
Requirements in the wild: How small companies do it

Jorge Aranda, Steve Easterbrook, and Greg Wilson
Department of Computer Science

University of Toronto, Toronto, Canada
{jaranda, sme, gvwilson}@cs.toronto.edu

Abstract

Small companies form a large part of the software
industry, but have mostly been overlooked by the
requirements engineering research community. We
know very little about the techniques these companies
use to elicit and track requirements and about their
contexts of operations. This paper presents preliminary
results from an ongoing exploratory case study of
requirements management in seven small companies,
which found that (a) successful small companies
exhibit a huge diversity of requirements practices that
work well enough for their contexts; (b) these
companies display strong cultural cohesion; (c) the
principal of the company tends to retain control of the
requirements processes long after other tasks have
been delegated; and (d) the evidence rejects the
simplistic view of a current “software crisis”, as
requirements errors for these companies, though
problematic, are rarely catastrophic. We develop a
number of hypotheses to explain these findings.

1. Introduction

Small companies form a large part of the software
industry. For example, in the US, in 2002 (the most
recent available figures), the overwhelming majority of
software development firms, 95%, had less than 50
employees. They generated 21% of the total income
and employed 28% of all employees in the area [12].
These companies are a rich source of technological
innovation, and they fill a myriad niches that are either
undiscovered or unprofitable for larger firms.

Despite this, the requirements engineering
community has mostly overlooked their needs and
characteristics. There is not one published paper in the
entire history of the Requirements Engineering
conferences that deals specifically with the
requirements processes of small companies. This may
be due to a lack of access to these companies, or to the
mistaken assumptions that they are essentially no

different than their larger counterparts, that they are a
minor component of the economy, or that they do not
pose any significant research challenges.

As a community, we know very little about the
techniques that these companies use to elicit, track, and
communicate their requirements, and about their
contexts of operation. This paper addresses this
problem by reporting on preliminary results from an
ongoing exploratory case study of the requirements
techniques of seven small software companies. It
provides relevant details about each of the cases we
analyzed, discusses the diversity of approaches to
requirements engineering that we observed, and lists
some implications from our findings for the
requirements engineering community.

2. How do small companies do it?

We began this study in response to anecdotal
evidence that requirements engineering “in the wild”
differs significantly from the practices prescribed in the
literature. We had observed that small software
companies seem to manage their requirements in ways
that bear no relation to what the textbooks say, and
what is taught in undergraduate courses. Furthermore,
much of the current research (e.g. on requirements
modeling, specifications, traceability, etc.) seemed to
be irrelevant to these companies.

In order to study this apparent mismatch, we
designed a case study of small companies that would
provide insights on the following questions:
• How do small companies manage their

requirements? In particular, how do they elicit,
document, communicate, and track them?

• How does the context of these companies affect
them? Which forces shape their requirements
management processes?

• Why do these companies adopt some
requirements practices and reject others? Could
lack of adoption be a problem of diffusion,
education, or mismatching goals and

expectations?

3. Design and Execution of the Case Study

3.1. Methodology

Our research questions called for a qualitative field
study of small software companies. We applied a
multiple-case exploratory case study methodology
[15]. The intention of an exploratory case study is to
gather data with the aim of deriving specific
hypotheses for further study. We established criteria
for the inclusion of companies to our study, and
interviewed key people at all of them. When possible,
we visited their office space and examined their
documentation and tools. We captured contextual
details data, such as office layout and team member
demographics and background. We inquired about the
requirements processes of each company, and about
the place of these processes within their larger project
lifecycles.

Our unit of analysis was the software company as a
whole, rather than individual projects or teams within
them. This choice allowed us to focus on how
requirements practices are affected by the culture,
business context, and organizational structure of these
companies. Note that a software team is only part of a
company. We have not attempted to examine small
teams within large corporations for this study.

3.2. Selection of cases

The study had a purposeful case sampling. Our
inclusion criteria were the following:

• The company does software development as a
primary activity.

• The company is small. To simplify selection,
we chose an arbitrary threshold of companies
with less than 50 employees1.

• The company has been in operation for at least
one year, which allows for some settling of its
requirements practices.

• For convenience, the company must have
offices in Toronto or its metropolitan area.

In recent years, Toronto has experienced a
considerable development of its software industry.
Many firms have formed an active hi-tech community
with frequent gatherings and a high degree of
openness. One of the authors of this paper is a well-

1 In studies of the computer industry in North America, the
definition of a small software company is one with an income
of less than US$23 million [13]. None of the companies we
studied had an income more than 1/10th of this.

known participant of this community, and this greatly
facilitated the tasks of obtaining access to our cases
and of reaching a healthy level of trust for our
interviewees to disclose their strengths and problems.

The set of cases described in this paper is extremely
diverse. This was not intentional, and it was not part of
our selection criteria; rather it appears to reflect the
diversity of the software industry in the Toronto area.
We did not reject opportunities to include cases in our
study due to similarities to other cases in our pool.

3.3. Execution of the study

In our initial contact with each candidate company,
we explained that this was a case study of how small
software companies manage their projects. Our
contacts were generally partners or owners of their
corresponding companies; when this was not the case,
they were persons holding another leadership position
in their organization.

We initially made contact with fourteen companies,
and have conducted interviews with twelve of them.
When possible, these meetings took place in each
company’s offices; otherwise we met in neutral
environments. Interviews typically lasted between one
and two hours, and we held from one to three meetings
with each company. At this stage in our study, we have
collected detailed data from seven of these firms. The
preliminary observations we report in this paper are
based on these seven.

Although the interviews had an open structure, we
collected information about the following issues:
organizational structure, company size, roles of key
staff, line of work, types of customers, descriptions of
the analysis, sales, negotiation, and development
processes, communication of requirements to the rest
of the team, documentation, tool support, requirements
errors, and misunderstandings between the company
and its customers.

4. Description of the cases

We present a brief description of each of our cases.
Throughout the paper we will use pseudonyms for the
companies, to protect their anonymity. A summary of
some of our observations appears in Table 1, at the end
of this section.

4.1. Endosymbiotic

Endosymbiotic is a small open source company that
specializes in applications for the health business. It
currently employs seven people, including its two
founders. Its main customer, a general hospital, grants

them the use of office space in its own grounds and
interacts closely with them for requirements elicitation.
This arrangement is highly valued by the partners,
since it allows for frequent interactions with their
users, paying customers, and costly medical devices.

Endosymbiotic’s projects grow incrementally, and
although they have an abstract set of goals, they have
not been articulated in detail, since they shift
depending on new technical requirements, regulations,
and the strategic vision of the hospital’s management.

Requirements come from three main sources:
Standards, domain experts, and past experiences. It
should be noted that everybody in the team worked for
another company in the same business before starting
Endosymbiotic. In a way, they are re-building a system
that they had previously developed, and they
understand many of its requirements and challenges.

The company loosely applies the Scrum [11]
approach to communicate requirements to the team and
assess progress: First, each project has a “product
backlog” (a list of pending features, described with
little detail) that acts as a sort of requirements
document. Second, the team holds a “daily Scrum”, a
15 minutes long, standing-up meeting, in which each
team member reports on their current progress and
plans. Third, a monthly demo gives visibility of the
projects’ status to everyone in the team and to hospital
representatives, and allows for a prioritization of the
features in the backlog.

Endosymbiotic’s employees do not usually
communicate requirements information through
documentation. They use face-to-face interactions as
their main means of communication. When they model
their system designs, they tend to do so informally in
whiteboards, without regard for proper notation syntax.
Their drawings are usually photographed and posted in
a website accessible to the full team.

Most people in Endosymbiotic have been working
together for several years. They know one another’s
skill sets, and are familiarized with their loose agile
methodology, which they decided to adopt as a group.
Experiments in bringing new people to their team have
not been successful – recently, for instance, a new
employee from a different environment left the
company two weeks after joining.

4.2. Agilista

Agilista follows extreme programming (XP) [2]
closely, in both letter and spirit. It is a small software
house formed by four people, all with an engineering
background, and most of them with experience
working in far larger corporations. It provides software
consulting and development, mainly in the industrial

automation area. Its projects and customer relations are
long-term (projects often last over 2 years), and the
company works on 2-3 projects at a time. Agilista is
enthusiastic about its methodology and programming
language of choice (Python), and rejects projects that
do not fit with these choices.

Agilista’s projects have no official end date or
quote. The company gets paid as they go along, until
the customer decides to stop the project. They do not
write requirements documents. Instead, they produce a
list of “stories”, which can be a sentence long, and in
which planning and effort estimation are based.

In the only noticeable divergence between
Agilista’s processes and XP, a senior consultant from
the company (usually its principal) acts as the customer
on-site for the rest of the team, after having
interviewed people at the customer’s site and acquired
some domain expertise.

The company explores the requirements of their
projects with throwaway prototypes that are ready at
the end of the first iteration of the project (two weeks
after kick-off). Agilista’s principal admits that the
company is happy to discard the results of this first
iteration as long as it teaches them something about
their project.

The list of user stories is modified and re-prioritized
after each iteration, between the customer and the team
members. The vague phrasing of some of the stories of
a project is often clarified for the developers by the
consultant acting as customer proxy, who in turn
contacts the customer whenever needed. It is through
these informal exchanges that requirements are
communicated to the team. Furthermore, Agilista’s
open space layout fosters plenty of quick interactions
among its employees, leading to a greater shared
understanding of their status and projects.

4.3. Spark

Spark’s offices, with their wide, open spaces, quirky
gadgets, toys, and open kitchen, suit the image of a
creative agency more than of a software company.
However, their offerings are highly specialized and
algorithmically complex products and web services for
news corporations and publishers.

Spark currently employs 19 people, with 11 of them
involved in software development. Due to the
complexity of its code, it requires that several of its
programmers have a graduate Computer Science
degree.

The firm does not have a structured requirements
management process. Feature requests are rarely
documented. To define the requirements of their next
release, the company’s partners meet face to face with

potential customers to find out their underlying needs
in a sales/negotiation process that sometimes extends
for a full year.

From these meetings and the consideration of
Spark’s own long term strategic goals, a small team at
the company gives shape to the vision and features for
the next release. The result of this process is not
documented either. Rather, it is communicated verbally
to the development team, which will make loose effort
estimates based on this information.

The only routine practice the team follows is a daily
standing-up status meeting, which lasts for 15 minutes,
at the end of the day. Other than that, Spark’s strategy
may be described as follows: hire competent, creative,
smart people; let them know what we want to do, and
let them figure out how to do it themselves.

Spark’s office space and the traits of its members
suggest that the company has developed a personality
that would probably reject any attempt to become
structured. When we pointed out to one of the partners
that this admittedly informal (if currently successful)
approach might lead to trouble as his company grows,
he responded that for them growth does not have a
high priority: “We’re not going to become an IBM”.

4.4. Bespoker

Bespoker is a 40-45 person software company that
develops tailored enterprise applications for banks,
insurance companies, and other large corporations. Of
all the companies we studied, this was the one that
most closely resembled typical views in the
requirements literature of how requirements
engineering should be done.

The partners at Bespoker appear to be convinced of
the need of upfront analysis work before coding, and of
the strengths of writing things down (for them, sharing
knowledge is “a matter of documentation”). Broadly,
their process is similar to the Rational Unified Process
(RUP) [8], and it works as follows:

Projects start with a paid discovery phase. For small
projects (4-6 months), this phase lasts a few weeks; for
larger projects (up to 2 years), it may extend to 3-4
months. During this phase, one to three team leaders
from the firm meet frequently with their customers to
write a detailed specification, where every screen and
business rule is described. This was the only company
in our study that uses UML diagrams (use cases, class
and sequence diagrams, statecharts) to some extent to
document their specifications. For large projects, the
specification consists of hundreds of pages of screens,
business rules catalogues, and models.

Bespoker’s partners claim that this process allows
them to understand their projects clearly, and to
estimate them within 10% of their actual performance.

These documents are reviewed at two levels by the
customer (a business and a technical sign-off), a
standard practice for contracts with corporations of the
kind that the company deals with. After the sign-offs,
the iterative development phase begins. To
communicate the project’s requirements to the team
(which could be of 8-18 people), the team leaders
produce a developer handbook that explains the
specification and is available to the full team in a wiki
for easy modification.

These documents do not deal with software design.
The company does not want to have detailed design
documents, claiming that “80% of the benefit of design
documentation is at the high level”, and that at a lower
level they have not found anything as efficient as
simply writing code.

4.5. PhoneOffshore

PhoneOffshore is a provider of applications for
mobile services with millions of subscribers, and its
clients are large telecommunication corporations. The
firm has between 20 and 25 employees distributed
between their headquarters at Toronto and an offshore
development office. Each of the company’s projects
takes around 6 months for 5 people – since, according
to the CEO, “less than that is boring and unprofitable,
and more than that won’t scale”.

For PhoneOffshore, the requirements process is
tightly woven with the negotiation process
(“sometimes they tell us what they want, sometimes we
decide”), and is largely performed to protect the
company legally and to satisfy the expectations of its
customers. During this stage, PhoneOffshore maintains
two persons as liaisons to the customer: one technical,
and one business relations. The technical liaison, who
is also the project leader, talks to several groups of
stakeholders to find their needs and to negotiate the
requirements of the system. Some of the documents
produced at this stage are legally binding, and
negotiating them with the customer may take about a
year for large projects. Even after the documents are
signed off, the company admits that “requirements are
never nailed down”. In some cases, negotiating what
the contract meant is a full-time job.

The project leader is also in charge of
communicating the requirements to the team. He
produces specifications of modules as needed, and a
project plan to be used mainly as a reference by the
developers. These project plans are not comprehensive,
and whenever a developer picks up a work unit, he will

contact the project lead to find out its implementation
details. These discussions occur through email, instant
messaging, and phone between the headquarters and
the offshore office. The two offices do not have a
considerable time zone difference, and communication
usually occurs during business hours.

All of PhoneOffshore’s projects are built upon a
homegrown framework for mobile applications. This
framework neatly modularizes every project’s
architecture, and the company sees it as one of its main
strengths. In parallel to their normal operation, a small
and trusted group at the company continues to improve
its framework for the benefit of all of its projects.

4.6. Growing Web

Growing Web is a 5-person web development and
consulting start-up that focuses on content
management applications. They serve a wide variety of
customers, and though on occasions they develop long-
term projects, they also take very small projects that
they can complete in as little as four hours.

This variation causes the company to have a flexible
approach to process. For small projects, it is very
loose. The company’s owner talks to the prospect,
quickly reaches an agreement, and informs his
company’s office manager. She, in turn, schedules the
task and passes the relevant information to a developer
in an email or a bug report. There are no other
requirements documents produced for these projects.

For larger projects, the company follows a process
resembling a waterfall model. In the sales process (the
company sees this as sales, rather than requirements
analysis), the owner talks to a potential customer for
about an hour, and creates a rough estimate of the
project’s tasks and effort. This process is not paid by
the customer, and it is usually done quickly. Their
business model depends on the owner producing cost
estimates efficiently: If they refused to work this way
they could lose the project to a more flexible company.

If the prospect accepts the estimate, either the
company’s owner or the developer in charge of the
project writes an Architecture and Design document,
which is concerned essentially with the project’s
requirements and is read by the developers, the office
manager, and the customers.

Once the document has been approved by the
customer, the development phase begins. The
requirements of the project are communicated to the
team in a kick-off meeting, in which the owner
discusses the client’s needs and the list of features
required. Later, when development has started,
informal exchanges at their open space facilitate the
clarification of requirements.

Although every project that Growing Web takes is
different, most of them fall in the same domain, and
the company uses its past experiences and tools to
build it. In particular, almost all of their projects use a
homegrown framework for web content management.
In a way, the company works on the same “product” at
all times, adjusting it to satisfy the needs of their
current customers. When they stray from their main
domain they have a steeper learning curve to go
through, and riskier projects. The framework seems to
have been completely assimilated in the team’s heads:
Whenever a client mentions that they want a website
with a particular feature, the team translates that into
terms that their framework handles, and even educate
their clients to use the same terms.

4.7. Rentcraft

Rentcraft is a 25-people provider of rental
management systems. Their team works on releases
that take from 9 months to a year. It has two visible
leads: a product manager, who acts as the customer
liaison for the team, and a project leader, who
coordinates progress.

For each release, their list of requirements considers
buying criteria (features that customers want to see),
usage criteria (features that customers take as default),
and strategic criteria (features that allow the company
to evolve the product in a direction they believe will be
profitable). Initially, the list of requirements is about
twice as long as what the team will be able to produce
for the next release. Nevertheless, the list is passed on
to the developers, who write an “Analysis and
Estimation” (A&E) document, in which they
informally discuss implementation alternatives for
complex requirements, identify relevant uncertainties,
and estimate the effort required for each feature.

When the A&E document is ready, the product
manager and the project leader jointly choose the
features that will be implemented in the next release,
selecting only as many as it is feasible to implement
given their resources. The result of this process is the
“product requirements document” for the release.

For a company that sells products, such as
Rentcraft, the requirements have a different emphasis
than for companies that provide bespoke services.
According to their product manager, “the worst thing
that can happen to us is not that nobody buys our
software, but that one customer buys it”, which would
force the company to provide maintenance for it. For
this reason, validation of the release’s requirements is
essential, and the product manager requests feedback
from clients through beta tests and meetings.

We should point out that the product
manager/project leader duo at Rentcraft has been
working together for a long time, through several
companies, and they have refined their interactions and
their processes considerably. It is easy for them to
know what to expect from each other. To a high
degree, this same team awareness extends to most of
their senior developers. For a brief period, the
company had another product manager, with different
processes and expectations, and he was rejected by the
team. Soon afterwards, they rejoined with their old
product manager, and the process to which the team
was used was reinstated in full.

5. Results and observations

From the preliminary analysis of the data from this
case study, we have identified four major findings. In
each case, we use the findings to formulate specific
hypotheses for further investigation. We discuss each
of these in turn.

All the companies included in this study have
requirements practices that work for them. They earn
enough revenue to stay in business, and in most cases,
to grow. Each has survived for a number of years in the
risky world of software start-ups. These companies are

led by innovative, intelligent people, who are generally
knowledgeable about advanced software engineering
concepts and have many years experience in the
software industry.

5.1. Everyone does RE differently

When we look for common features of their
requirements processes that might account for the
success of these companies, we find that they all
handle their requirements very differently. The
diversity is striking. Each addresses the issues of
elicitation and communication of requirements with
different degrees of planning, structure, and
documentation; and yet each considers that their
choices are natural.

Several variables appear to affect the requirements
practices of these companies: the type of customers,
the background and skills of their developers, the
preferences of their founders, the nature of their
business environment, the spatial layout and
geographical distance of their offices, and their number
of employees. We found evidence of each of these
factors at play in at least some companies. However,
we do not yet have sufficient evidence about the
strength of influence of each factor in the various

Table 1 - Cases summary

 Endo-
symbiotic Agilista Spark Bespoker Phone-

Offshore
Growing
Web Rentcraft

Company Size1 7 4 19 40-45 20-25 5 25

Longevity 15 months 13 years 5 years 5 years 7 years 3 years 12 years

Customers Hospital Manu-
facturing

News
agencies &
publishers

Banks &
corporations Telecoms

Varied
(content
managemnt)

Rental
companies

Type of
offering2

Product,
service Projects Product,

service Projects Projects Projects Product

Project length
/Release cycle 1 month 2 weeks 1 year 4 months –

2 years ~6 months 4 hours –
3 months

9 months –
1 year

Key
requirements
documents

Product
backlog

Product
backlog,
user stories

None
Spec,
development
handbook

Statement of
work,
project plan

Cost
worksheet,
arch&design

Analysis &
est., product
reqs descrip.

Signs of
adaptation to
niche

Co-location
with
customer

Insufficient
data

Year-long
negotiation
processes

Insufficient
data

Homegrown
framework

Homegrown
framework

Insufficient
data

Cultural
Cohesion

Previous
company Engineering CS PhDs &

MScs
Previous
companies

Language &
country None Previous

companies

Analyst Founder Founder CEO/CIO Project lead Project lead Founder Product
manager

Mitigation of
requirements
errors

Monthly
demos Iterations Iterations

Upfront
analysis,
iterations

Negotiation None
apparent

Upfront
analysis,
beta testing

Notes: 1. Company sizes are approximate for cases where the company is currently recruiting and hiring new staff. 2. We categorized the
company’s activities according to where the requirements originate: “Projects” are custom development projects with a specific customer and
limited duration, “Products” are applications intended for a wider market, and “Services” are long-term engagements (e.g web services).

cases.
Hypothesis: The diversity of RE practices in small

companies can be explained as the result of
evolutionary adaptation, as these companies have
adapted to a specific niche.

According to this hypothesis, we can view the
software industry as an eco-system. It would appear
that, over time, differentiation occurs when companies
adapt their requirement strategies to fit a particular
ecological niche. Natural selection reinforces this
process if companies survive in a competitive
environment by being better adapted to a particular
niche than others.

The implications of this hypothesis for requirements
engineering research are interesting. If the hypothesis
is correct, no generalized requirements technique will
be suitable for all small companies. The value of any
novel requirements technique will vary significantly
depending on the context of the company. Ideas from
RE research will not successfully transfer to small
companies unless they are tailored to the particular
context of the company. Just as a requirements analyst
must understand the specific needs of her customers,
the RE researcher must understand the varied needs of
software companies: context is essence.

Further work is needed to test this hypothesis, and if
it is correct, to investigate the forces that shape the
evolution. It is still unclear whether it is the software
company that specializes to a niche, or the niche that
adapts to the company, or both. For example,
companies may select requirements practices that suit
their customers, or the customers may choose whom to
work with based on how competing companies
approach the requirements process. Our initial data
indicates some support for both of these accounts.

Just because they are adapted doesn’t mean there is
no room for improvement. While each of the
companies we studied has a requirements process that
works well enough currently, these may not be robust
enough to survive as the company grows, or as the
business environment itself evolves.

5.2. Cultural Cohesion

A second striking observation about the companies
we studied is the high degree of cultural cohesion they
exhibit. In almost all cases, social characteristics
shared by the group enabled it to simplify the tasks of
requirements communication and coordination.
Specifically, we observed cultural cohesion occurring
in the following forms:

Homophily: A phenomenon that manifests as
homogeneity in a social network, caused by a natural
attraction of its members to similar individuals [10].

We found several instances of homophily in our cases
(Agilista’s shared engineering and professional
background and PhoneOffshore’s prevalence of
employees of the same minority, among others). This
homogeneity may increase the efficiency and
reliability of communication, and make it easier to
develop a shared understanding of the requirements.

Long term collaborations: In several cases, a
notable characteristic was the long term collaboration
between several of a company’s members across firms.
These relationships (e.g. Rentcraft’s product manager /
project leader duo, Endosymbiotic’s full team forking
from a different company, Bespoker’s partners
collaboration through almost two decades) enables a
deeper understanding of the work style of one’s
colleagues, and a better estimation of their capabilities.

Rejection of radical change: For many of these
companies, their current requirements practices were
negotiated, agreed, and settled in the past. Newcomers
that intend to change processes significantly, or that do
not accept established practices, have on occasion been
received with hostility and did not last long.

These phenomena lead us to suggest the following
competing hypothesis to explain the diversity in the
requirements processes of the companies in our study:

Hypothesis: The choice of RE practices is
irrelevant for small companies with strong cultural
cohesion, as the efficiency of team dynamics overrides
any benefits based on process.

If this hypothesis is correct, it implies that the real
goal of RE research should not be the creation of
requirements techniques, but the study of the means
through which teams acquire a shared understanding
efficiently. Teams that have achieved strong cohesion
do not need new requirements techniques because they
have no problems achieving a shared understanding of
the requirements. On the other hand, a team that lacks
this cohesion might be able to overcome the problem
through processes and documentation.

This hypothesis offers an alternative explanation of
the diversity of RE practices than the evolutionary
account given in the previous section. If culturally
cohesive teams can succeed with arbitrary
requirements practices, then adaptation to a business
niche is no longer needed to explain the diversity we
observed. The diversity occurs because, for these
companies, anything works.

5.3. The CEO is the requirements engineer

For small company owners, requirements processes
may well be one of the firm’s most important
activities: They rarely give away the role of
requirements analyst to their employees. In four of our

seven cases, a founder or the CEO of the firm does the
requirements engineering. In the other three cases, a
trusted senior figure in the company (a project leader
or a product manager) takes these responsibilities.

We offer two complementary explanations for this
phenomenon:

Hypothesis 1: The skillset needed for successful
requirements engineering is a subset of the skillset for
successful entrepreneurship.

In most of our cases the companies do not
distinguish between the role of a “requirements
engineer” and that of a “customer liaison”. The person
eliciting requirements is usually the face of the
company, and all communications are channelled
through this role. The requirements engineer, then, is
often also the company’s salesperson and contract
negotiator, and needs skills matching these roles.

Hypothesis 2: Requirements engineering and
business strategy are inseparable for small companies.

For a small company to commit to the development
of a project implies locking a proportionally large
amount of its available resources. Therefore,
requirements work is also strategic management work:
The decision of which projects to take or which
features to include in the next release of a product is a
strategic decision: it will define the company, enable it
to exploit its strengths, or lead it through the risk of
chartering unknown territory.

These explanations have important implications for
our field, which has on occasion attempted to abstract
the requirements process away from sales and strategic
considerations. If this disconnect remains, it will be
unlikely that owners of small companies find our
proposed requirements practices applicable to their
situations.

5.4. Requirements errors are not catastrophes

Every company that we talked to had stories to
share about requirements errors that compromised
some of their projects, and they were all aware of the
importance of getting their requirements right. And yet,
nobody recalled any catastrophes caused by these
requirements errors.

This absence of requirements catastrophes contrasts
sharply with the commonly accepted perception of a
“software crisis”, especially one largely caused by
requirements problems. We discuss several possible
explanations for this disagreement below.

Hypothesis 1: Small companies that survive their
initial phase practice normal design, which greatly
decreases the risks associated with requirements
engineering.

As we have discussed, these companies are well
established, and appear to have adapted to their
business niches. An important part of this adaptation
may have been a shift from a radical design to a
normal design [14] approach to software development.
Each company’s specialization allows for the
exploitation of skills and knowledge acquired
previously, which could decrease the risk of software
failures dramatically.

Hypothesis 2: Small companies can fix their
requirements problems more easily than large
companies by virtue of being small.

The scale at which small companies work reduces
significantly the size of their projects and their
coordination and communication challenges, in
comparison to the large corporations which are often
the subject of requirements engineering research. In
small projects, it is easier to arrange for meetings with
every participant and clear misunderstandings. Sharing
a (sometimes open) office space also enables valuable
information exchanges.

Hypothesis 3: A single requirements catastrophe
will drive a small company out of business.

It is possible that we did not observe companies that
have experienced significant requirements problems
because such companies go bankrupt and disappear
before we can study them.

Perhaps the most important indicator that
requirements errors are not perceived as catastrophic is
that they do not prompt these companies to take
decisive actions to change their requirements
processes. Owners recognize their issues with
requirements work, but prefer to take the hits and
maintain the processes that have enabled their survival
so far, rather than to revolutionize their methods and
risk failure.

Our evidence suggests that these companies have
each arrived at a different configuration of
requirements practices that is “good enough” for their
contexts, and that revolutionizing their processes is
risky, costly, and unpleasant, in comparison to the
alternative of maintaining the inertia that has been
profitable to this point. If this observation is correct, it
means that small companies will never adopt
requirements techniques that demand radical change.

6. Threats to validity

Construct Validity: Our main constructs are the
concepts of “small software company” and
“requirements management process”. Regarding the
first, we arbitrarily defined small companies as those
with less than 50 employees. This limit is artificial, and
might obscure the distinctions between a four-person

and a forty-person company. Future studies will probe
these differences; for now the limit allows us to
explore the characteristics of that underrepresented
95% of companies in the industry.

As for the second construct, our study of
requirements management processes was intentionally
broad. We studied the processes through which
knowledge about a project flows among its
stakeholders, and therefore our construct overlaps with
activities usually referred to as project management,
business administration, sales, and negotiation.
Although this implies a lack of precision when
describing requirements processes, it enables us to
investigate these processes in their natural contexts.

Internal Validity: Our major source of data for this
study was the series of interviews we conducted with
people at each firm. In most cases, visits to the
participants’ offices allowed us to corroborate some
interview data. However, our reliance on interviews
meant that we needed to trust each participant’s
description of their own processes. Participants may
have omitted important facts, or we may have
misinterpreted them. Observational field studies will
help to uncover these problems, and we will carry them
out in the short term as our case study progresses.

External Validity: All of our cases were firms
headquartered in Toronto, and this might have
generated geographical biases. We do not know if our
findings apply to software firms around the world –
and given that contextual factors seem to shape
companies, the software industry of other cities might
exhibit different characteristics. These differences,
however, should not change the key insights from our
study significantly.

Reliability: We expect that replications of our
study should offer results similar to ours. Of course,
the characteristics of each company under study will
differ from our reports, but the underlying trends and
implications should remain unchanged.

7. Related work

Small software development companies have been
severely understudied by the requirements engineering
community; and in instances when field studies have
been reported, the size of the participating companies
often goes unmentioned (as many other elements of
their context), complicating the history of the field.

Lubars et al. [9] reported, in 1993, a multiple case
study of 23 projects in 10 companies. They did not
provide data on the size of the companies. The study
focused on current practices and the problems these
companies face; and they report that nearly all of the
key problems were organizational rather than technical.

Two years later, El Emam and Madhavji [5] surveyed
60 development projects, all using a particular systems
analysis method and support tool marketed by a single
company. They focused on the major challenges that
these projects faced in their requirements process, and
the size of the participating companies was not clear.

In 1997, Gotel and Finkelstein [6] reported on a
case study of traceability by tracking the contributions
structures of different participants. The case study was
conducted in a 25-person “communications” company.

Carter et al. [4] presented a lightweight prototyping
technique that was specifically meant to be used by
small development teams (up to 12 people).
Unfortunately, their emphasis was on team size, not on
company size. More recently, John et al. [7] studied the
use of domain analysis through a case study of a 14-
person company, which was part of a larger consortium
of 8 small and medium sized companies and two
research institutes. The case study concentrated on how
a particular domain analysis technique was used on a
project within this company.

Finally, in 2005, Callele et al. [3] studied
requirements engineering in the videogame industry.
Their data is mainly drawn from industry reports, and
it is possible that some of these come from the
experiences of small companies, although that was not
the focus of the study. In the same year, Alexander et
al. [1] presented the results of a survey of requirements
practices in several software companies. Size, again,
was not in scope, but the study does provide insights
regarding the diversity of approaches for requirements
in the software industry, which they adjudicate to
training, organizational standards, tools, first
principles, and the experience of colleagues.

8. Conclusions and future work

This case study found evidence that small software
companies have a number of characteristics that
distinguish their requirements processes from those of
large corporations. These findings challenge many of
the common assumptions underlying requirements
engineering research.

The findings lead us to offer the following
recommendations for the requirements engineering
research community:

State the context: Proposed requirements
techniques may be ideal for certain contexts, and
unhelpful for others. It is important to understand and
to state the contexts in which a technique provides the
greatest benefit to its users.

Connect RE research to business and social
concerns: Requirements practices in small companies
are closely tied to culture and business strategy.

Exploring these connections in RE research should
lead to significant new insights.

Provide the evidence: Unless there is convincing
evidence that a requirements technique is beneficial for
a particular context, the corresponding companies are
unlikely to risk abandoning the set of practices that
have enabled them to survive, in order to obtain
unproven benefits.

Provide incremental improvements: Proposals are
often offered as monolithic changes in practices.
Implementing them has the potential of disturbing the
current set of practices greatly, which may have highly
negative effects for the company. A safer approach is
to offer proposals as incremental improvements that
allow a firm to slowly adapt to change, facilitating the
adoption of the practice and minimizing risk.

Our case study has not finished. We continue to
interact with the participating companies and to
incorporate more of them to our pool of subjects. We
will investigate, among other things, the rationale that
some of these companies have had for making radical
changes in their requirements process in the past, and
the effect that these changes provoked. We will assess
the impact of several contextual variables in adopting a
requirements technique; and we will study how
strategic and negotiation considerations are
incorporated into the requirements processes. Finally,
we believe that we have only scratched the surface of
the diversity that can be found in small software
companies. We expect that a greater number of cases
will shed some light into the extent of the
specialization that small companies experience to
survive in their complex environments.

9. Acknowledgements

We wish to thank the participants of our case study
for their invaluable collaboration. Funding for this
research was provided by NSERC.

10. References

[1] I. Alexander, S. Robertson, and N. Maiden. “What
influences the requirements process in industry? A report on
industrial practice”, Procs. of the 13th IEEE International
Requirements Engineering Conference, 2005, pp. 411-415.

[2] K. Beck, and C. Andres, Extreme Programming
Explained: Embrace Change, Addison-Wesley, 2004.

[3] D. Callele, E. Neufeld, and K. Schneider. “Requirements
engineering and the creative process in the video game
industry“, Procs. of the 13th IEEE International
Requirements Engineering Conference, 2005, pp. 240-250.

[4] R.A. Carter, A.I. Anton, A. Dagnino, and L. Williams.
“Evolving beyond requirements creep: a risk-based

evolutionary prototyping model”, Procs. of the 5th IEEE Intl.
Symposium on Requirements Engineering, 2001, pp. 94-101.

[5] K. El Emam, and N.H. Madhavji. “A field study of
requirements engineering practices in information systems
development”, Procs. of the 2nd IEEE Intl. Symposium on
Requirements Engineering, Mar 1995, pp. 68-80.

[6] O. Gotel, and A. Finkelstein “Extended requirements
traceability: results of an industrial case study”, Procs. of the
3rd IEEE International Symposium on Requirements
Engineering, Jan 1997, pp. 169-178.

[7] I. John, D. Muthig, P. Sody, and E. Tolzmann. “Efficient
and systematic software evolution through domain analysis”,
Procs. of the IEEE Joint International Conference on
Requirements Engineering, 2002, pp. 237-244.

[8] P. Kruchten, The Rational Unified Process: An
Introduction, Addison-Wesley, 3rd ed., 2003.

[9] M. Lubars, C. Potts, and C. Richter. “A review of the
state of the practice in requirements modeling”, Procs. of the
IEEE International Symposium on Requirements
Engineering, Jan 1993, pp. 2-14.

[10] M. McPherson, L. Smith-Lovin, and J. Cook. “Birds of
a feather: Homophily in social networks”. Annual Review of
Sociology, 27, 2001, pp. 415-444.

[11] K. Schwaber, Agile Project Management with SCRUM,
Microsoft Press, 2004.

[12] U.S. Census Bureau. Statistics retrieved from
http://www.census.gov/, Feb 2007.

[13] U.S. Small Business Administration. Information
retrieved from http://www.sba.gov/, Feb 2007.

[14] W.G. Vincenti, What Engineers Know and How They
Know It, Johns Hopkins University Press, 1993.

[15] R.K. Yin, Case study research: Design and methods,
Sage Publications, 3rd ed., 2003.

