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Abstract. Association between classes is a central construct in OO
modeling. However, precise semantics of associations has not been de-
fined, and only the most basic types are implemented in modern forward
and reverse engineering tools. In this paper, we present a novel mathe-
matical framework and build a precise semantics for several association
constructs, whose implementation has been considered problematic. We
also identify a number of patterns for using associations in practical ap-
plications, which cannot be modeled (reverse engineered) in UML.

1 Introduction

Modeling is a classical engineering instrument to manage complexity of system
design. Its evolution in many branches of mechanical and electrical engineer-
ing, and practically everywhere in hardware engineering, has led to automated
production. We do not see significant reasons to think that evolution of soft-
ware engineering (SE) will be essentially different. The recent rapid advance of
model-driven development (MDD) in many areas of SE shows potential of the
process (cf.[21, 13]). Particularly, there has been a real explosion in the market
of forward, reverse and roundtrip engineering tools (MDD-tools).
1.1 The problem. Among modeling notations used in OO analysis and design,
Class Diagrams play a central role.1 A basic type of class diagram is a graph
whose nodes are classes and edges are associations between them. The latter
present relationships between classes and can bear various adornments express-
ing properties of these relationships; Fig. 1 shows a few examples. The meaning
of diagrams (a,b,d) should be clear from semantics of names. Diagram (c1) says
that a pair of objects (c:Company, p:Position) determines zero or one Person
object, and similarly (c2) says that a pair (p:Person, c:Company) determines
zero or two Positions.

Note that if association ends are considered as directed mappings between
classes then we name them by verbs to emphasize asymmetry (diagrams a,b,c).
1 A survey reported in [10] claims that all experts participating in the study evaluated

Class Diagrams as the most important and the most useful of the UML notations.
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Fig. 1: A few sample associations

We use nouns when the ends are regarded as roles of the association considered
as a symmetric relationship between classes (diagram d).

Implementation of these semantics is not quite straightforward, but every-
thing looks manageable and an ordinary MDD-tool should accurately implement
these constructs. However, the situation one finds in practice is in sharp contrast
with these expectations. For example, the survey reported in [1] says that among
ten major UML-based MDD-tools, none have implemented n-ary associations;
only two – qualified associations; and only three – bidirectional associations (in-
cluding those unidirectional, which have multiplicity constraints at both ends
like, e.g., in Fig. 1b). In fact, the only (!) association construct well understood
and implemented today is unidirectional binary association without multiplicity
constraints at the source end (Fig. 1(b) with multiplicity 0..3 removed).
1.2 The causes. The root of the problems with associations is that their simple
and compact syntax hides an integrated system of concepts, mutually related and
dependant of each other. For example, implementation of a bidirectional associa-
tion in Fig. 1(a) may seem to be as simple as declaring attributes employs of type
Collection〈Person〉 in class Company and worksFor of type Collection〈Company〉
in class Person. However, these two attributes are not independent and repre-
sent the two ends of the same association: updating one of them means updating
the entire association, which implies a corresponding update for the other end.
Hence, the mutator methods (setters) for the attributes belonging to different
classes must be synchronized. The problem is essentially complicated by the pos-
sibility to combine several properties for one end and several other properties
for the other end. For example, UML does not prevent declaring one end to be
bag-valued, qualified and read-only while the other end is set-valued, also qual-
ified and writable. In [1], several such complex cases of feature interaction are
identified.

Another big issue is the two-facet nature of associations, which are both
extensional and navigational concepts. A common understanding of multi-ary
associations sees them as sets of links (tuples) or relations. This view is basic for
databases, but software modeling is more concerned with traversing relations in
different directions; UML calls this aspect navigation. In the navigational view,
relations re-appear as extensions (graphs) of the mappings involved, and thus
are always implicitly on the stage. Implementation needs a clear and precise
specification of the relationship between the two views but the issue is rarely
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discussed in the literature. Indirectly and informally it is addressed in the UML
Standard but its specification in the metamodel is seriously flawed [5]. Since
modern MDD-tools are based on metamodeling, an inconsistent metamodel of
a modeling construct makes its implementation practically impossible.

Thus, the concept of association encompasses an integral system of naviga-
tional and extensional modeling constructs. Its straightforward implementation
in modern OO languages necessarily leads to assigning these constructs to dif-
ferent classes. The integrity of the concept is thus corrupted and needs to be re-
covered by an additional implementation of “synchronization” services. In other
words, the concept of association cannot be implemented directly in languages
like Java or C++, and needs special design patterns. Creating the latter is an
issue and may be non-trivial as demonstrated in [1, 16, 14]. In addition, these
works differ in their understanding of what associations and their properties are,
and how to implement them. A part of this diversity is just normal: the same
specification can be implemented in different ways. Yet another part is caused by
the absence of precise semantics for the constructs and their subsequent different
interpretations by the implementers. This latter part is substantial.
1.3 The approach and results. The problems above show the necessity of un-
ambiguous and transparent semantics for associations formulated in independent
mathematical terms. A step in this direction was made in [5] with emphasis on
formal definitions and metamodeling for the general case of n-ary associations.
In the present paper we continue this work towards practical applications and
implementation rather then metamodeling, and focus on binary associations,
which are most often appear in practice. Our basic assumption is that precise
semantics of a modeling construct, if it is formulated in clear and understandable
terms close to programming concepts, makes implementation a technical issue
that can be delegated to practitioners. We formulate the following requirements
for a mathematical framework to be useful for the task: (i) be expressive enough
to capture all aspects of semantics of associations needed in applications; (ii) be
abstract enough to avoid the danger of offering only “pictures of code” but simul-
taneously be understandable and transparent; (iii) be aligned/coordinated with
the modeling concepts to facilitate continuity and cross-references between the
models and the formalism; (iv) be aligned/coordinated with the programming
concepts to facilitate continuity and cross-references between the formalism and
the code.

In section 3 we present a formal framework, which we believe is sufficiently
satisfactory w.r.t. these requirements, and in sections 4,5 we apply it to formal-
izing basic types of UML associations. The results of this work are collected in
Tables 1,2 and Fig. 4. The left columns of the tables present UML constructs,
and middle and right ones show their formal semantics; Fig. 4 is structured
similarly. Since our formalism is graph-based and our formal specifications are
also diagrams, comparison of formal and modeling constructs is transparent and
comprehensible (requirement iii). On the other hand, the main building blocks
of our formalism are sets and mappings, which are naturally expressible in terms
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of, say, generic interfaces of the Java Utility Package [4]; hence, requirement (iv)
is satisfied. Conditions (i,ii) will be addressed in section 3.

Some rows of the Tables have their UML cell blank, which means that the
corresponding real world situation (formally described in the middle and right
cells) cannot be modeled in UML. Owing to computationally completeness of
programming languages, such situations can be coded but their adequate reverse
engineering into UML is problematic. Moreover, as seen from the tables, these
situations are quite natural for practical applications. The impossibility to model
them adequately in UML contributes to the infamous phenomenon of domain
semantics hidden in the application code. We propose a light modification of the
UML toolbox for modeling associations, which nevertheless allows one to manage
the issue. The new notational constructs are marked in the Tables by “Not
UML!” tag. Thus, question or exclamation marks in our Tables mean problems
of forward engineering – when they are in the middle or right columns, or reverse
engineering – when they are in the left column. Forward and reverse engineering
of qualified associations is thoroughly discussed in section 5; we also show that
n-ary associations can be reduced to qualified ones.

2 Background and Relation to Other Works

Semantics for the concepts of relationship and aggregation and their database
implementation is a well-known research issue that can be traced back to the
pioneering works on data semantics by Abrial, Brodie, Chen and others in the
70s and early 80s (see [15] for a survey). Object-oriented modeling flourished
a bit later and focused on navigation across relations, mainly binary ones; the
corresponding construct was called association and had been widely used in
OMT and other practical OOAD techniques [20]. The most significant of these
practices were later catalogued, abstracted and standardized by OMG in the
MOF/UML/OCL group of standards. The most essential contribution was made
by UML2, in which a large system of constructs related to associations was de-
fined [19, sect.7.3.44]. In addition to the main functionality of navigating be-
tween the classes, it comprises a lot of concepts like multiplicities and types of
collections at the ends, ends’ qualification and ownership, redefinition, subset-
ting, and more. These concepts may capture important aspects of semantics of
the business/domain to be modeled, and in that case must be reflected in the
design model and then accurately implemented. Accuracy in modeling and im-
plementation of associations may be a critical issue, e.g., in designing real time or
embedded systems, where using models is becoming increasingly popular [13, 1].
Unfortunately, the standards provided neither a precise semantics nor even a
consistent metamodel for the constructs [5, 6].

In this paper we will use notation and terminology standardized by UML2,
and when we write “the Standard”, we mean the UML 2.1.1 Superstructure [19].
In UML2, ontological aspects of associations are specified by a special attribute
“aggregationKind” and denoted by either a white diamond (proper aggregation)
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or a black diamond (composition). A detailed discussion can be found in [2].
These aspects of associations are beyond the goals of the present paper.

It has been noted and argued in [22, 12] that actually two different notions of
association, static and dynamic, are used in OOAD. The former is used for mod-
eling structural relationships between classes, which are expressed by instance
variables (attributes). The latter are channels over which messages can be sent;
in UML2 they are specified in collaboration diagrams and do not influence the
Association part of the metamodel. In this paper, we focus only on the static
associations and their basic properties as they are defined in UML.

Semantics of associations in UML1.* and their usage had been discussed in
[11]; a few works had focused on implementation in the context of forward [14]
or reverse [16] engineering. These works became outdated after the acceptance of
UML2, in which the technical aspects of the construct are essentially reworked.
So far, the analysis of associations in UML2 has not gained much attention
in the literature. The metamodel is analyzed in [5]. Paper [17] addresses the
problem of heterogeneous collections at different association ends; our formal
semantics allows us to build a transparent model of the issue and discover a useful
implementation pattern that cannot be reverse engineered into UML. A recent
paper [1] presents a detailed and careful discussion of how UML2 associations can
be implemented in Java. However, they do not consider the extensional aspects
of the concept, which we will show are crucial for its proper understanding
and implementation. Particularly, we propose an entirely different semantics
for qualified associations. We also propose a new semantics for unidirectional
association with a multiplicity constraint at the opposite end, which is precisely
aligned with the Standard.

3 Formal Semantics Framework

In this section we build our semantic framework. We begin with class diagrams
and their semantics in terms of run-time instances. Then we abstract this de-
scription in mathematical terms and derive from it our formal framework for
semantic interpretation.

3.1 Class Diagrams, Informally

Figure 2(a) presents a simple class diagram with a bi-directional association
between classes Company and Person. The diagram says that run-time Person-
objects have references works to (collections of) Company-objects, and the latter
have references employs to (collections of) the former. Adornments near the
association edge ends specify these collections in more detail. They say that, if
C is a Company object, then the collection C.employs is a non-empty bag; and
for a Person-object P , P.works is an arbitrary bag.

Although collections are a technical issue, it is important for associations,
and we need to consider briefly some details. For specifying types of collections,
UML uses two Boolean attributes for association ends, isUnique and isOrdered.
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They provide four possible combinations of Boolean values: 11,10,01,00, which
specify the following types of collections: ordered set, set, list and bag respectively
(cf. [19, p.128]). To ease readability, we will directly write bag or set in our
diagrams. Since the default values for isUnique is True and for isOrdered is
False, UML considers an association end to be set-valued by default while a bag-
valued end needs an explicit declaration isUnique=False. In the formal semantics
framework developed below, the situation is inverted: being a bag-valued is a
default assumption while being set-valued is a constraint. Indeed, a set is a
particular case of bag, not the other way round. In this sense, UML’s convention
is a special concrete syntax for specifying the constraint of being a set.

The situation with ordering is more complicated. In fact, declaring an as-
sociation end to be list-valued means that we implicitly deal with a qualified
association (discussed later in section 5). An ordered set can be treated as a list
without repeated elements, i.e., satisfying the constraint of Uniqueness.
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Arrows in (d) are defined by arrow composition in (c): 
 e1:empl  =   (1:empl) ;  (2:value) ; (1:member) 
 e2:empl  =   (1:empl) ;  (2:value) ; (2:member) 
 e3:empl  =   (1:empl) ;  (2:value) ; (3:member) 
 w1:works  =  (1:works) ; (1:value) ; (1:member) 
 w2:works  =  (2:works) ; (3:value) ; (1:member) 
 w3:works  =  (2:works) ; (3:value) ; (2:member) 

Fig. 2: Formal semantics for class diagrams: to be read consecutively (a)...(e)

3.2 Instances

A simple abstraction of a run-time configuration conforming to the model is
presented in Fig. 2(b), where three objects are interrelated by three undirected
edges or links (we write empl to save space). Objects are named “naturally”
and typed by class names, ends of the links are named by numbers and typed
by association end names. In the UML jargon, typing is often called classifying
and classes and association ends are, respectively, classifiers; entities that are
typed/classified are called instances of the respective classifiers.
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In terms of information modeling, the diagram says that the company All-
Stars employs John and Mary with Mary counted twice (e.g., Mary can be em-
ployed at two different positions in the company). Correspondingly, Mary works
for the company AllStars “two times”. In a more implementation-oriented view,
graph (b) shows objects holding references, but an object cannot hold multi-
ple values in an instance variable slot. Rather, it holds a reference to a collec-
tion of values as shown by graph (c). For example, expression AllStars.(1:empl)
refers to a memory cell, where a reference to a bag of Person-objects can be
stored. In UML terms, AllStars.(1:empl) is a slot, whose contents is given by
its value-attribute. Then expression AllStars.(1:empl).(2:value) denotes a bag of
Persons. The latter can be implemented with Java generic collections [4]. Then
setting a cursor (or Iterator, in Java terms) for this collection would list its three
members with Mary counted twice. Similarly, attribute works of class Person
is implemented by assigning slots of type Bag〈Company〉 to Person-objects, for
example, J and M in diagram (c). Slot assignment is done at compile time and
does not change afterwards, and slots are not shared between objects, hence the
black-diamond arrows. Value assignment is dynamic: a reasonable implementa-
tion is to consider that the same collection is changing its state.

Diagram (c) is built according to UML2 metamodel [19, Sect.7.2, Fig.7.8]. As
is stressed by UML, it provides an abstract specification of the actual run-time
configuration rather than its “mirror”. For example, real addresses of slots de-
pend on the order in which instance variables are defined inside classes (pointer
arithmetic). Setting Iterator is also more complicated than it is shown in dia-
gram (c). The latter thus presents a sufficiently abstract design model. However,
for our further work it is useful to make it even more abstract and eliminate
explicit presence of Collection objects in the model. To do this, we sequentially
compose arrows in graph (c): (/w1:/works) = (1:works) ; (1:value) ; (1:member),
(/w2:/works) = (2:works) ; (3:value) ; (1:member), and so on, where semicolon
denotes composition and names of derived elements are prefixed by slash (UML’s
convention). That is, /w1,/w2,/w3 are derived directed links and /works is their
common classifier – a virtual association end. What we really need for our further
work is these derived links while the more detailed model and the way they are
derived can be suppressed. The result is the graph in Fig. 2(d). The latter does
not contain implementation details but it can be mapped to the implementation-
oriented graph (c) augmented with derived elements: some elements of this map
are shown in Fig. 2 by dotted “curly” lines (brown with a color display). We will
term this and similar cases below by saying that model (d) is a view to model
(c).

3.3 Formal Class Diagrams, I: Nodes, Arrows and Their Extension

Our next step is to collect the type/classifier names used in the instance graph
(d) and organize them into a separate type graph as shown in Fig. 2(e) (ignore the
label [inverse] for a moment). Nodes of this graph classify objects, and arrows
classify directed links from the instance graph. Node rectangles are filled with
dots to suggest that classes are populated with objects.
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It is useful to invert our last passage from (d) to (e) and read it in the
reverse direction from (e) to (d). We notice that each element E in graph (e)
has an extension set [[ E ]]: [[ Company ]] = {AllStars}, [[ Person ]] = {Mary, John},
[[ works ]] = {w1,w2,w3} and [[ employs ]] = {e1,e2,e3}. Extensions of nodes are sets
of objects, and extensions of arrows are sets of labeled directed pairs of objects.
Labeling allows multiple occurrences of the same pair, i.e., extension of an arrow
is a bag rather than a set of directed pairs. A collection of directed pairs is nothing
but a (mathematical) mapping between the corresponding sets; more accurately,
a partially-defined multi-valued mapping. We will designate such mappings with
a black triangle head f : X→IY , and keep the ordinary arrow head for a single-
valued mapping f : X → Y . By default, a multi-valued mappings is bag-valued
because it corresponds to arbitrary instance graphs with multiple edges between
the same nodes. Declaring a mapping to be set-valued is a constraint prohibiting
duplication of edges in the instance graph. 2

We will call graphs like (e) formal class diagram because their nodes corre-
spond to classes and arrows to association ends, and at the same time have a
formal meaning: nodes are sets and arrows are mappings. It can be specified by
an extension (meta)map [[ ∗ ]] : G U with G the graph representing our formal
diagram and U the graph specifying our semantic universe: its nodes are sets
and arrows are partially-defined multi-valued mappings between them.

3.4 Formal Class Diagrams, II: Diagram Predicates

An important feature of the run-time instance graph (d) is that collections
[[ employs ]] and [[ works ]] are isomorphic: they present the same set of object pairs
traversed in the opposite directions. In this case we will say that the mappings
are co-extensional or inverse (to each other). This feature is not a peculiarity
of the particular instance (d) and must hold for any intended instance of the
class diagram (e) as mappings employs and works present two opposite ends
of the same association. Hence, we must add to our formal class diagram (e) a
requirement that the arrows employs and works must have inverse extensions at
any state of the system. In this case we call the arrows inverse.

Syntactically, we add to the graph (e) a formal expression, or predicate dec-
laration, [inv](employs, works), where [inv] is a predicate name (abbreviating
’inverse’) and employs,works are arguments. The semantics for this declaration
is that we consider to be legal only those extension maps [[ ∗ ]] of graph (e), which
make mappings [[ employs ]] and [[ works ]] inverse. To respect this constraint at
any run-time moment, mutator methods (setters) must be synchronized and im-
plemented with care, see [1] for details. Thus, the predicate declaration is an
important part of the specification.
2 In the Java Utility Package, what we call a mapping X →I Y would be specified by a

generic interface Map<X,Collection<Y>>, where objects of the class X are called keys
and respective collections are their values. The values are accessed by the method
get(X key) of the return type Collection<Y> [4]. Note that Java uses the term
“mapping” for an individual pair [x, f.get(x)] rather than for the set of all such
pairs when x ranges over [[ X ]] like we do.
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An important feature of predicates like [inv] is that their arguments must
satisfy certain structural restrictions, e.g. for [inv], the two argument arrows
must go between the same nodes in the opposite directions. In the paper we
will see other such predicates and call them diagram predicates. For example,
association end’s multiplicity is also a diagram predicate, whose arity shape
consists of a single arrow. A bit more formally, we begin with a signature Σ of
diagram predicates, each is assigned with its arity shape graph. Then we may
form Σ-graphs, i.e., graphs in which some diagrams are marked with predicates
symbols from Σ so that the shape of the marked diagram matches the arity
shape of the predicate (see [7, Appendix] and [9] for details). If Σ is clear from
the context, we call Σ-graph merely dp-graphs with “dp” standing for “diagram
predicate”.

It is mathematically proven that formal set theories can be interpreted in the
language of dp-graphs and, hence, any specification possessing a formal semantics
can be modeled by dp-graphs [3]. It has an important consequence that not
only associations but many modeling constructs can be formalized in the same
uniform way [8, 7].

4 Problems of Binary Associations

In this section we analyze semantics and propose implementation guidelines for
the main use cases of binary associations. Results are presented in Table 1 for
pure navigation and Table 2 for cases where extension is crucial. In both Tables,
the left column presents typical UML class diagrams, the middle column shows
their semantics in the framework of section 3 and the rightmost column presents
typical instances of the diagrams. We will consecutively consider the rows in the
tables.

4.1 Navigation: Is It That Simple? (Table 1)

Row 0: The baseline. The top row of Table 1 presents a very simple case:
an unconstrained bi-directional association which we call the baseline. The class
diagram shows the name Job of the association. Its counterpart in the formal
diagram is an element “Job” framed with an oval. Formally, it is a name for the
triple (employs, works, inv) and hence deletion of “Job” from the model implies
deletion of its three components too. In UML jargon, “Job” is an object owning
the elements of the triple and we use black-diamond ends of the corresponding
meta-associations. Note that “Job” is not a classifier: its runtime “instances”
are pairs of links, that is, a concept or a meta-construct rather than something
really existing at run-time, see Fig. 2.

As discussed in the introduction, implementation of the baseline case requires
accuracy to ensure synchronization of the ends’ updates. It can be done in two
different ways. One is to implement synchronized mutator methods for the at-
tributes as suggested in [1]; care must be taken to avoid looping with mutual
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Table 1: Back and forth between UML class diagrams and their semantics, I.
(Color display would ease readability but a black-white version works too)

UML-like Class Diagram (CD)  Formal Class Diagram (FD)  Object-link (instance) Diagram (OD) 
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see Table 2

Legend for Formal Diagrams. Classifiers: Nodes are rectangles filled-in with dots.
Arrows are a bit thicker than link-arrows. Diagram predicates: Names are [,]-bracketed
(shaded by dark red). The arguments are shown by thin dotted lines. Diagram operations:
Names are asymmetrically bracketed by [,〉 (shaded by blue). The direction from the input
to the output is shown by a dotted (blue) arrow. Tuples (Object-containers): Oval frame
without filling and “quoted” names. The contents is shown by edges with black diamonds
(composition); some of these edges are not shown to avoid clutter.

Cross references between UML and formal diagrams are shown with dotted “curly”
(brown) lines. Elements in UML diagrams modifying these mappings are circled.
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synchronization. Another way is to implement an object “Job”, which will man-
age access and updates of the mappings via communication with classes. We will
call this approach to implementation objectifying the association.
Row 1a: Unidirectional association with a multiplicity constraint at
the opposite end. Unexpectedly, implementation of this case is problematic.
Respecting the multiplicity at the works-end seems to require that the end should
be implemented as an invisible attribute of class Person. It means that class
Person knows about class Company, which destroys decoupling between classes
– one of the main goals of having unidirectional associations. In [1, pp.21-23],
the problem is discussed in detail but seemingly without a good solution.

Let us consider semantics of the case. The Standard [19, Sect.7.3.3,p.42] says
that for a given association, the set of its association ends is partitioned into
navigable and non-navigable ends. The former are navigated efficiently while the
latter are non-efficient or not navigable at all. This consideration is close to a
well-known distinction between basic and derived data in databases. The former
are stored in the database and hence are directly accessible; accessing the latter
requires querying and hence computation. Some types of queries can be executed
efficiently while others are not, yet data to be queried are not specified in the
database schema and conceptually are quite distinct from basic data. The latter
are immediately stored in the database and their access is always efficient. Thus,
the distinction between navigable and non-navigable ends in UML is similar to
the distinction between basic and derived data in SQL.

Formalization of this idea is shown in the middle diagram. By inverting the
mapping employs (i.e., formally, by applying to it the operation invert), we
come to a new derived mapping /works = [inv〉〉〉(employs) with [inv〉〉〉 standing for
[invert〉〉〉. Note asymmetry in the brackets to distinguish operations from predi-
cates. Since mapping /works is derived from employs, the multiplicity constraint
declared for it is, in fact, a constraint for the mapping employs.3 Thus, what we
need to do is to implement a specific constraint to mapping employs, which, in
general, has nothing to do with attributes of class Person. The most immediate
way to do this is to objectify the association by implementing an object “Job”
that owns the mapping employs, computes its inverse and checks the multiplicity
constraint. Class Person may know nothing about this, and the class coupling
problem is thus resolved.
Row 1b: Both ends are non-navigable. This seems to be a meaningless idea
(we are not aware of its discussion in the literature), yet the Standard explicitly
allows such associations [19, Sect.7.3.3]. We analyze this case below in Sect. 4.2.
Row 2: Bi-directional association with heterogeneous collections at
the ends. Suppose that one of the association ends, say, employs, is declared
to be set-valued (isUnique=True in UML terms) while the opposite end is kept
bag-valued, see UML diagram (a). It implies that in our UML-style instance

3 As a simple analogy, consider the following situation. Let X be a set of natural
numbers and S(X) denotes the sum of all members of X. When we say that S(X)
must be less than 100, it is a constraint to X rather than to S(X).
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diagram (a) (the upper rightmost in the row), we need to glue together the
duplicate ends 2:employs and 3:employs, but keep their opposite ends 2:works
and 3:works separate. It cannot be done without destroying the structure of the
graph (binary links cannot have three ends).

The problem generated a whole discussion in the UML community [18], which
did not come to a certain conclusion. One solution is to consider associations
with heterogenous collections at the ends illegal. However, it would prevent mod-
eling many situations appearing in practice, see [17] for a detailed discussion. It
appears that the problem is not in the heterogenous associations themselves but
rather in an accurate formalization of their instance semantics.

A solution is again provided by considering operations and derived elements.
The formal class diagram (b) shows three mappings: works and employs as
before and, in addition, the duplicate eliminated version employs× of mapping
employs (the superscript reminds about duplicates crossed-out). This mapping is
derived by applying operation dupX to employs. Now the inconsistent instance
diagram (a) can be fixed as shown in diagram (b) below it. Mappings works
and employs× need not be co-extensional and the problem disappears.4 We thus
interpret the UML class diagram (a) as asserting that mapping employs× rather
than employs is to be implemented efficiently, and interpret the end employs by
the formal mapping employs×. In other words, UML class diagram (a) amounts
to a partial view to its fuller formal counterpart (b). This view is shown by
“curly” dotted lines.

Note that in practical application we may need both mappings, employs
and employs×, to be implemented efficiently. The corresponding formal diagram
is shown in cell (c), where the predicate =× declares mappings employs and
employs× to be equal up to duplicates. This situation (and code implementing
it) cannot be modeled (reverse engineered) with UML. However, a slight addition
to UML notation shown in the rightmost cell (c) fixes the problem.

4.2 Navigation and Extension (Table 2).

Table 2 presents our study of cases that involve extensional aspects of associa-
tions. These aspects are especially important for n-ary associations with n ≥ 3
[6]. However, for binary associations too, there are several semantic phenomena
missed from the literature and mistakenly treated in the Standard. The top row
of Table 2 repeats the baseline case to ease references.
Rows 1,2: Association classes and non-navigable associations. UML
class diagram in Row (1) presents a major association construct called Associa-
tion Class. The Standard says [19, Sect.7.3.4 p.49]: An association may be refined
to have its own set of features;[...]. The semantics of an association class is a
combination of the semantics of an ordinary association and a class. [...] the
attributes of the association class and the ends of the association connected to
the association class must all have distinct names. [...]. It should be noted that in

4 Yet these mappings are still mutually inverse, hence label inv× in the formal dia-
gram.
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Table 2: Back and forth between UML class diagrams and their semantics, II
UML-like Class Diagram (CD)  Formal Diagram (FD)  Instance (object-link) Diagram (ID)  

 

 
(0) Baseline: bi-directional association with homogeneous (and unconstrained) collection at the ends 

  

(1) association class (note how the ends change their meaning w.r.t. the row above!) 

 

(2) non-navigable association 

 

  

 
 

(3) table and mappings together    
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The legend is the same as in Table 1. The only new element is Semi-oval over class Job,
which denotes the standard “table” container
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an instance of an association class, there is only one instance of the associated
classifiers at each end, i.e., from the instance viewpoint, the multiplicity of the
association ends are ’1’ For our case in Row 1, the italicized sentence in the
quote says that the ends employer and employee are to be like attributes of class
Job, which explains why duplication of names is prohibited. The next sentence
says that a Job-instance is, in fact, a pair of instances, one from class Company
and the other from class Person. Combination of these two requirements provides
the formal diagram in the middle cell: class Job has two single-valued references
employer and employee to classes Company and Person.

An important feature of the case is that defining attributes of the asso-
ciation class are immutable: if we have initialized object J :Job with values
J.employer = AllStars, J.employee = Mary and J.salary = 50K, then only
the value of salary can be changed later; changing J.employee from Mary to,
say, John is impossible because it would change the link and hence the very
object! Hence, we add to our formal diagram two more diagram predicate decla-
rations final(employer) and final(employee) asserting immutability of the map-
pings.What we finally specified is a table Job with three columns (called also
projection mappings), amongst which the pair (employer, employee) is considered
as an immutable identifier. If an additional condition of disallowing duplicate val-
ues for pairs (J.employer, J.employee) holds, then the pair (employer, employee)
would be exactly what is called the primary key to relation in the database the-
ory.5 Formally, we call a triple T = (Job, employer, employee) an (association)
table if mappings employer and employee are totally defined, single-valued and
immutable. From now on, we will designate such tables in our diagrams by a
semi-oval with label “table”.

Comparing Rows 0 and 1 shows that declaring an association to be a class
changes the meaning of association ends. Making an association a class (in UML
terms, reifying it) actually reifies its extension as a table and makes association
ends projection mappings (columns) of this table rather than navigation map-
pings. However, interpreting association ends by projections does not mean that
the old navigational mappings entirely vanished. By looking up the extension
table in the two opposite directions, we can reconstruct the old mappings as it
is shown by formal diagram in Row 2. Two labels [lookUp〉〉〉 denote two appli-
cations of the operation [lookUp〉〉〉 to the table, which produce mappings /works
and /employs/ (we remind that slash-prefix denotes derived elements).Thus, our
old association ends have reappeared but now as derived rather than basic ele-
ments. By our discussion of quote (Q1) p.11, it means that the old mappings are
non-navigable as shown by UML diagram in Row 2. Now the multiplicity and
collection-type constraints for non-navigable ends can be readily explained. For
example, if a non-navigable end is declared to be set-valued (see UML diagram
in Row 2), it means that we need to augment our formal diagram with one more
derived element: the duplicate-eliminated version employs× of the mapping em-
ploys. Thus, the UML diagram in Row 2 specifies a few constraints to a table,
but the very table is not anyhow presented in the diagram! Besides conceptual
5 In the earlier UML versions, this condition had indeed been assumed.
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ambiguity, this notation does not define the names for the columns of the table
and thus hinders cross-references between design and code.
Row 3: Navigation and extension together. The UML diagram (a) entirely
conforms to the UML metamodel because any association can be declared to be
a class. However, reifying an association as a class converts association ends
into projection mappings (see Row 1) while having multiplicity constraint for
the ends forces to interpret them navigationally. Semantics of the situation is
clear and shown in formal and instance diagrams (b). However, mapping of the
UML diagram (a) into the formal diagram (b) is ambiguous because we have
two names for four mapppings.

On the other hand, it is an ordinary situation when both the extensional
and the navigational components of association are required to be implemented
efficiently, hence, be basic elements as specified by the formal diagram. We
have a lot of redundancy in data representation, and the label coExt asserts
that the following three sets must be equal: {(p, c) | p ∈ Person, c ∈ p.works},
{(p, c) | c ∈ Company, p ∈ c.employs} and {(j.employee, j.employer) | j ∈ Job}.
In other words, Job is the common graph of mappings works and employs.
Though such situations are quite possible in practical applications and hence
may be hidden in the application code, their reverse engineering into UML is
problematic. To fix the gap, we propose the notational construct shown in row
(3b) left. More generally, Figure 3 presents a modification of UML notation to
manage the navigation-vs-extension issue.

 

(b1) navigational  (b2) extensional  (b3) both  (a) no decision about 
possible implementation 

is made so far (b) implementation suggestions 
 

e1 

p2 p1 
C1 C2

e2 

R

e1e2 
C1 C2 p2C1 C2p1 RC1 C2 ? 

Fig. 3: Notational proposal

5 Qualified and N -ary Associations

Qualified associations are considered to be one of the most controversial con-
structs in the UML associations “package” [1]. Even simple unidirectional cases
are rarely implemented in MDD-tools, let alone the bidirectional ones. The cause
of the problems is that semantics of qualified associations is often misunderstood
and their metamodel is essentially flawed [5, 6]. The latter is due mainly to mis-
understanding that a qualified association is merely a particular traversal of the
corresponding ternary association and conversely, any ternary association deter-
mines a collection of mutually inverse qualified associations. The example shown
in Fig. 1(c1,c2,d) is quite generic in this sense. Precise formal definitions (in-
cluding the general case of n-ary association and its qualified counterparts with
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(n− 2)-qualifiers) and the metamodel can be found in [5]. In the present paper
we are interested in semantics and design patterns rather than in metamodeling.

The Standard distinguishes two cases of using the construct: the general and
the common [19, Sect.7.3.44,p.129], which we will consecutively consider.

5.1 The general case. A typical situation is shown in Fig. 1(c2), which says
that a person at a given company can hold not more than two positions. That
is, class Person has a getter method holds with a parameter c of type Company.
What makes the case general (rather than common to be considered below) is
that invocation p.holds(c) for an object p:Person returns a collection rather than
a single Position-object. We can present the case as a binary multi-valued map-
ping holds∗ : Person× Company→IPosition. The passages from holds∗ to holds and
conversely are well known in type theory and functional programming by names
of Currying and unCurrying respectively. In its turn, the extension (graph) of
mapping holds∗ is a ternary relation over the participating classes. By choosing
suitable names for the roles of this relation, we come to diagram (d) in Fig. 1.
Note that according to Standard [19, p.42], multiplicities at the ends are, by def-
inition, exactly those specified in qualified association diagrams Fig. 1(c1),(c2).

The ternary relation in Fig. 1(d) can be traversed in six different ways
grouped in three pairs. For example, methods holds:Person→ [Company→IPosition]
at class Person Fig. 1(c2) and its counterpart holds′:Company→ [Person→IPosition]
at class Company, give one such pair of traversals. Methods employs: Company→
[Position→IPerson] Fig. 1(c1) and its counterpart employs′: Position→
[Company→IPerson] give another pair. With JavaGenerics, implementation of
these qualified mappings is not more complicated than in cases considered above.
Our analysis of binary associations above can be immediately generalized for
multi-ary (n ≥ 3) associations with qualified instead of ordinary ends.

5.2 The common case. This is the case when the multiplicity at the target
end is 0..1 like in diagram (c1) in Fig. 1; it is repeated below in (1a) Fig. 4. If we
collect all those pairs (c:Company, p:Position), for which c.employs(p) returns a
single Person-value, into a set X ⊂ Company × Position, then we will have a
totally defined single-valued mapping ∗employs∗ : X → Person. Usually it means
that the set X has a certain semantic significance and it makes sense to model
it as a special new class. In our situation, such pairs can be considered as jobs,
and we come to a formal class diagram (1b) in Fig. 4 (ignore the dashed derived
arrows for a while). Predicate key in this diagram states that Job-objects are
uniquely determined by pairs of values (J.empler, J.pos) ([7] provides formal
details). Note that association end employs specified in the class diagram (1a)
is nothing but a Curried version of mapping emplee in diagram (1b).6

Introducing a new class into the model for the common case of qualified as-
sociations makes sense for many practical situations where semantics is to be
explicated; diagrams (2a,b) in Fig. 4(2) present one more typical example. In

6 The multiplicity changes from [1] to [0..1] because not any pair (c, p) determines a
job.
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Class Diagram Formal Diagram Class Diagram Formal Diagram 

 
   

..a) ..b) ..a) ..b) 

(1..  Refinement of  association Job from Tables 1,2   
(names empler, emplee abbreviate employer, employee resp.) 

(2.. Example from the Standard [23, 
sect.7.3.44] 

 

owner 

num

Bank 

Account 

Person  

[key] integerBank 

acctNum: int

owner
Person 
0..1

[ins][0..6] 

[0..3] [0..4]

/holds+ =
has;pos

/worksFor = 
has;empler has 

empler 

emplee

pos
Company 

Job 

Person  

[key] PositionCompany 

pos:Position 
has
employs 0..1 

0..6 

Person 

Fig. 4: The common case of using qualified associations. Non-shown multiplicities
are exactly [1] by default.

fact, the issue is well-known in database design: in the relational language, a
qualified association with multiplicity 1 is nothing but a so called functional
dependency : (empler,pos)→ emplee for the relation Job. Then remodeling dia-
gram (1a) into diagram (1b) appears as a typical case of normalizing relational
schemas according to functional dependencies. Thus, the common case of quali-
fied associations actually encourages to model associations in a non-normalized
way and to hide a semantically important class. It is not necessarily a “bad’
design but the modeler should be aware of possible problems and recognize that
diagram (1a) is only a partial view of semantics (1b).

5.3 Precise modeling with diagram predicates and operations. Formal
diagrams like (1b,2b) in Fig. 4 not only accurately specify the mappings to
which multiplicities in class diagram (1a,2a) refer, but allow specifying other
important details of the situation. For example, to specify multiplicity of the
end worksFor from diagram (a) in Fig. 1, we compose mappings has and empler

and obtain a derived mapping /worksFor(p.worksFor
def= {J.empler | J ∈ p.has}

for a Person-object p), for which the required multiplicity can be declared. In
addition, by inverting mapping /worksFor we can augment our formal diagram
with another derived mapping /employs : Company→IPerson, and then map the
entire diagram Fig. 1(a) to the augmented formal diagram. In this way all class
diagrams in Fig. 1 can be presented as views to the formal diagram Fig. 4(1b)
suitably augmented with derived elements (including Curried versions of binary
mappings emplee and pos). This observation is crucial if we need to merge a few
class diagrams without redundancy. None of the major MDD-tools addresses the
issue.

Moreover, the same formal diagram can be used for specifying requirements
beyond the class diagrams in Fig. 1. Suppose that despite the possibility of
working for up to three companies, and of holding up to two positions at a
company, a person is not allowed to have more than four positions in total.
This multiplicity cannot be declared in either of diagrams in Fig. 1 yet it can
be easily done with our formal diagram. To wit, by composing mappings has
and pos we derive mapping /holds+ and declare it to be [0..4]-valued. Thus, our
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formal diagrams appear as a very flexible means of modeling associations and
precise specifying their semantics as well.

6 Discussion and Conclusions

Ownership, Reification and Objectification. Cases presented in Tables
1,2 show that an ordinary binary association comprises six mappings: two pro-
jections (see p.14) and two navigable versions of each of the ends (bag-valued
and set-valued). The UML2 metamodel calls mappings properties, and says that
a binary association has two properties called its ends. Thus, the metamodel
provides two names for six objects and hence a controversy is inevitable. For
qualified associations, the situation is even worse.

An important aspect of this controversy is related to the infamous issue of
association end ownership. In the earlier versions of the Standard, including
UML 2.0, navigable ends have been considered to be owned by the classes im-
plementing them while non-navigable ends were owned by the very association.
This treatment confuses ownership with interpretation of association ends (ei-
ther by navigation mappings between the classes or by projection mappings of
the extension table). This confusion has not been identified in the literature and
the issue has been repeatedly debated in the community. The latest version of
the Standard, UML 2.1.1, has changed its formulation once again. Now owner-
ship and navigability are declared to be entirely orthogonal concepts [19, sect.
7.3.3]. Because the extension table of an association is still neither specified in
the metamodel nor explicated in the semantics sections of the Standard, the
new treatment did not clarify the issue. Rather, it made it even worse by in-
creasing the number of possible yet meaningless combinations of ownership and
navigability.

The problem disappears in our semantic framework. Association ends are al-
ways owned by the association itself: if it is deleted from the model, the ends are
also deleted even though they are implemented as members of the correspond-
ing classes. In our formal diagrams, this is denoted by black-diamond meta-
associations coming from the oval “Job”; the latter can be thought of as an
object containing the ends. If the association is reified by the class Job, then the
container object ”Job” will contain the class Job! (see formal diagram in Table 2
Row 1). A part of UML’s controversy around association is caused by confusing
these two distinct concepts: the class Job reifying the association and the object
“Job” objectifying it.

OO Programming vs. OO Modeling. Another side of the problem is a
conceptual mismatch between OO modeling languages and OO programming
languages. The former are usually diagrammatic and this is not just a syntactic
sugar. Rather, the diagrammatic syntax of modeling languages follows their di-
agrammatic logic in the sense that a basic modeling unit, e.g., an association, is
often an integral systems of modeling elements, which consists of several nodes
and edges; details and formal definitions of diagrammatic logic constructs can
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be found in [8, 7]. Implementation of diagrammatic modeling constructs in a
OO framework requires their distribution over distinct classes. This causes syn-
chronization problems, and the ownership controversy. We propose the following
uniform and universal way of managing the issue. Irrespectively of the type of
association, it can always be implemented by a special object, which (i) keeps
track of all the components residing in distinct classes, (ii) manages their access
and updates by communicating with the classes hosting (but not owning!) the
components, and (iii) ensures synchronization and consistency w.r.t. the con-
straints declared in the model.

More technically, we propose to implement a generic (meta)class Associa-
tion〈n〉 with n the arity parameter. The members of this class are (i) mappings
between the participating classes, (ii) the common extension table of these map-
pings (which is a class whose instance variables are projection mappings) and
(iii) methods executing (diagram) operations discussed in the paper. Particularly,
Association〈n〉’s interface must include methods for Currying and unCurrying,
projecting n-ary association to its m-ary, m < n, components and checking and
maintaining the constraints. Implementation of this class as an Eclipse plug-in
is planned for a future work.

Summary. Associations between classes are a major modeling concept in
OOAD. Their essential feature is integrity: an association comprises a system
of interrelated modeling elements. In contrast, implementation of associations
in modern OO languages requires their elements to be distributed over distinct
classes, which breaks the system into pieces. The integrity must then be re-
covered by implementing special synchronization means, which complicates the
code. Implementation becomes even more intricate because of the interplay be-
tween basic (navigable) and derived (non-navigable) elements of associations.

A necessary prerequisite for addressing the problem is to have a clear se-
mantic picture of what associations and their properties are. We have proposed
a graph-based yet formal framework where these semantics can be built, and
shown how naturally UML diagrams can be mapped into formal diagrams. This
is the main contribution of the paper. It allowed us to explain semantics and
implementation of a few controversial association constructs, e.g., unidirectional
associations with multiplicities at the both ends, association without navigable
ends, qualified associations. In addition, we have identified a number of patterns
for using associations in practical applications, for which reverse engineering
into UML is problematic. We have also suggested a universal pattern for imple-
menting associations via their objectification and sketched the interface of the
corresponding metaclass.
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