement in
model skill over the various model generations. Here, model skill Is
measured as an aggregate score in accurately reproducing observed
climate variables.



6

6

Taylor Diagrams

A2

And the community has evolved some sophisticated ways of visualizing how
well the models reproduce both the mean and the variability seen in
observational data.



7

7© Crown Copyright

And the focus on model skill is embedded in the everyday model development
practices. A typical approach is to make a small, experimental change to the
model which is expected to produce some improvement in skill in some
specific earth system processes. The change is then compared to the old
version, using observational data to assess whether the expected
improvement was achieved.
Some changes are aimed not at improving skill, but at improving the
theoretical basis for the model (sometimes at the cost of skill); but these
changes are still assessed in the same way - the overall impact on model skill
is carefully assessed and compared to expectations.



8

8

Key Success Factors

Highly tailored software development process
(software development is “doing science”)

Basic practices: version control, automated test, …
Software developers are domain experts
Staff continuity + “ask the expert”

Shared ownership and commitment to quality
Unconstrained (but regular) Release Schedule

Benchmarking (e.g MIPS & ensembles)

Openness (“Many eyes” validation)

Source: Easterbrook & Johns  “Engineering the Software for Understanding Climate Change.” 
Computing in Science and Engineering. 2009;11:65-74.

So, in my preliminary studies identified a number of factors that drive the
success in creating the current generation of models and ensuring they are
scientifically valid, with steadily improving skill.

Most importantly, the people developing the software are the experts - the
scientists themselves - and there’s good continuity (most of the modelers
work with the same model for many years) and recognition of expertise (if
you want to know something about a specific part of the model, you go talk
to the expert for that part).

It also helps that the models are developed primarily for internal use -
scientists are both developers and users - so there’s no problems of
misunderstanding the expectation of customers, nor any pressure from
customers to release new versions on some predefined schedule.



9

9

Continuous Validation

Prior Knowledge
(e.g. previous models)

Observe
(what is wrong with
the current model?)

Hypothesize
(describe/explain the
observed problems)

Design
(create a model 

improvement)

Experiment
(Compare old vs. 
new model skill)

Existing Theories

Interpret results of 
model runs

Create/refine
a better theory

Design experiments to
test the new theory

Carry out the
experiments

In effect, this means the model development process matches the
process of scientific discovery. Each small change to the model
represents a scientific hypothesis, driven by an observation that there’s
an area of weakness in the model, and a hypothesis about how to
improve it; this is then followed by experiments to check that the
hypothesis was correct, that the change did give the expected
improvement (and didn’t break anything else). And the cycle applies to
remarkably small changes - often just a few lines of code. Which makes
model development slow and painstaking compared to commercial
software development (especially when you factor in the days of weeks
of waiting for runs to complete). But it means there’s a strong culture of
what I might term “continuous validation” amongst the modeling
community, and this experimentation process means that the the (core)
community come to understand the models in great detail.
(A downside is that people outside the core modeling team don’t get
this understanding, and for them, them model becomes more opaque
as it develops).



10

10

Does it Scale?

So this strategy has been very successful over the past couple of
decades. But most labs now recognize they’re facing new challenges
as the models grow in size and complexity. Will the current approach
scale to more complex earth system models?



11

11

UKMO Unified Model Code Growth

Here are some indicators of that growth. This chart shows the growth of the
UKMO Unified Model over the last fifteen years in terms of lines of code. The
green line at the top is lines of code, while the blue line is number of files
(roughly, Fortran Modules). Over a fifteen year period, the code base grew
from 100,000 lines of code, to almost a million - an order of magnitude
change.



12

12

C
SM

 1
.2

C
SM

 1
.4

C
C

SM
 1

.5

C
C

SM
 2

.0
 b

et
a 

20
-2

7

C
C

SM
 2

.0
 b

et
a 

58
-5

9

C
C

SM
 2

.1
 b

et
a 

18
C

C
SM

 2
.2

 b
et

a 
08

C
C

SM
 3

.0
 b

et
a 

08

C
C

SM
 3

.0
 re

l 0
4

C
C

SM
 3

.1
 b

et
a 

03

C
C

SM
 3

.1
 b

et
a 

46

C
C

SM
 3

.5
 b

et
a 

01
C

C
SM

 3
.5

 b
et

a 
13

CCSM 3.5 
branch

C
C

SM
 4

.0
 a

lp
ha

 2
0

C
C

SM
 4

.0
 a

lp
ha

 3
8

C
C

SM
 4

.0
 b

et
a 

01

C
ES

M
 1

.0
(p

ub
lic

 re
le

as
e)

C
C

SM
 4

.0
 a

01
 

(p
ub

lic
 re

le
as

e)

CCSM 4.0
release
branch

C
C

SM
 4

.0
 

(p
ub

lic
 re

le
as

e)

NCAR CESM Code Growth

And the UKMO model isn’t unusual. Here’s a similar curve from NCAR’s
CESM, over twelve years, showing a similar order of magnitude growth.
 [Note: the big jump in “other” in January 2010 was the inclusion of the model
documentation into the code repository (previously the documentation was
managed separately)]



13

13

Towards Earth System Models

Atmosphere Atmosphere Atmosphere Atmosphere Atmosphere Atmosphere

Land surface
+ land ice?Land surfaceLand surfaceLand surfaceLand surface

Ocean & sea-ice Ocean & sea-ice Ocean & sea-ice
New

Ocean & sea-ice
Sulphate
aerosol

Sulphate
aerosol

Sulphate
aerosol

Non-sulphate
aerosol

Non-sulphate
aerosol

Carbon
(+ N?) cycle
Atmospheric

chemistry

Ocean & sea-ice
model

Sulphur
cycle model

Non-sulphate
aerosols

Carbon
cycle model

Land carbon
cycle model

Ocean carbon
cycle model

Atmospheric
chemistry

Atmospheric
chemistry

Off-line
model
development
Strengthening colours
denote improvements
in models

1975 1985 1992 1997 2004/05 2009/11
HadCM3 HadGEM1 HadGEM2

©
 C

ro
w

n 
C

op
yr

ig
ht

And one of the main reasons for this growth is a move from Atmosphere-
Ocean Models to Earth System Models. Versions of this diagram are common
in the modeling community, showing how the model now comprises a large
number of different components representing different earth subsystems.



14

14

And the closest I can find to an “architecture” or “wiring diagram” for an
earth system model is the Bretherton diagram. This shows the major
components as orange boxes, with data flows between them shown as
arrows. The various models differ slightly in exactly how these major
subsystems are sliced up into separate components, and the nature of
the coupling software that glues them back together.



15

15

Do the Pieces Fit?

But these diagrams are too neat. It doesn’t really come together like
this.



16

16Coupled model

Atmospheric Dynamics 
and Physics

Ocean Modeling
Sea Ice

Land Surface 
Processes

Atmospheric
Chemistry

Ocean 
Biogeochemistry

Overlapping Communities

In reality we have a number of different communities (with some
overlaps), each building their own models of specific earth subsystems,
typically for their own use as stand-alone scientific tools. A coupled
model is then a complex negotiation between the needs of these
individual communities and the kinds of component needed to construct
a coupled earth system model. These various communities keep
evolving their own models, often for their own purposes, so maintaining
a coupled model is an ongoing challenge.
Note that I didn’t draw this diagram to scale. If the coloured shapes
represent the size of the community building the models, then the
coupled model community should be tiny relative to the various
specialized communities. A major problem is that very few scientists
have the skills and motivation to develop and analyze coupled models
(as opposed to the individual components from which they are
constructed).
And yet, if the diagram represents the demand from policymakers and
the public for information (e.g. the IPCC process), then the coupled
model blob would be much *bigger* than the other blobs. So we have a
serious problem: too few modelers focus on coupled earth system
models compared to the demand for uses of these models.



17

17

Which means that often, the job of putting together the components to
build a coupled model involves a lot of software hacks - the
components weren’t designed to be put together in the coupled system,
so the coupled model is never as elegant (in software terms) as the
diagrams indicate.
My term for this is “scientific bricolage” - you build the coupled model
out of whatever pieces are available, and make do with what you find.



18

18

Couplers (≈ “Make Do”)

So, a dominant approach is to build ever more complex couplers, which
do the job of gluing together the component models, handling re-
gridding, timing issues, data transformation, etc.
And a growing set of scripts that handle all the idiosyncrasies of the
individual components, as they each have their own needs for Building,
Configuring and Running them.



19

19

Frameworks (≈ “standardize”)

GEOS-5 

surface fvcore gravity_wave_drag 

history agcm 

dynamics physics 

chemistry moist_processes radiation turbulence 

infrared solar lake land_ice data_ocean land 

vegetation catchment 

coupler 

coupler coupler 

coupler 

coupler 

coupler 

coupler 

A different approach is represented by Frameworks, perhaps best
represented by ESMF, the Earth System Modeling Framework. This
isn’t so much a “make do” approach, but it’s not a “do over” approach
either. It’s somewhere in between, perhaps best thought of as an
attempt to create and promote standardizations, so that model
components can be plugged into the framework, not necessarily as
monolithic, idiosyncratic modules, but as a set of code routines that can
be composed in systematic ways to build a coupled model system. But
like all standardization efforts, acceptance by all the various modeling
communities can be slow, in part because it requires each sub-
community to change their codes in ways that sometimes get in the way
of their own internal goals, and for which most of the benefits are for the
broader community. And where the framework provides wrappers
rather than standardized interfaces, it simply hides the coupling
complexity in the wrappers, making the coupled model even harder to
understand.
ESMF has been very successful in bringing the US modeling
community together, and creating interchangeability between model
components, but hasn’t improved the software quality of the various
model components.



20

20

Complete Re-build (= “Do Over”)

And there don’t seem to be any attempts at a “Do Over” anywhere in
the community, at least in the last decade. Where there are attempts to
build new models (typically individual components, rather than coupled
systems) they tend to be inspired by a different approach to the
numerics, or a different grid system, rather than an attempt to re-build
for software quality reasons.



21

21

Why no “Do Over”?

Cost
50 scientists x 20 years = 1,000 person years ≈ $150 million
+ supercomputing facilities for dev and test ≈ $200 million

Community
Too few scientists with aptitude and motivation for earth system modeling
Too few software engineers with necessary science background

Forking
New model splits the community
Lose access to the latest science

Actually, I don’t think a “Do Over” is a viable approach, for a number of
reasons. One is the cost. My back-of-the-envelope calculation of the
cumulative cost of a current fully-coupled earth system model is around
$350 million - representing the work of around 50 scientists working
over a 20 year period. A rebuild might be done with a much smaller
team over just a few years, but will still require substantial computing
facilities - still in the order of hundred million dollars.
And even if we were willing to allocate funds to this (rather than using
them for new science), we would have great difficulty finding the people
to do this. The modeling community is already too small, short of
scientists who understand coupled models, and short of software
engineers who have enough science background to contribute.
And there’s another downside - a rebuild would take several years,
during which time the science will continue to move on. We’re then
effectively “forking” the community, so that we have distinct “science”
and “engineering” models, making it increasingly harder to get new
science advances into the engineering models.
The experience is likely to be similar to that of Netscape, who spent
several years rebuilding their web browser from the ground up, only to
discover that nobody wanted it because by the time it was ready,
browser technologies had moved on (see
http://www.joelonsoftware.com/articles/fog0000000069.html)



22

22

What can we do?

So, what can we do?



23

23

Extreme Programming

Planning
game

Collect
User stories

Write test
casescode

integrate

test

Release
Each cycle:

approx 2 weeks

I think a lot can be learned by comparing model development
processes with the agile software development philosophy. For those
not familiar with this, “agile” represents a revolution in thinking about
how software should be developed. It started in the 1990’s, largely in
response to what some software developers perceived to be increasing
bureaucracy of software development processes that deprecated the
skills and expertise of individual software developers, and imposed a
process engineering approach that stifles innovation. They argued that
this removes the responsibility for quality from the software developers
themselves, and places that responsibility in organizational procedures,
which is a recipe for disaster.
Part of the agile philosophy is that you can’t successfully specify what a
customer wants up front - you have to discover it by building a little,
getting the users to try it, and using that experience to decide what to
build next. One version of this, known as extreme programming,
suggests this should be done in 2-week iterations. So you only plan to
build what can be successfully implemented and tested within the two
week cycle, and don’t worry about longer term planning (because
longer term plans will always turn out to be wrong).
Notice the similarity with how I presented the model development cycle.
Two weeks might be a little too short, but the essential iterative,
exploratory process is there.
Agile software developers use a large number of tools and techniques
to keep things on track, so we can examine these for ideas. But there’s
a problem - agile development has been remarkably successful for
small teams building consumer-oriented software (e.g. web
services,…). It’s generally understood not to scale up to teams beyond
about 12 people.



24

24

Use of Agile practices:
Collective Ownership
Configuration Management
Continuous Integration
Feature-driven development
~ Frequent small releases
Onsite customer
~ Organization-wide process
~ Organizational training
Pair programming
Planning game
Peer reviews

~ Process & product quality
assurance
Project monitoring & control
Project planning
Refactoring
Requirements management
~ Retrospective
Risk Management
Simple design
Tacit knowledge
Test-driven development

Many of the techniques used by Agile software companies are already widely
in use by earth system modellers (although rarely given the same labels).
But what’s noticeable is what isn’t used, and here I think there’s some scope
for trying out these ideas withing the modeling community:
 - refactoring, which continually re-structures the code to improve modularity
and maintainability. In most cases, this is not used in earth system modeling
because it breaks reproducibility. If you re-structure the code, the compiler will
optimize it differently, which means you lose the ability to exactly reproduce
older runs.
 - test-driven development, in which test cases are written before the code is
written, and are maintained as part of the code base, along side the code.
 - pair programming, in which two developers work together on code changes,
sitting next to each other and providing instant peer-review as the code is
written.

But note that no agile software organisation uses all of these practices anyway
- each organization figures out for itself which practices work for them, and
which do not. So there’s no package deal here, just lots of ideas that seem to
have worked in some settings.



25

25

ESMs are not like other software…
Don't know what to build in advance
Models are always imperfect
Cannot distinguish defects from
approximations
Many ways to handle imperfections
No oracle for correctness
Defects are not mission-critical
Model surprises are useful
Fidelity to real world physics not always
needed
Noisy real world data
Model never finished (all runs
experimental)
Huge societal importance
Politically motivated critics

Developers are domain experts
Developers are end-users
Coding inseparable from ʻdoing scienceʼ
Very smart people
25+ competing models
Openness & shared ownership
Unconstrained release schedule
Stable top-level architecture
Product line (many configurations)
Submodels have independent lives
Preference for Fortran
Emphasis on integration testing
Few resources for software infrastructure

And it’s important to understand some of the unusual or unique
constraints for the earth system modeling community, which makes this
type of software development distinct from other types of software,
especially commercial practices.
I’ve talked about some of these, particularly, the inseparability of coding
from doing science, and the fact that the coupled models are
constructed from components that have independent uses and are
continually evolving.
The slide lists all the other dimensions I’ve identified, along which earth
system modeling *might* differ from other forms of software
engineering.



26

26

Conclusions
Appropriate people + Appropriate tools

Community building + Sharing of good practices

So my conclusion is that improving software quality and addressing the
scaleability challenges will depend more on the expertise of the
modeling community and the use of appropriate tools, than any
particular software development processes.
The community of developers won’t necessarily look like like
commercial software developers, and the tools they use won’t
necessarily look like commercial software development toolkits,
because this type of software has many unusual characteristics.
We can learn from agile development practices (because they match
existing model development techniques in many ways), but what really
matters is the development of more of a community approach that
reflects more and shares information about what software techniques
they are using and how well they are working.
And growth of this community: we need more people who have both
good software development skills and sufficient geosciences
background to work on coupled earth system models. The community is
way too small at present.


