
Consistency Checking of Conceptual Models via Model Merging

Mehrdad Sabetzadeh Shiva Nejati Sotirios Liaskos Steve Easterbrook Marsha Chechik
Department of Computer Science

University of Toronto, Toronto, ON, Canada.
{mehrdad,shiva,liaskos,sme,chechik}@cs.toronto.edu

Abstract
Requirements elicitation involves the construction of

large sets of conceptual models. An important step in the
analysis of these models is checking their consistency. Ex-
isting research largely focuses on checking consistency of
individual models and of relationships between pairs of
models. However, such strategy does not guarantee global
consistency. In this paper, we propose a consistency check-
ing approach that addresses this problem for homogeneous
models. Given a set of models and a set of relation-
ships between them, our approach works by first construct-
ing a merged model and then verifying this model against
the consistency constraints of interest. By keeping proper
traceability information, consistency diagnostics obtained
over the merge are projected back to the original models
and their relationships. The paper also presents a set of
reusable expressions for defining consistency constraints in
conceptual modelling. We demonstrate the use of the de-
veloped expressions in the specification of consistency rules
for class and ER diagrams, and i∗ goal models.

1 Introduction
In model-based requirements elicitation, conceptual

models are used to capture the needs and goals of the in-
volved stakeholders. These models are often subject to cer-
tain sanity criteria, including well-formedness constraints
imposed by the modelling notation being used as well as
quality considerations for facilitating model understand-
ability, maintenance, and evolution.

For example, in class diagrams, well-formedness con-
straints disallow cyclic inheritance. Cyclic dependencies,
on the other hand, are not disallowed; but, their use may be
discouraged, as a matter of good practice, to avoid coupling.
An important problem in conceptual modelling is check-
ing compliance with such constraints and generating proper
feedback if a violation occurs. This problem is usually stud-
ied under the topic of consistency checking [10, 18]. Con-
sistency is a very broad term and may have different inter-
pretations in different contexts. In this paper, we concen-
trate on consistency from a structural perspective, using the

Widget

Canvas

Component

Widget

Canvas

RM1 M2

Fig. 1. Pairwise inconsistency.

term to refer to properties that models are expected to sat-
isfy irrespective of their semantic content.

Consistency checking is not restricted to isolated models.
Conceptual modelling is a collaborative effort that may be
distributed over different teams of people. These teams con-
struct distinct but overlapping models representing different
perspectives on the overall system. The overlaps between
the models are typically described by mappings that equate
corresponding model elements. A key aspect of consistency
checking in distributed development is ensuring that map-
pings respect the constraints of interest. For example, con-
sider the class diagrams M1 and M2, and their mapping R
in Fig. 1. Although M1 and M2 are consistent individually,
they are not pairwise consistent because the mapping de-
fined between them gives rise to cyclic inheritance: Canvas
is a descendant of Widget in M1, while Widget is a descendant
of Canvas in M2. Hence, a mapping based on name equali-
ties results in an inconsistency, indicating a modelling error
or a terminological conflict between M1 and M2.

Existing techniques by and large focus on checking con-
sistency of individual models and of individual mappings
between model pairs (i.e. pairwise consistency). These
techniques do not fully address the problem of consistency
checking in distributed development because they do not
provide a method for verifying global consistency proper-
ties [28, 18]. For example, Fig. 2 shows three models, M1,
M2, M3, related by three mappings, R1, R2, R3. Each
model and each mapping, when taken individually, satisfies
the acyclic inheritance constraint. However, the system as
a whole is inconsistent because the combination of R1, R2,
and R3 implies a loop in the inheritance chain.

This example underscores the need for a consistency

Container

Panel

M3

R1 R2

Widget

Canvas

M1

M2

UIContextUIObject

R3

Fig. 2. Global inconsistency.

checking technique that can simultaneously use information
from multiple models and mappings. Existing approaches
such as xlinkit [17] work well for pairwise checking. How-
ever, since these approaches do not clearly separate consis-
tency rules from model mappings, it becomes very difficult
to generalize the rules beyond pairwise checking.

In this paper, we propose a consistency checking ap-
proach that addresses the above problem for homoge-
neous models, i.e. models described in the same notation.
Our work is motivated by the observation that consistency
checking of a set of (homogeneous) models can be done in a
more general and succinct way if we first merge the models
according to the mappings defined between them. The im-
plementation of this approach requires a merge operator that
is well-defined for any system of interrelated models even
when they are incomplete or inconsistent. We developed
such a merge operator in our earlier work [23] for graphical
modelling notations. We use this operator as a basis for the
consistency checking approach presented here.

For example, rather than trying to check the acyclic in-
heritance constraint on the configuration in Fig. 2, we con-
struct a merge, shown in Fig. 3, and interpret the constraint
over it. By keeping proper traceability information, we
project the diagnostics obtained from consistency checking
of the merge back to the originating models and mappings.

Canvas,
Panel

Widget,
UIObject

UIContext,
Container

Merge

Fig. 3. Merge of the models in Fig. 2.

In addition to providing a solution for verifying global
consistency properties, our approach has the advantage that
it requires only a single consistency rule to be developed
for each consistency constraint – the rule applies no matter
how many models are involved and how they are interre-
lated with one another.

We provide an implementation of our approach within
a logic-based constraint specification framework. To de-
scribe consistency rules, we use first-order relational calcu-
lus augmented with counting and transitive closure opera-
tions. This logic, on one hand, provides enough expressive
power to characterize the main structural constraints of con-
ceptual models, and yet is tractable enough to be applicable

to large modelling problems. In our work, we use a highly
optimized relational interpreter, CrocoPat [2], that imple-
ments a variant of this logic.

To simplify the specification of consistency rules, we de-
velop a set of generic and reusable expressions capturing
recurrent patterns across the constraints of different mod-
elling notations. We demonstrate the usefulness of these
expressions for describing constraints over class and Entity-
Relationship (ER) diagrams, and i∗ goal models [31].

This paper is organized as follows: Section 2 provides
background information. Section 3 discusses our generic
expressions for specifying consistency rules and illustrates
their use. Section 4 presents our consistency checking ap-
proach for distributed conceptual models. Section 5 de-
scribes the implementation of our approach and reports on
experimental results. Section 6 compares our work to re-
lated research. Section 7 summarizes the paper and outlines
directions for future work.

2 Background
2.1 Graph-Based Modelling

The work described in this paper focuses on conceptual
modelling formalisms with graphical notations. In this sec-
tion, we introduce a general notion of graph adopted from
algebraic approaches to graph-based modelling. This no-
tion captures various formalisms including class and ER di-
agrams, goal models, state machines, and Petri Nets [22].

Definition (graph) A (directed) graph is a tuple
G = (N,E, SrcG,TgtG) where N is a set of nodes,
E is a set of edges, and SrcG,TgtG : E → N are functions
respectively giving the source and the target of each edge.

Every element i (i.e. node or edge) is assumed to have
an implicit and immutable attribute, called uid, that uniquely
identifies i across a modelling project. We write i.uid to re-
fer to the value of i’s uid. To capture properties such as label,
stereotype, colour, order, etc., we attach to every element a
set of (Property, value) tuples.

Graph-based models typically have typed elements. A
standard way for assigning types is to parameterize models
with a metamodel graph [4]. Assuming that the metamodel
for the chosen modelling language is given by a graph M,
every model G = (N,E, SrcG,TgtG) is equipped with a
type function t : G → M, mapping each element of G to
an element of M. The type function respects the structure
of G: If t maps an edge e of G to an edge u of M, the end-
points of e are respectively mapped to those of u, as illus-
trated in Fig. 4. In this figure, M is the extends–implements
fragment of the metamodel for Java class diagrams.

2.2 Relational Specification
We use the Relational Manipulation Language (RML)

[2] for describing consistency rules. RML provides the ex-
pressive power of first-order logic with transitive closure

extends extends

classinterface implements

G

M

t

Set AbstractSet HashSet
uid=n1 uid=e1 uid=n2 uid=e2 uid=n3

Fig. 4. Example of typed graphs.

stmt ::= rel var(term, . . .) ; |
rel var(term, . . .) := rel expr ; |
IF rel expr { stmt . . .} ELSE {stmt . . . } |
FOR var IN rel expr {stmt . . .} |
PRINT print expr;

rel expr ::= rel var(term, . . .) | rel expr op1 rel expr |
FA(var, rel expr) | /* ∀ quantification */
EX(var, rel expr) | /* ∃ quantification */
TC(rel expr) | /* transitive closure */
!rel expr | /* negation */
rel expr op2 rel expr | num expr op2 num expr

num expr ::= num literal | num expr op3 num expr |
#(rel expr) /* counting */

print expr ::= rel expr | term

term ::= var | str literal | STRING(num expr)

(1) op1 can be one of: ’|’ (or), ’&’ (and), ’–>’ (implies).
(2) op2 can be one of: ’=’, ’!=’, ’<’, ’>’.
(3) op3 can be one of: ’+’, ’-’, ’*’, ’/’.

Fig. 5. Partial grammar of RML.

and counting operators. These operators are key to speci-
fying rules involving reachability and multiplicity.

While our consistency checking framework is not tied
to a particular constraint language, there are two factors
that make RML particularly appealing: (1) RML’s domain-
independent and easy-to-use syntax and (2) its efficient in-
terpreter, CrocoPat [2]. CrocoPat encodes relational pred-
icates as Binary Decision Diagrams (BDDs) [3] which are
compact data structures for representing and manipulating
relations. The use of BDDs makes CrocoPat highly scalable
in terms of both time and memory.

A

B C

D

RML has an imperative style of execution
and runs programs statement by statement. A
partial and slightly simplified grammar of the
language is shown in Fig. 5. The complete
grammar can be found in [1]. For example,
consider the graph shown at right, and assume
that the relation E(x,y) denotes “there is an edge from x to y”.
To check if there exists a node without any outgoing edges,
we use the existential and universal quantifiers, EX and FA in
Fig. 5, to define the expression EX(x, FA(y, !E(x, y))). This ex-
pression holds over our example graph, witnessed by node
A. For another example, suppose we want to count the num-

Algorithm. GRAPHTORML

Input: Graph G = (N, E, SrcG, TgtG), and type function t : G→M.
Output: A set of RML statements.

1: for every node and edge i in G :
2: if i is a node:
3: output Node(i.uid)
4: else : /* i is an edge */
5: output Edge(i.uid)
6: output Src(i.uid, SrcG(i).uid)
7: output Tgt(i.uid, TgtG(i).uid)

/* Translate type information */
8: output Type(i.uid, t(i))

/* Translate properties */
9: for every property (Propertyk, valk) of i :
10: if valk is boolean :
11: if valk = true : output Propertyk(i.uid)
12: else : output Propertyk(i.uid, valk)

Fig. 6. GRAPHTORML algorithm.

Node(”n1”); Node(”n3”); Type(”e1”, ”implements”);
Type(”n1”, ”interface”); Type(”n3”, ”class”); Edge(”e2”);
Label(”n1”, ”Set”); Label(”n3”, ”HashSet”); Src(”e2”, ”n3”);
Node(”n2”); Edge(”e1”); Tgt(”e2”, ”n2”);
Type(”n2”, ”class”); Src(”e1”, ”n2”); Type(”e2”, ”extends”);
Label(”n2”, ”AbstractSet”); Tgt(”e1”, ”n1”);

Fig. 7. RML encoding of the model in Fig. 4.

ber of predecessors of A. The expression #(E(x, ”A”)), for a
free variable x, returns the number of all assignments ` to
x for which E(`, ”A”) holds. Hence, the expression evaluates
to 2. The following program prints to the standard output
all these satisfying assignments, i.e. B and C:

FOR n IN E(x, ”A”) {
PRINT n;

}

Note that the relation after IN must have one free variable,
here x. For a last example, suppose we want to define a re-
lation Reachable(x, y) that holds iff “there is a path from x to
y”. This is done by the following statement:

Reachable(x, y) := TC(E(x, y));

where TC denotes the transitive closure operator. The se-
mantics of TC for a relation E with two free variables is
described recursively as follows: TC(E(x, y)) ≡ E(x, y) ∨
∃z.E(x, z) ∧ TC(E(z, y)).

2.3 Translating Graphs to Relations
To evaluate relational expressions over a model, we

translate it into a set of predicates. Fig. 6 provides an al-
gorithm, GRAPHTORML, for translating a graphical model,
as defined in Section 2.1, to RML statements. Fig. 7 shows
the result of translation for the class diagram in Fig. 4.

3 Generic Consistency Checking Expressions
In this section, we provide a set of generic expressions

for specifying structural consistency constraints in concep-
tual modelling. These expressions capture a number of re-

classinterface

extends

implements

extends

**0..1 0..1 **
M

Fig. 8. Example of multiplicity annotations.

curring patterns that we observed in the consistency con-
straints of class diagrams, e.g. [26, 9], goal models [12, 15],
and database schemata [24].

Table 1 shows a list of representative consistency con-
straints for the studied notations. Some of these con-
straints (e.g., C1, C4, and C6) capture fundamental well-
formedness criteria, while others (e.g., C2, C5, and G1)
describe desirable model qualities. The table provides an
implementation of the constraints in RML with occurrences
of our generic expressions bolded and underlined. In the re-
mainder of this section, we discuss these expressions under
the following three headings:
• Compatibility expressions, used for ensuring compatibil-

ity of the type of an edge with the types of its endpoints.
• Multiplicity expressions, used for defining a minimum

and a maximum number for edges of a given type inci-
dent to a node.

• Reachability expressions, used for checking existence of
paths of edges of a given type between two nodes.

Compatibility expressions. Compatibility constraints con-
stitute the most primitive class of well-formedness crite-
ria for conceptual models. In Section 2.1, we described a
generic mechanism for capturing these constraints through
a structure-preserving type function t (e.g. see Fig. 4). The
mechanism can be easily expressed in logical terms. To ver-
ify that the source and the target of an edge are respectively
of types β and γ, we define Compatibleβ,γ (x) that holds for
all edges x satisfying the compatibility constraint:

Compatibleβ,γ (x) := FA(n, FA(m, Src(x, n) & Tgt(x, m) –>

Type(n, β) & Type(m, γ)));

Since compatibility constraints are essential to the in-
tegrity of models and mappings, they are typically enforced
at design time, and respected by subsequent manipulations
such as model merging. There are numerous instances
of compatibility constraints in the notations we studied.
Since these constraints are very similar, we show only one,
namely, C1, in Table 1.

Multiplicity expressions. Multiplicity constraints are of-
ten specified using annotations over the metamodel graph.
Fig. 8 shows the metamodel of Fig. 4 annotated with mul-
tiplicity constraints. For example, consider the extends self-
loop incident to the class node. According to the annotations
of this edge, a class can extend at most one (i.e. 0..1) class,
but each class can be extended by several (i.e. ∗) classes.

Given a multiplicity-annotated metamodel M, we pro-
duce a set of logical expressions for validating conformance

of an instance model to the multiplicity constraints pre-
scribed by M. Each edge in M gives rise to two multi-
plicity expressions – one for each endpoint. We consider
multiplicity annotations of four kinds: “k”, “k..l”, “k..∗”,
and “∗”, where k and l are constants. An RML program
for checking a multiplicity annotation “k..l” attached to the
source side of a metamodel edge α is as follows:

SourceMultiplicitykl
α (x):= FALSE(x);

FOR n IN Node(v) { /* v is a dummy free variable */
IF (k ≤ #(Src(e, n) & Type(e, α)) ≤ l) {

SourceMultiplicitykl
α (x):= (x=n) | SourceMultiplicitykl

α (x);
}

}

The program initializes SourceMultiplicitykl
α (x) to an empty

unary relation, FALSE(x). If a node n respects the multiplicity
constraint, it gets added to the relation SourceMultiplicitykl

α (x).
The multiplicity expression SourceMultiplicity2

α(x), where 2 is
“k” or “k..∗”, can be implemented similarly1. Implementa-
tion of a multiplicity constraint attached to the target side of
a metamodel edge is done by replacing Src(e, n) with Tgt(e,n)
in the above program. In Table 1, constraints C3, C6, C8,
and G2 use multiplicity expressions.

Another useful expression similar to multiplicity expres-
sions is for detecting parallel edges of a given type. This is
implemented by ParallelEdgesα(x, y) shown below:

ParallelEdgesα(x, y) := FALSE(x, y);
FOR n IN Node(v) { /* v is a dummy free variable */

FOR m IN Node(w) { /* w is a dummy free variable */
IF (#(Src(e, n) & Tgt(e, m), & Type(e, α)) > 1) {

ParallelEdgesα(x, y):= ((x=n) & (y=m)) | ParallelEdgesα(x, y);
}

}
}

This program initializes ParallelEdgesα(x, y) to an empty
binary relation, FALSE(x, y), and then, adds to it all pairs (n,
m) of nodes between which there are parallel edges. An ex-
ample constraint using ParallelEdgesα(x, y) is G4 in Table 1.

Reachability expressions. Several consistency constraints
involve finding nodes that are reachable or unreachable via
edges of a certain type. For example, in goal modelling, we
may want to ensure that all goals are reachable via goal de-
composition edges. In UML class diagrams, we may want
to check that all descendants (via subclassing edges) of a
given class have a certain property. For an edge of type
α, we define a relation Reachableα(x, y) that holds iff a path
from x to y made up of α-edges exists:

Eα(x, y) := EX(e, Src(e, x) & Tgt(e, y) & Type(e, α));
Reachableα(x, y):= TC(Eα(x, y));

For example, in the class diagram of Fig. 10,
Reachableextends(”E”,”A”) holds, indicating that E reaches A via
extends edges.

A special case of reachability analysis is cycle detection.
Cycles of edges of certain types can be indicative of a mod-

1No expression is needed for the “∗” multiplicity annotation.

Lang. Textual constraint RML constraint
C

la
ss

/E
R

D
ia

gr
am

s
C1. An implements edge relates a class to an interface [26] C1() := FA(e, Type(e, ”implements”) –> Compatibleclass,interface(e));

C2. Every abstract class has a concrete implementation [9] C2() :=FA(c1, Type(c1, ”class”) & Abstract(c1) –> EX(c2, (Concrete(c2) &
Reachableextends(c2, c1))));

C3. A class does not extend more than one class [9] C3() := FA(c, Type(c, ”class”) –> SourceMultiplicity01
extends(c));

C4. Inheritance is acyclic [26] C4():= FA(c, Type(c, ”class”) –> !OnCycleextends(c));

C5. All classes are reachable from a root class [9] C5() := FA(c1, Type(c1, ”class”) –> EX(c2, Type(c2, ”class”) & IsRoot(c2)
& Reachableextends(c1, c2)));

C6. Final classes do not have subclasses [9] C6() := FA(c, Type(c, ”class”) & Final(c) –> TargetMultiplicity0
extends(c));

C7. Inheritance is redundancy-free [9] C7() := FA(c1, Type(c1, ”class”) & FA(c2, Type(c2, ”class”) –>

!RedundantPathsextends(c1, c2)));

C8. Every entity has a unique key [24] C8() := FA(e, Type(e, ”entity”) –> SourceMultiplicity1
key link(e));

i∗
G

oa
lM

od
el

s

G1. Goal dependencies are acyclic [12] G1() := FA(g, Type(g, ”goal”) –> !OnCycledepends(g));

G2. A resource does not have multiple dependers [12] G2() := FA(r, Type(r, ”resource”) –> SourceMultiplicity01
depends(r));

G3. Each loop in a goal decomposition tree includes at
least one OR-decomposition [15]

G3() := FA(g1, Type(g1, ”goal”) –> !OnCycledecomposes(g1) | EX(g2,
Type(g2, ”goal”) & ORNode(g2) & ReachViadecomposes(g1, g2, g1)));

G4. Parallel contribution links do not exist [15] G4() := FA(g1, Type(g1, ”goal”) & FA(g2, Type(g2, ”goal”) –>

!ParallelEdgescontributes(g1, g2)));

G5. Goal fulfillment cannot precede subgoal
fulfillment [15]

G5() := FA(g1, Type(g1, ”goal”) & FA(g2, Type(g2, ”goal”) &
Reachabledecomposes(g1, g2) –> !Eprecedes(g2, g1)));

Table 1. Examples of well-formedness and quality constraints in different notations.

elling problem. In class diagrams, for example, inheritance
can never be cyclic. For an (edge) type α, the following
RML statement creates a relation OnCycleα(x) that holds for
all nodes x residing on a cycle of α-edges:

OnCycleα(x) := Reachableα(x, x);

Reachability is also used for detecting path redundan-
cies. For example, if we have three classes A, B, C, such
that C extends B and B extends A, it would be redundant to
have an extends edge from C to A because this is already im-
plied by the path C→B→A. Existence of multiple paths of
edges of the same type between two nodes can be captured
by RedundantPathsα(x, y) defined as follows:

ReachViaα(x, z, y) := (Reachableα(x, z) | (z = x)) &
Reachableα(z, y) ;

DistinctPathEndsα(x, y) := EX(v, EX(z, ReachViaα(x, v, y) &
ReachViaα(x, z, y) & Eα(z, y) &
Eα(v, y) & !(z = v)));

RedundantPathsα(x, y) := EX(z, (ReachViaα(x, z, y) | (y = z)) &
DistinctPathEndsα(x, z)) | ParallelEdgesα(x, y);

ReachViaα(x, z, y) holds iff there is a path (of length ≥ 1)
from x to y passing through z. DistinctPathEndsα(x, y) holds iff
there are paths from x to y whose final edges (to y) are dif-
ferent. And, RedundantPathsα(x, y) holds iff there are distinct
paths or parallel edges from x to y.

As evidenced by Table 1, expressions involving variants
of reachability are very common. In particular, C2, C5,
and G5 require checking reachability in its general form;
C4, G1, and G3 require checking cyclicity; and C7 requires
checking redundancy.

4 Consistency Checking of Distributed Models
In Section 3, we developed a generic platform for ex-

pressing consistency constraints over individual models.
We now show how this generalizes to distributed models.

A common approach for extending consistency checks
to distributed models is to write consistency rules for the
mappings between models (e.g. [7, 17]). For example, if
we have a mapping R that equates elements of two models
M1 and M2, we may wish to check that the mapping does
not introduce cycles. This can be achieved by checking that
each model individually is acyclic, and writing a new rule
to check the mapping:

MCycleα(x,y) := R(x, y) & EX(z, EX(t, R(z, t) &
Reachableα(x, z) & Reachableα(t, y)));

If we apply this rule to M1 and M2, the relation MCycleα

will hold for all pairs (x,y) of mapped elements that give rise
to a cycle across the two models2.

This approach is cumbersome for several reasons. First,
it requires many new consistency rules: each existing con-
sistency constraint (for a single model) may need to be re-
written to take account of each type of mapping that can
hold between models. It also introduces an undesirable cou-
pling between consistency rules and model mappings. Con-
sistency rules will refer to the possible mappings between
models, and model mappings must be checked for their im-
pact on the consistency rules.

2Formally, MCycleα is applied to the disjoint union of M1 and M2.

Second, this approach does not easily generalize beyond
pairwise checking. This is because global consistency rules
must consider the interactions between different mappings
in the system. For example, a global rule to check for cyclic
inheritance in a set of models such as those of Fig. 2 would
need to refer to all of the mappings between the models in
the scope of a single rule. This makes the specification of
global consistency rules very complex.

Below, we present an alternative approach that does not
suffer from these problems. Given a set of models and a
set of mappings between them, we first construct a merged
model using the merge operator developed in our earlier
work [23]. We then check the consistency of this merged
model and project the resulting diagnostics back to the orig-
inal models and mappings using the traceability informa-
tion generated during merge. This approach exploits the
fact that our merge operator works even when the models to
be merged are incomplete and/or inconsistent: the merge is
well-defined for any set of models and mappings. Further,
it is fully automatic; hence, users need not understand the
merge process to use the results of consistency checking.

4.1 Model Merging

We first briefly review our merge operator. For more in-
formation, see [23]. The operator hinges on three abstrac-
tions: models, mappings, and interconnection diagrams.
Each model is described as a graph, and each mapping as a
binary relation over two models equating their correspond-
ing elements. Mappings preserve type information, i.e. they
do not equate elements that have different types. Further,
they preserve structure, i.e. if a mapping R maps an edge e
to an edge e′, it must also map the source and target of e to
the source and target of e′, respectively.

The third abstraction, the interconnection diagram, cap-
tures a set of models and a set of known or hypothesized
mappings between them. Two examples of interconnec-
tion diagrams are in Figs. 1 and 2. A more complex
example with four models, M1, . . . ,M4, and four map-
pings, R1, . . . , R4, is shown in Fig. 9. For convenience,
we used a consistent vocabulary for naming the elements
of M1, . . . ,M4, hence defining R1, . . . , R4 based on name
equalities. In general, models may not have a common vo-
cabulary, and mappings are not necessarily based on vocab-
ulary similarities [23].

The input to the merge algorithm is an interconnection
diagram D = 〈M1, . . . ,Mi, R1, . . . , Rj〉. The algorithm
works by unifying elements in M1, . . . ,Mi that fall into
the same equivalence group induced by R1, . . . , Rj . As
an example, we have delineated by thin dashed lines one
of the several equivalence groups in Fig. 9. Note that each
unmapped element in the input models falls into a distinct
equivalence group of its own. The merged model has ex-
actly one element corresponding to each equivalence group.

A

D

A

B

E

M1

D

B

E

B

C

E

M3
R1 R2

R3
R4

An equivalence group

M2

M4

Fig. 9. Example interconnection diagram.

A

B

Merge

ED

C

Fig. 10. Merge of the diagram in Fig. 9.

Since mappings denote equality of mapped element pairs
and hence are symmetric, the directionality of mappings is
ignored in the computation of equivalence groups.

The set of property tuples of every element i in the
merged model is computed by taking the union of the prop-
erty tuples of the elements represented by i, noting that i
does not inherit the uids of these elements, but instead has
a new uid of its own. Fig. 10 shows the resulting merge for
the interconnection diagram in Fig. 9.

To support traceability back to the originating sources,
for each element of the merged model, we store a link to
the equivalence group inducing it. For example, for class B

in the merge, we store the link “B@M1
R1−→B@M2

R2−→B@M3”,
indicating that this class is the result of unifying all classes
named B in models M1, M2, and M3. Further, the link
shows the mappings involved in the unification, namely,
R1 and R2. In practice, traceability links are based on
the uids of model elements, rather than their names. How-
ever, we ignore this technicality in our presentation. Fig. 11
shows the traceability information stored for the nodes of
the merged model in Fig. 10. Similar traceability informa-
tion is stored for the edges (not shown).

Two inconsistencies can be identified in the merge shown
in Fig. 10: (1) B has two parents; (2) B, C, E form a cycle.
These inconsistencies, as we discuss in Section 4.2, can be
projected back to the original models and mappings using
the traceability information produced during merge.

A: A@M1
R3←−A@M4

B: B@M1
R1−→B@M2

R2−→B@M3

C: C@M3

D: D@M2
R4←−D@M4

E: E@M1
R1−→E@M2

R2−→E@M3

Fig. 11. Traceability information for nodes.

Graph-to-Relational
Translator

 Relational
Interpreter

Inconsistency
Exploration

Merge Operator

Models & Mappings

Consistency
Rules

Tr
ac

ea
bi

lit
y

In
fo

rm
at

io
nMerged Model

Relational Model

Diagnostics

Fig. 12. Overview of consistency checking.

4.2 Consistency Checking via Merge
An overview of our consistency checking approach is

shown in Fig. 12. Given a set of models and a set of map-
pings between them, we begin by constructing a merged
model as described in Section 4.1. This model is trans-
lated into a set of relational predicates using the algorithm
in Fig. 6. The result, along with the consistency rules of
interest, is sent to a relational interpreter for consistency
checking and producing diagnostics for any inconsistencies
found. Users can then explore these diagnostics and project
them back to the source models and mappings by utilizing
the traceability data produced during the merge operation.

To obtain useful diagnostics from the relational in-
terpreter, we instrument each consistency constraint with
appropriate messages. For example, to report the
classes that violate single inheritance, we instrument
SourceMultiplicity01

extends(x) (see Section 3) as follows:
FOR n IN !SourceMultiplicity01

extends(x) {
PRINT n, ” violates single inheritance”, ENDL;
FOR e IN (Src(y, n) & Type(y, ”extends”)) {

Parent(x) := Tgt(e, x);
PRINT [” Parent: ”] Parent(x);

}
}

The above instrumentation code, when executed over the
merged model of Fig. 10, generates the following:

B violates single inheritance
Parent: A
Parent: C

This transcript, in addition to identifying B as an incon-
sistent element, provides context information about the in-
consistency. Hence, we can immediately know that it is the

Diagnostics Projections
B violates single inheritance
 Parent: A
 Parent: C

Elements:

 A@M1
 A@M4
Mappings:

 R3:A@M4→A@M1

Fig. 13. Linking diagnostics with traceability data.

relationship of B with A and C that causes B to fail the check.
The nature of context information varies depending on the
constraint in question. For example, to describe the context
in which B violates acyclic inheritance, we need to include
the path B→C→E→B in the diagnostics (see Fig. 10). It is
this varying nature of context information that necessitates
custom instrumentation code for different constraints.

The instrumentation code for a consistency constraint
can be easily enhanced to generate hyperlinked diagnostics.
This makes it possible to link the diagnostics generated over
a merged model to the source models and mappings using
the traceability data provided by the merge operator. For
example, Fig. 13 depicts a hyperlinked version of the diag-
nostics discussed earlier. Clicking on a link in the Diagnos-
tics window retrieves the traceability data for the selected
element and displays it in the Projections window. Fig. 13
shows the result of clicking on class A. The projections are
also in a hyperlinked format, allowing users to navigate to
the source models and mappings.

Note that the projections include all available informa-
tion about the origins of the selected element. This informa-
tion may not be minimal, i.e. not all models and mappings
appearing in the projections are necessarily responsible for
the occurrence of the inconsistency in question. For exam-
ple, model M4 and mappings R3, R4 do not play a role in
the violation of single inheritance – the violation would oc-
cur even if we removed M4, R3, and R4 from the intercon-
nection diagram in Fig. 9. However, as shown in Fig. 13,
M4 and R3 appear in the projections for A.

For a simple interconnection diagram like the one in
Fig. 9, it may be reasonable to repeat the merge with differ-
ent subsets of M1, . . . ,M4 and R1, . . . , R4, and identify the
minimal configuration that can produce a particular viola-
tion. This is, however, exponential in the number of models
and mappings in the interconnection diagram, and hence not
scalable to systems with many interrelated models. Scalable
solutions may be found for certain constraints and certain
patterns of interconnection diagrams, but we have not ex-
plored this in our work yet.

On the other hand, filtering out information that is seem-
ingly irrelevant to the occurrence of an inconsistency may
not be always desirable. For example, although model M4

and mapping R3 are not responsible for the violation of sin-
gle inheritance, they may still be involved in a resolution of
the problem. For example, a possible resolution is to create
a new mapping between M4 and M3 and unify A and C. De-
ducing this resolution needs the knowledge that R3 unifies

elements (nodes + edges)
500 1,000 5,000 10,000

Dangling Edges < 1 sec < 1 sec 5 sec 10 sec
Parallel Edges < 1 sec 1 sec 15 sec 57 sec
Type Violations < 1 sec < 1 sec 4 sec 11 sec
Multiple Inheritance < 1 sec < 1 sec 7 sec 24 sec

C
on

si
st

en
cy

R
ul

e

Cyclic Inheritance 1 sec 3 sec 1 min 6 sec 4 min 48 sec

Table 2. Consistency checking running times.

A in M4 and A in M1, and filtering out M4 and R3 from the
diagnostics would effectively eliminate this alternative.

5 Preliminary Evaluation
In this section, we discuss tool support and provide initial

evidence for the usefulness of our approach.

Tool Support. We have implemented our approach as an
extension to our prototype tool, TReMer [27], which pro-
vides an integrated environment for model construction,
mapping, and merging. TReMer currently supports state
machines, ER diagrams, and simple UML domain models.
In the future, we plan to extend TReMer to support other
notations, such as goal and class diagrams. Our consistency
checking extension allows users to check a system of inter-
related models against a given set of consistency constraints
using the process shown in Fig. 12. Consistency constraints
are verified by the CrocoPat relational interpreter [2]. Our
tool is available for download from [27].

Computational Scalability. To validate computational
scalability, we need to ensure that both model merging and
consistency checking are scalable. The complexity of our
merge algorithm is linear in the size of the input models and
in the number of the input mappings [23]. This is dominated
by the complexity of consistency checking for most interest-
ing consistency constraints. We used CrocoPat for checking
constraints of varying complexity over UML domain mod-
els with 500 to 10,000 elements. These were structurally
realistic models assembled from smaller real-world models.
We introduced inconsistencies of various kinds into these
models so that about 10% of the elements in each model
appeared in the results of inconsistency analysis. Table 2
shows the running times for a number of checks on a Linux
PC with a 2.8 GHz Pentium CPU and 1 GB of memory.
The reported times include finding the inconsistencies and
generating proper diagnostics for them. The results indi-
cate that the method is scalable to handle realistically large
requirements modelling problems.

Case Study. We motivated our work by two main improve-
ments it brings to distributed development: (1) Eliminat-
ing the need to have separate rules for checking consistency
of models and consistency of mappings; and (2) General-
ization from pairwise consistency checking to global con-
sistency checking where the interactions between different
mappings in the system are also considered.

Writing consistency rules is typically a laborious task;
hence, the first improvement increases productivity by re-

quiring the development of just a single rule for each con-
sistency constraint. To evaluate the practical utility of the
second improvement, we conducted an exploratory study
aimed at investigating how global consistency checking
could facilitate the analysis of relationships between dis-
tributed models. We based our study on models developed
by students as an assignment in a recent offering of a se-
nior undergraduate course on object-oriented analysis and
design. To ensure privacy, these models were anonymized
by a third party prior to our study.

The assignment had the students write a UML domain
model for a hospital based on a short and intentionally am-
biguous textual description. We studied five models de-
veloped independently by five individual students. These
models were roughly equal in size, each with 60 to 70 el-
ements; however, there were remarkable discrepancies in
the way the models were structured. Other studies suggest
that such discrepancies are quite common when models are
developed independently [25, 8].

The ultimate goals of our study were: (1) to construct a
coherent set of mappings to express the overlaps between
the studied models; and (2) to systematically explore how
these models differed from one another. To achieve these,
we began by hypothesizing a set of initial mappings be-
tween the models. We then employed global consistency
checking as a way to discover anomalies in these mappings,
and later to investigate the differences between the mod-
els with respect to the mappings between them. Below, we
briefly describe our findings and highlight the advantages
of global consistency checking over pairwise consistency
checking. Full details of our study are available from [27].

First, we automatically constructed a merge based on the
initial mappings defined between the models. Consistency
checking of this merge revealed several potential anoma-
lies. In particular, the merge had 3 sets of identically-
named concepts and 8 sets of parallel links (edges). All of
these anomalies were due to the unstated overlaps between
the models, which manifested themselves as duplicate el-
ements in the merge. Note that, although not observed in
our study, the anomalies could have had other causes. For
example, some identically-named concepts could have been
homonyms, and some parallel links could in fact have been
necessary to distinguish between the different link roles.

The generated inconsistency diagnostics along with the
traceability data stored for the merge allowed us to quickly
identify the origins of duplicate elements and unify them
by defining new correspondences. If we wanted to do this
by pairwise checking of the five source models, we would
have needed to check (5 ∗ 4)/2 = 10 individual mappings
between model pairs. Constructing a merge and checking
global consistency made it possible to perform this task in
a single shot. Further, for global consistency checking, we
did not have to state all mappings between model pairs, be-

cause merge automatically results in transitive mappings.
For example, having a mapping that equates Doctor in model
M1 and Physician in M2, and a mapping that equates Physi-
cian in M2 and MD in M3, automatically maps Doctor to MD.

After refining the initial mappings with the newly dis-
covered correspondences, we concentrated on analyzing
structural discrepancies between the source models. These
discrepancies were primarily due to the use of competing
alternatives for capturing the relationships between the con-
cepts in the domain. For example, to relate the StaffMember
and Schedule concepts, one could choose among several al-
ternatives, e.g. (1) an unlabelled undirected association, (2)
a labelled directed association either saying “StaffMember
has a Schedule” or “Schedule belongs to StaffMember”, and
(3) a composition link expressing a containment relation be-
tween StaffMember and Schedule.

Model merging provided a convenient way to bring
together and visualize the alternatives used in different

StaffMember

Schedule

ha
s

be
lo

ng
s

to

models for relating concept pairs. As an
example, the figure on the right shows
the relevant fragment of the merge for the
StaffMember–Schedule pair. To detect and
enumerate alternative choices for relating
concept pairs, we developed a variant of the
parallel edges rule (see Section 3), which ignored link types
and directionality. Checking the merged model against this
rule yielded 19 groups of links. Each group captured the set
of alternatives proposed in different models for relating two
specific concepts. The groups referenced a total of 70 links
in the source models. Being able to simultaneously view
all proposed alternatives for relating two concepts is crucial
for resolving conflicts and building consensus between the
source models. Pairwise checking would have allowed us
to deal with only two alternatives at a time.

Finally, we re-examined the source models to apply the
knowledge gained from our analysis, by deleting incorrect
elements from these models. At this step, global consis-
tency checking provided us with quick feedback on the im-
pact of decisions made over one model on other models.
For example, if we decided to delete a concept C from
some model, we could automatically check all other mod-
els which had a concept C ′ equated with C, to verify that no
(non-deleted) links were incident to C ′ – such links would
become dangling if we propagated the deletion of C to C ′.
Employing pairwise checking for performing such sanity
checks after a change can be costly or even ineffective when
more complex sanity criteria are involved.

In summary, constructing merged models and checking
global consistency allowed us to do various types of anal-
ysis that would be either expensive or impossible to do by
pairwise checking. The traceability information generated
during the merge operation made it possible to project in-
consistencies back to the originating models and mappings,

and take steps to resolve them. Since our merge process is
fully automatic, we did not incur overhead costs for gener-
alizing from pairwise to global consistency checking.

6 Related Work
Generic constraint expressions. Developing generic ex-
pressions for describing correctness properties of models is
not a new idea. For example, [5] provides templates for cap-
turing temporal properties of systems. However, these tem-
plates are specifically for behavioural models, and are in-
applicable to non-behavioural ones such as class diagrams.
The closest work to ours is that of [30], which describes
a set of constraint patterns for UML models. However, this
work lacks generality and only considers the family of UML
notations. In contrast, our work applies to a wider class of
notations including those for goal and ER models.

Consistency checking. Inconsistency management is a
well-studied topic in view-based requirements engineer-
ing [10]. In this domain, the term “inconsistency” usually
refers to a situation where a pair of models do not obey a
relationship that should hold between them [19]. This defi-
nition is restrictive in that it makes inconsistency a pairwise
notion; however, it has the advantage of being easily appli-
cable to heterogeneous models. Our work, in contrast, treats
inconsistency as a global notion, but its scope is currently
limited to homogeneous models only. More research needs
to be done to determine if this limitation can be removed.

Early approaches to consistency checking of views use
standard first-order logic for writing consistency rules [10,
7]. The expressiveness of these approaches is limited be-
cause first-order logic cannot capture reachability [16] and
lacks convenient means for describing multiplicities.

Recent work on consistency checking of views addresses
these limitations by using more expressive logics. For
example, xlinkit [17] employs XPath –a query language
for XML– augmented with a transitive closure operator
for describing consistency rules. Similarly, [21] explores
the use of theorem-proving and object-oriented program-
ming to provide a rich platform for constraint specification.
These approaches indeed offer sufficient expressive power
to cover a wide range of consistency constraints; however,
they do not address the key problem tackled in our work,
which is consistency checking of arbitrary and unknown
configurations of models and mappings.

The idea of consistency checking via merge was first ex-
plored in prior work by Easterbrook and Chechik [6]. The
work uses temporal logic model checking to reason about
behavioural properties of state machine models when they
are merged. This earlier work is not applicable to structural
models, because temporal logic cannot capture important
structural constraints such as multiplicities [16]. Other con-
sistency checking approaches based on temporal logic suf-
fer from similar limitations if applied to structural models.

Several approaches to consistency checking of require-
ments work by consolidating different stakeholders’ de-
scriptions into a unified knowledge base and checking its
overall consistency. For example, [11] translates textual
requirements into a knowledge base of logical statements
and finds inconsistencies by applying theorem proving and
model checking. These approaches can reason about global
consistency; however, to build a unified knowledge base,
they assume that stakeholders have already agreed on a uni-
fied vocabulary for expressing their requirements. We do
not make this assumption in our work and use explicit map-
pings to capture the relationships between different stake-
holders’ vocabularies. This makes it possible to hypothesize
alternative relationships between these vocabularies and ex-
plore how each alternative affects global consistency.

There is a large body of research specifically dealing
with consistency in UML. For UML models, consistency
rules are usually described in the Object Constraint Lan-
guage (OCL) [20]. Several tools exist for checking UML
models against OCL expressions, e.g. the Dresden OCL
toolkit [13]. Despite their merits, these tools are not suited
to conceptual modelling because of OCL’s strong orienta-
tion toward implementation [29].

We have considered using Alloy [14] instead of RML
for expressing constraints. While Alloy provides the full
expressive power of first-order logic with transitive closure
and counting, we chose RML primarily for two reasons: (1)
its leaner syntax; and (2) its imperative semantics (as op-
posed to Alloy’s declarative semantics). The latter factor
was particularly important in our work because it provided
the flexibility to use RML as a scripting language for gen-
erating inconsistency diagnostics.

7 Conclusions and Future Work
We presented a tool-supported approach for consistency

checking of distributed models. Our approach enables
checking inter-model properties of a set of models via
checking intra-model properties of their merge. To simplify
the specification of consistency rules, we developed a set of
generic expressions for characterizing recurrent patterns in
structural constraints of conceptual models.

Our current work applies to homogeneous models only.
Extending this to heterogeneous models presents a chal-
lenge because merge cannot be defined at a notational level.
In future work, we plan to address this limitation by devel-
oping ways to merge models at a logical level. Another area
for future work is to further study the practical utility of our
approach by conducting user trials and observing user inter-
actions with our tool for inconsistency exploration.

Acknowledgments. We thank Dirk Beyer, Juergen Dingel,
Zinovy Diskin, Paul Gries, Renée Miller, and the anony-
mous RE 2007 reviewers for their insightful comments. Fi-
nancial support for this work was provided by Bell Canada
(through the Bell University Labs), OGS, and NSERC.

References
[1] D. Beyer and A. Noack. CrocoPat 2.1 introduction and reference

manual. Technical report, U. Berkeley, 2004.
[2] D. Beyer, A. Noack, and C. Lewerentz. Efficient relational calcu-

lation for software analysis. IEEE TSE, 31(2):137–149, 2005.
[3] R. Bryant. Graph-based algorithms for boolean function manipu-

lation. Trans. on Computers, 8:677–691, 1986.
[4] A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fun-

damenta Informaticae, 26(3–4):241–265, 1996.
[5] M. Dwyer, G. Avrunin, and J. Corbett. Patterns in property specifi-

cations for finite-state verification. In ICSE, pages 411–420, 1999.
[6] S. Easterbrook and M. Chechik. A framework for multi-valued

reasoning over inconsistent viewpoints. In ICSE, pages 749–750,
2001.

[7] S. Easterbrook and B. Nuseibeh. Using viewpoints for inconsis-
tency management. Soft. Eng. J., 11(1):31–43, 1996.

[8] S. Easterbrook, E. Yu, J. Aranda, Y. Fan, J. Horkoff, M. Leica,
and R. Qadir. Do viewpoints lead to better conceptual models?
An exploratory case study. In RE, pages 199–208, 2005.

[9] A. Egyed. Heterogeneous View Integration and its Automation.
PhD thesis, USC, 1999.

[10] A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh.
Inconsistency handling in multiperspective specifications. IEEE
TSE, 20(8):569–578, 1994.

[11] V. Gervasi and D. Zowghi. Reasoning about inconsistencies in nat-
ural language requirements. ACM TOSEM, 14(3):277–330, 2005.

[12] J. Horkoff. Using i∗ models for evaluation. Master’s thesis, U.
Toronto, 2006.

[13] H. Hussmann, B. Demuth, and F. Finger. Modular architecture for
a toolset supporting OCL. Sci. Comput. Program., 44(1), 2002.

[14] D. Jackson. Software Abstractions Logic, Language, and Analysis.
The MIT Press, 2006.

[15] S. Liaskos. Quality criteria for variability modelling. Technical
Report CSRG-549, U. Toronto, 2007.

[16] L. Libkin. Elements of Finite Model Theory. Springer-Verlag,
2004.

[17] C. Nentwich, W. Emmerich, A. Finkelstein, and E. Ellmer. Flexi-
ble consistency checking. ACM TOSEM, 12(1):28–63, 2003.

[18] B. Nuseibeh, S. Easterbrook, and A. Russo. Making inconsistency
respectable in software development. J. of Sys. and Soft., 56(11),
2001.

[19] B. Nuseibeh, J. Kramer, and A. Finkelstein. A framework for ex-
pressing the relationships between multiple views in requirements
specification. IEEE TSE, 20(10):760–773, 1994.

[20] Object Management Group. OCL 1.4 Specification.
[21] R. Paige, P. Brooke, and J. Ostroff. Metamodel-based model con-

formance and multi-view consistency checking. ACM TOSEM,
2007.

[22] G. Rozenberg, editor. Handbook of graph grammars and comput-
ing by graph transformation (Vol. 1): Foundations. World Scien-
tific, 1997.

[23] M. Sabetzadeh and S. Easterbrook. View merging in the presence
of incompleteness and inconsistency. RE J., 11(3):174–193, 2006.

[24] S. Spaccapietra and C. Parent. View integration: A step forward in
solving structural conflicts. Knowl. and Data Eng., 6(2):258–274,
1994.

[25] D. Svetinovic, D. Berry, and M. Godfrey. Concept identification
in object-oriented domain analysis: Why some students just don’t
get it. In RE, pages 189–198, 2005.

[26] The Unified Modeling Language. http://www.rational.com/uml/.
[27] TReMer+: A tool for merging and consistency checking of dis-

tributed models. http://www.cs.toronto.edu/∼mehrdad/tremer/.
[28] A. van Lamsweerde, R. Darimont, and E. Letier. Managing

conflicts in goal-driven requirements engineering. IEEE TSE,
24(11):908–926, 1998.

[29] M. Vaziri and D. Jackson. Some shortcomings of OCL, the object
constraint language of UML. Technical report, MIT, 1999.

[30] M. Wahler, J. Koehler, and A. Brucker. Model-driven constraint
engineering. In MoDELS Wrkshp. on OCL for (Meta-)Models in
Multiple Application Domains, pages 111–125, 2006.

[31] E. Yu. Towards modeling and reasoning support for early-phase
requirements engineering. In RE, pages 226–235, 1997.

