
© Steve Easterbrook, 2005 1

University of Toronto Department of Computer Science

Bugs in the Space Program:
The Role of Software in Systems Failure

Prof. Steve Easterbrook

Dept of Computer Science,
University of Toronto

http://www.cs.toronto.edu/~sme

2

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

Key ideas

Complex systems rely more and more on
software as the “glue”

Is software just like any other component?

Are there additional risks when we choose to allocate
system functions to software?

Are systems engineering and software engineering
similar disciplines?

3

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

software
Monitored

 Variables

Environ-

ment

System

input

data data

output Controlled

 Variables

How Software Engineers see the world

Environ-

ment

Input

devices

Output

devices

Specifications state the software functions
 in terms of inputs & outputs

Requirements express a desired relationship between
monitored and controlled variables

Domain Properties constrain how the environment can behave

4

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

Subject system

Control system

uses

builds

tracks and controls

the state of
needs to ensure

safe control of

contracts

Usage System

Development System

How Systems Engineers see the world

5

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

Why is software special?
Software is invisible, intangible, abstract

Software alone is useless - its purpose is to configure some hardware to do
something

Software doesn’t obey the laws of physics
Behaviour explained by discrete math, rather than continuous math

Software has no repeated components
Hence more complex for its “size” than other designed artifacts

Software never wears out
…statistical reliability measures don’t apply

Software can be replicated perfectly
…no manufacturing variability

Software is not manufactured
…so can be re-designed even after deployment

6

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

Software is not manufactured

Pre-industrial design:

Design and

Production
UseArtifact

Design Production
Design

Description UseArtifact

Feedback for new products

Industrial design:

Design
Production

And Use
Program

Adaptive re-design

Software Design:

7

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

Mariner I

Launched
22 July 1962

Mission
Venus Fly-by

Fate:
Veered off course during launch

Destroyed by the Range Safety
Officer 293 seconds after launch

Cause:
“Missing hyphen in computer code”

But not to worry…
Mariner II was an identical copy,
developed as a backup

launched 27 August 1962

Successfully completed the mission

8

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

Lessons?

“Plan to throw one away - because you will anyway”
--Fred Brooks, The Mythical Man-Month

9

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

Ariane-5 flight 501

Background
European Space Agency’s reusable
launch vehicle

Ariane-4 a major success

Ariane-5 developed for larger
payloads

Launched
4 June 1996

Mission
$500 million payload to put in orbit

Fate:
Veered off course during launch

Self-destructed 40 seconds after
launch

Cause:
Unhandled floating point exception in
Ada code

10

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

Ariane-5 Events

Locus of error:
Platform alignment software (part of the Inertial Reference System, SRI)

This software only produces meaningful results prior to launch

Still operational for 40 seconds after launch

Cause of error:
Unhandled Ada exception Converting 64-bit floating point to 16-bit signed integer

Requirements state that computer should shut down if unhandled exception occurs

Launch+30s: Inertial Reference Systems fail
Backup SRI shuts down first

Active SRI shuts down 50ms later for same reason

Launch+31s: On-Board Computer receives data from active SRI
Diagnostic bit pattern interpreted as flight data

OBC commands full nozzle deflections

Rocket veers off course

Launch+33s: Launcher starts to disintegrate
Self-destruct triggered

11

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

Why did this failure occur?
Why was Platform Alignment still
active after launch?

SRI Software reused from Ariane-4
40 sec delay introduced in case of a
hold between -9s and -5s

Why was there no exception
handler?

An attempt to reduce processor
workload to below 80%

Analysis for Ariane-4 indicated the
overflow not physically possible

Why wasn’t the design modified
for Ariane-5?

Not considered wise to change
software that worked well on Ariane-4

Why did the SRIs shut down in
response?

Assumed faults caused by random
hardware errors, hence should switch
to backup

Why was the error not caught in
unit testing?

No trajectory data for Ariane-5 was
provided in the reqts for SRIs

Why was the error not caught in
integration testing?

Full integration testing considered too
difficult/expensive
SRIs were considered to be fully
certified
Integration testing used simulations
of the SRIs

Why was the error not caught
by inspection?

The implementation assumptions
weren’t documented

Why did the OBC use diagnostic
data as flight data?

12

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

Lessons?

Software Redundancy Doesn’t Work

Software Reuse is very Risky

Test what you fly, fly what you test
(…and test to the Operational Profile)

13

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

Mars Pathfinder

Mission
Demonstrate new landing techniques

parachute and airbags

Take pictures

Analyze soil samples

Demonstrate mobile robot technology

Major success on all fronts
Returned 2.3 billion bits of
information

16,500 images from the Lander

550 images from the Rover

15 chemical analyses of rocks & soil

Lots of weather data

Both Lander and Rover outlived their
design life

Broke all records for number of hits
on a website!!!

14

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

Remember these pictures?

15

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

Pathfinder had Software Errors

Symptoms
Software started doing total system resets

… soon after Pathfinder started collecting meteorological data

Cause
3 Process threads, with bus access via mutual exclusion locks (mutexs):

High priority: Information Bus Manager

Low priority: Meteorological Data Gathering Task
Medium priority: Communications Task

Priority Inversion - Bus Manager locked out

Eventually a watchdog timer notices Bus Manager hasn’t run for some time…

Factors
Very hard to diagnose; Hard to reproduce

Was experienced a couple of times in pre-flight testing

Testers assumed it was a hardware glitch

16

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

Lessons?

Sometimes you can get away with it

If it doesn’t behave how you expect, it’s not safe
(the exception proofs the rule)

Some software bugs are really butterflies
(see: the butterfly effect)

17

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

Mars Climate Orbiter

Launched
11 Dec 1998

Mission
interplanetary weather satellite

communications relay for Mars Polar
Lander

Fate:
Arrived 23 Sept 1999

No signal received after initial orbit
insertion

Cause:
Faulty navigation data caused by
failure to convert imperial to metric
units

18

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

MCO Events
Locus of error

Ground software file called “Small Forces” gives thruster performance data
This data is used to process telemetry from the spacecraft
Angular Momentum Desaturation (AMD) maneuver effects underestimated by
factor of 4.45

Cause of error
Small Forces Data given in Pounds-seconds (lbf-s)
The specification called for Newton-seconds (N-s)

Result of error
As spacecraft approaches orbit insertion, trajectory is corrected

Aimed for periapse of 226km on first orbit

Estimates were adjusted as the spacecraft approached orbit insertion:
1 week prior: first periapse estimated at 150-170km
1 hour prior: this was down to 110km
Minimum periapse considered survivable is 85km

MCO entered Mars occultation 49 seconds earlier than predicted
Signal was never regained after the predicted 21 minute occultation
Subsequent analysis estimates first periapse of 57km

19

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

Mars

To Earth

TCM-4

TCM-4

Larger AMD V’s

Driving trajectory down

relative to ecliptic plane

Estimated trajectory
and AMD V’s

Actual trajectory
and AMD V’s

226km

57km

MCO Navigation Error

P
er

ia
pse

20

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

Contributing Factors

For 4 months, AMD data not used
due to file format errors

Navigators calculated data by hand
File format fixed by April 1999
Anomalies in the computed trajectory
became apparent almost immediately

Limited ability to investigate:
Thrust effects measured along line of
sight using doppler shift
AMD thrusts are mainly perpendicular
to line of sight

Poor communication between teams
Navigation team not involved in key
design decisions
Navigation team did not report the
anomalies in the issue tracking system

Inadequate staffing
Operations team monitoring 3 missions
simultaneously (MGS, MCO and MPL)

Operations Navigation team
unfamiliar with spacecraft

Different team from development & test
Did not fully understand significance of
the anomalies
Surprised that AMD was performed 10-
14 times more than expected

Inadequate Testing
Software Interface Spec not used
during unit test of small forces software
End-to-end test of ground software was
never completed
Ground software considered less critical

Inadequate Reviews
Key personnel missing from critical
design reviews

Inadquate margins…

21

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

Lessons?

If your teams don’t coordinate,
neither will their software

(See: Conway’s Law)

With software, everything is connected
to everything else -- every subsystem is critical

If it doesn’t behave how you expect, it’s not safe
(yes, really!)

22

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

Sidetrack: SNAFU principle

Full communication is only possible among peers;
Subordinates are too routinely rewarded for telling

pleasant lies, rather than the truth.

Not a good idea to have the
IV&V teams reporting to the program office!!

23

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

Mars Polar Lander

Launched
3 Jan 1999

Mission
Land near South Pole

Dig for water ice with a
robotic arm

Fate:
Arrived 3 Dec 1999

No signal received after
initial phase of descent

Cause:
Several candidate causes

Most likely is premature
engine shutdown due to noise
on leg sensors

24

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

What happened?

Investigation hampered by
lack of data

spacecraft not designed to send
telemetry during descent
This decision severely criticized by
review boards

Possible causes:
Lander failed to separate from cruise
stage (plausible but unlikely)
Landing site too steep (plausible)
Heatshield failed (plausible)
Loss of control due to dynamic
effects (plausible)
Loss of control due to center-of-
mass shift (plausible)
Premature Shutdown of Descent
Engines (most likely!)
Parachute drapes over lander
(plausible)
Backshell hits lander (plausible but
unlikely)

25

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

Premature Shutdown Scenario
Cause of error

Magnetic sensor on each leg senses touchdown
Legs unfold at 1500m above surface
software accepts transient signals on touchdown sensors during unfolding

Factors
System requirement to ignore the transient signals
But the software requirements did not describe the effect
Engineers present at code inspection didn’t understand the effect
Not caught in testing because:
Unit testing didn’t include the transients
Sensors improperly wired during integration tests (no touchdown detected!)

Result of error
Engines shut down before spacecraft has landed
estimated at 40m above surface, travelling at 13 m/s
estimated impact velocity 22m/s (spacecraft would not survive this)
nominal touchdown velocity 2.4m/s

26

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

FLIGHT SOFTWARE REQUIREMENTS

3.7.2.2.4.2 Processing

a. The lander flight software shall cyclically check the

state of each of the three touchdown sensors (one

at 100 Hz during EDL.

b. The lander flight software shall be able to cyclically

check the touchdown event state with or without

touchdown event generation enabled.

c. Upon enabling touchdown event generation, the lan

 flight software shall attempt to detect failed sens

marking the sensor as bad when the sensor indicat

“touchdown state” on two consecutive reads.

d. The lander flight software shall generate the landin

 event based on two consecutive reads indicating

touchdown from any one of the“good” touchdown

sensors.

.

SYSTEM REQUIREMENTS

1) The touchdown sensors shall be sampled at 100-Hz rate.

The sampling process shall be initiated prior to lander entry

to keep processor demand constant.

However, the use of the touchdown sensor data shall not

begin until 12 meters above the surface.

2) Each of the 3 touchdown sensors shall be tested

automatically and independently prior to use of the

touchdown sensor data in the onboard logic.

The test shall consist of two (2) sequential sensor readings

showing the expected sensor status.

If a sensor appears failed, it shall not be considered in the

descent engine termination decision.

3) Touchdown determination shall be based on two

sequential reads of a single sensor indicating touchdown.

Figure 7-9. MPL System Requirements Mapping to Flight Software RequirementsAdapted from the “Report of the Loss of the Mars Polar Lander

and Deep Space 2 Missions -- JPL Special Review Board (Casani Report) - March 2000”.

See http://www.nasa.gov/newsinfo/marsreports.html

27

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

Lessons?

Documentation is no substitute for real communication

Software bugs hide behind other bugs
(full regression testing essential!)

Fixed cost + fixed schedule = increased risk

28

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

A Programmatic Failure at JPL

Inadequate

Margins

Science (functionality)
Fixed

(growth)

Schedule
Fixed

Cost
Fixed

Launch Vehicle
Fixed

(Some Relief)

Risk
Only

variable

Adapted from MPIAT - Mars Program Independent Assessment Team Summary Report,

NASA JPL, March 14, 2000.

See http://www.nasa.gov/newsinfo/marsreports.html

29

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

Learning the Right Lessons

“In most of the major accidents of the past 25 years, technical
information on how to prevent the accident was known, and often even
implemented. But in each case… [this was] negated by organisational or

managerial flaws.” (Leveson, Safeware)

30

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

Reused code w/o checking assumptions
Different team maintains software

‘Redundant’ design not really redundant
Lack of expertise at inspections

Commercial pressures took priority
?Inexperienced managers

Failure to adjust budget and schedule
Insufficient staffing
Poor communication between teams
Didn’t investigate anomalies
Didn’t track problems properly
Didn’t use problem reporting system

??System deployed before ready
Lack of diagnostic data during operation

?Requirement not implemented
?System changed after testing

Lack of integration testing
No regression test
Tested “wrong” system
Insufficient test data
Didn’t test to spec

STS

107

MPLMCOPath-

finder

Ariane

501

STS

51L

Factor

31

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

Why are warning signs ignored?

Equal voice
E.g. Independence of Risk Assessment processes:

Managerial Independence; Financial Independence; Technical Independence

Understanding & using the available controls
A manager can control four variables:

Resources (can get more dollars, facilities, personnel)

Time (can increase schedule, delay milestones, etc.)

Product (can reduce functionality - e.g. scrub requirements)

Risk (can decide which risks are acceptable)

None should be assumed to be fixed

Proper measurement on both sides of the argument
E.g. don’t just quantify the cost/schedule side

Clear communication of technical factors
Engineering staff routinely fail to get the message across to management

32

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

O-Ring damage index, each launch

0

2

4

6

8

10

12

25 30 35 40 45 50 55 60 65 70 75 80 85

Temperature at launch (ºF)

D
a
m

a
g

e
 I

n
d

e
x

range of forecast temperatures for launch on Jan 28, 1986

Importance of Communication
The graph that was never drawn…

For the Challenger launch decision, this data was available
But was never collected and presented this way

Adapted from Tufte, “Visual Explanations”

33

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

The lessons of history…

Adapted from Tufte, “The Cognitive Style of Powerpoint”

34

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

Summary

Where to improve systems engineering:
Examine and improve the organization's safety culture

Measure risk properly

Better conflict resolution processes

Communicate the risks clearly

Structure the organization so as to avoid masking problems

Use design processes to eliminate hazards

Software introduces extra risk:
It defeats redundancy designs

It introduces many more subsystem interactions

It continues to evolve even after deployment

It’s much harder to understand than other subsystems

We don’t yet have a mature science of software behaviour

35

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

Resource List (part 1)
Software Risk

Endres, A., Rombach, D. “A Handbook of
Software and Systems Engineering:
Empirical Observations, Laws, and Theories”
Addison Wesley, 2003.

MacKenzie, Donald. “Mechanizing Proof:
Computing, Risk, and Trust”. MIT Press,
2001.

Communication of Risk
Tufte, Edward. “Visual Explanations, Images

and Quantities, Evidence and Narrative”.
Cheshire, CT: Graphics Press, 1997

Feynman, Richard. “What do you care what
other people think?”. W.W. Norton &
Company, New York, 1988.

36

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

Resource List (part 2)
General books on Safety & System failure
Leveson, Nancy. “Safeware: System Safety and Computers”. Addison Wesley, Reading, MA, 1995.

Perrow, Charles. “Normal Accidents: Living with High-Risk Technology”. Basic Books, New York, 1984.

Petroski, Henry. “To Engineer is Human: The Role of Failure in Successful Design”. St Martin’s Press,
New York, 1985

Space Shuttle
Current info about the shuttle:

http://spaceflight.nasa.gov/shuttle/
Info about Challenger:

http://www-pao.ksc.nasa.gov/kscpao/shuttle/missions/51-l/mission-51-l.html
Rogers Commission Report (see especially appendix F, by Richard Feynman)

http://science.ksc.nasa.gov/shuttle/missions/51-l/docs/rogers-commission/table-of-contents.html
A Succinct summary of the key factors and issues:

http://ethics.tamu.edu/ethics/ethics/shuttle/shuttle1.htm

Ariane-5
Info about ESA’s launchers:

http://www.esa.int/export/esaLA/launchers.html
Inquiry report & Press release:

http://www.esrin.esa.it/htdocs/tidc/Press/Press96/press33.html

Mars Observer
Project summary

http://www.msss.com/mars/observer/project/mo_loss/moloss.html
Brief summary of possible causes

http://catless.ncl.ac.uk/Risks/14.89.html#subj1

37

University of Toronto Department of Computer Science

© Steve Easterbrook, 2005

Resource List (part 3)
Mars Pathfinder

Project info:
http://mars.jpl.nasa.gov/MPF/index1.html

Report on the priority inversion problem:
http://catless.ncl.ac.uk/Risks/19.49.html#subj1

Mars Climate Orbiter
Project Info:

http://mars.jpl.nasa.gov/msp98/orbiter/
Investigation Report:

ftp://ftp.hq.nasa.gov/pub/pao/reports/2000/MCO_MIB_Report.pdf

Mars Polar Lander & Deep Space 2
Project info:

http://mars.jpl.nasa.gov/msp98/lander/
http://mars.jpl.nasa.gov/msp98/ds2/

Investigation Reports:
http://www.nasa.gov/newsinfo/marsreports.html

General Background
RISKS forum archive:

http://catless.ncl.ac.uk/Risks/
JPL’s list of missions (past, present and future)

http://www.jpl.nasa.gov/missions/missions_index.html
Basics of Space Flight:

http://www.jpl.nasa.gov/basics/

