
A Category-Theoretic Approach to Syntactic Software Merging

Nan Niu, Steve Easterbrook, and Mehrdad Sabetzadeh
Department of Computer Science, University of Toronto

Toronto, Ontario, Canada M5S 3G4
Email: {nn,sme,mehrdad}@cs.toronto.edu

Abstract

Software merging is a common and essential activity
during the lifespan of large-scale software systems. Tra-
ditional textual merge techniques are inadequate for detect-
ing syntactic merge conflicts. In this paper, we propose a
domain-independent approach for syntactic software merg-
ing that exploits the graph-based structure(s) of programs.
We use morphisms between fuzzy graphs to capture the re-
lationships between the structural elements of the programs
to be merged, and apply a truth ordering lattice to express
inconsistencies and evolutionary properties as we compute
the merge. We demonstrate the approach with a three-way
consolidation merge in a commercial software system; in
particular, we show how analyzing merged call structures
can help developers gain a better understanding and con-
trol of software evolution.

1 Introduction

Parallel changes, in which separate lines of development
are carried out by different software developers, are a basic
fact of developing and maintaining large-scale software sys-
tems [17]. An optimistic version control mechanism [3] al-
lows every developer to work on a local copy of the software
artifact independently. Thus, a fundamental and important
problem in building and evolving complex large-scale soft-
ware systems is how to merge parallel versions and variants
of a software product to yield a consistent shared view.

Traditional merge tools are built using textual merge
techniques. This gives the tools high flexibility, since any
program can be treated as a flat text file. An intrinsic dis-
advantage of textual merging is that only very basic con-
flicts can be identified due to the lack of structured syntac-
tic and semantic knowledge. This considerably limits tex-
tual merge techniques’ analytical power. Another problem
is that textual merge techniques focus mainly on software
systems at the source code level. This makes detecting in-
consistencies at higher levels of abstraction very difficult.

As a result, the software system’s overall picture is over-
looked in the textual merge process.

Graph-based representations are used frequently in Soft-
ware Engineering as an aid to comprehension. Differ-
ent graph-based notations are used to model various soft-
ware artifacts, such as requirements, specifications, archi-
tecture, design, and so on. Such graphical representations
can also be extracted from legacy code using reverse engi-
neering tools, and these representations have been demon-
strated to be useful for program understanding [15]. Hen-
drix and Cross [10] proposed a language-independent ap-
proach to generating graphical representations of source
code that supports both forward and reverse engineering.
Given that reverse engineering has improved continuously
in handling legacy systems and that huge potential benefits
can be gained from the effective use of graphical represen-
tations of software artifacts, we have focused on developing
graph-based merge techniques in the context of software re-
verse engineering and reengineering.

In our previous work [20], we developed a framework for
merging requirements models, based on Goguen’s fuzzy set
category-theoretic formalism [8]. The approach is robust in
the face of inconsistency, and has the advantage that struc-
tural inconsistencies are explicitly flagged in the merged
model, and can be traced to their sources. In this paper, we
adapt the idea for merging source code. In our approach,
we treat each program as a graph, and annotate its nodes
and arrows with the elements of a lattice to specify how they
have been modified in different versions of the software. By
defining an appropriate complete lattice to express the evo-
lutionary ordering, we construct a finitely cocomplete fuzzy
set category. We then show that a set of interconnected soft-
ware artifacts can be merged by constructing the colimiting
graph in this category.

Our aim is to lay a foundation for the graph-based merge
techniques that exploit categorical formalisms and lead to
further automation. Our proposed approach to modeling in-
consistencies and analyzing evolutionary properties is very
general and does not depend on any specific programming
language or particular type of application. To demonstrate

the idea, we present a study showing the approach’s appli-
cation to a commercial software system. Our purpose is to
identify the graph-based syntactic software merging prob-
lem, demonstrate the feasibility of our approach in a real-
world setting, discuss the preliminary results, share our ex-
perience, and open up new research avenues arising from
our investigation.

The remainder of the paper is organized as follows: In
Section 2, we motivate the paper by means of an illustrative
example and further explore truth orderings in parallel soft-
ware development and maintenance. Section 3 reviews ba-
sic concepts in category theory and fuzzy set categories. We
propose a category-theoretic approach to syntactic software
merging in Section 4. Section 5 presents an application of
our approach. We discuss related work and conclude the
paper with a summary and some directions for future work
in Section 6.

2 Motivation and Evolutionary Orderings

In this section, we first identify the problems associated
with textual merging. Then we briefly review the defini-
tions of graphs, graph homomorphisms, posets, and lattices.
The purpose is to explore evolutionary orderings in parallel
software development and to build the context of the graph-
based merge technique used in our approach.

2.1 Running Example

The example of Figure 1 shows a three-way merge prob-
lem for a C program: we need to merge two parallel ver-
sions that share a common ancestor. The program fragment
implements the routine of entering the top score of a LAN-
supported BBS door game. The original implementation
(version 1) sends the player plain text emails informing her
of potential awards if her score passes a pre-defined thresh-
old. Parallel changes are made by versions 1a and 1b. To
divide and conquer, tasks are assigned complementarily: 1a
focuses on the modification of award policies, whereas 1b
adds HTML email features to the program module.

The middle boxes of Figure 1 highlight only the changes
made by 1a and 1b, not the entire code fragments. Version
1a deletes the function get point and defines a new boolean
function pass rank to revise the award policy. send award
is rewritten by 1b, but the assignment of the newly intro-
duced variable p is made by calling the function get point.

A possible textual merge result is shown at the bottom of
Figure 1, where differences from version 1 are underlined.
Although the merged program is syntactically correct, it
has semantic errors. The most obvious problem is that ver-
sion 1a’s discarding of the function get point does not take
effect in the merged result, because version 1b keeps this
part of the program structure intact. Consequently, a wrong

10

send_award (msg) ; void send_award (char *msg) {

1 . . .
void enter_game_record(char *msg) {

if (pass_rank (msg))
send_award (msg) ;

int pass_rank (char *msg) {

int get_point (char *msg) {

void send_award (char *msg) {

void enter_game_record(char *msg) {

if (pass_rank (msg))
send_award (msg) ;

1

5

int pass_rank (char *msg) {10

15 int get_point (char *msg) {

20 void send_award (char *msg) {

int p = get_point (msg) ;

int p = get_point (msg) ;
/* send HTML email */25

 . . .
/* check game point */

 . . .

if (get_point (msg) > AWARD_P)

 . . .

 . . .
}

/* AWARD_P is a constant */
5

 . . .
}
 . . .

/* send plain text email */
 . . .

}
 . . .

/* return game point */

15

version 1

 . . .
void enter_game_record (char *msg) {

 . . .
/* award policy is modified */

 . . .
}
 . . .

/* a boolean function, return 0 or 1 */
 . . .

}
 . . .

version 1a

/* send plain text email */

 . . .
}
 . . .

 . . .
version 1b

merge of versions 1a and 1b

 . . .
/* award policy is modified */

 . . .

 . . .

}
 . . .

/* a boolean function, return 0 or 1 */
 . . .

}
 . . .

/* return game point */
 . . .

}
 . . .

/* send plain text email */

}
 . . .

 . . .
/* check game point */

/* send HTML email */

 . . .

Figure 1. Three-way textual merge example

value is obtained for variable p (line 24) since the award pol-
icy is updated in pass rank. Furthermore, the return type of
pass rank is essentially boolean. But the function declara-
tion coincidentally remains int due to the lack of bool data
type in C. This contingency, accompanied by the change of
business logic, may cause later uses of p in send award to
behave inappropriately.

Figure 1 also demonstrates the importance of treating
this as a three-way merge problem. If we attempt to com-
pare and merge just versions 1a and 1b, without consider-
ing their common ancestor, we cannot determine how to
treat lines 4 and 5 in the merged version. Version 1a con-
tains “modified policy” and the function pass rank, while
the corresponding lines in 1b include “constant AWARD P”
and get point. This generates nondeterminism for most
two-way textual merge algorithms, and a syntactic conflict

is reported. Three-way merging overcomes this shortcom-
ing: “constant AWARD P” and get point of version 1b are
also present in the parent version, implying that only 1a
makes modifications to those lines. This extra knowledge
helps the algorithm to infer which later version’s informa-
tion should be included in the merged result. However, if
1a’s changes take precedence during merging, we may en-
counter new problems. For example, domain knowledge
reveals a crisp separation of concerns between the paral-
lel versions 1a and 1b. Thus, in accordance with 1a’s re-
vision, the function get point should be removed from the
merged version because 1b is concerned only with modify-
ing send award. But such a removal will cause a syntactic
error in the merged result, because p is defined by making
an explicit invocation to get point.

We are aware that the program structure of the above ex-
ample could be refactored to achieve low couplings among
functions so that some merge conflicts may be circum-
vented. However, we intentionally choose such a “lousy”
structure in our running example for the following reasons:
The source code shown in Figure 1 is derived from our study
on a commercial system; and we believe this example is
representative of many existing legacy systems.

2.2 Graphs and Graph Homomorphisms

To overcome the limitations of textual merge techniques,
we treat programs as graphs, and the merge process as a
process of merging graphs. To obtain a sensible merge, the
relationships between the programs must be captured as in-
terconnections between their graphs. We use graph homo-
morphisms as the basis for the interconnections, although,
as we shall see, we need to go beyond homomorphisms to
gain the appropriate expressive power.

Definition 2.1 A graph is a quadruple G = (N,A, sG , tG)
where N is a set of nodes, A is a set of arrows, and sG , tG :
A → N are functions giving the source and the target for
each arrow in G respectively.

Definition 2.2 A graph homomorphism φ from a graph G
to a graph G′ is a pair of functions φ0 : N → N ′ and
φ1 : A → A′ such that if u is an arrow of G, then
φ1(u) is an arrow of G′ with sG′(φ1(u)) = φ0(sG(u)) and
tG′(φ1(u)) = φ0(tG(u)).

Figure 2 sketches the running example’s merge scenario
using call graphs. For each graph, nodes are functions and
arrows are call relations. The source and the target of an
arrow represent the caller and the callee of the call relation
respectively. Note that if pass rank in GA is regarded as
a newly added function by version 1a, then the morphism
from GC to GA fails to be a graph homomorphism because,
for example, the node get point of GC does not have an
image in GA. Figure 2 provides only a background example

GC

GB

GA

GP

enter_game_record

get_point send_award

enter_game_record

send_awardget_point

enter_game_record

send_award

pass_rank

enter_game_record

get_point send_award

pass_rank

version 1b

version 1a

version 1 merged result

Figure 2. Graph-based merge example

of our graph-based merge technique, and we will elaborate
the more rigorous construction in the following sections.

2.3 Partially Ordered Sets and Lattices

We now construct a series of posets and lattices to pro-
vide sets of labellings for nodes and arrows of our program
graphs, which express how those graph elements evolve.

Definition 2.3 A partial order is a reflexive, antisymmet-
ric, and transitive binary relation. A non-empty set with a
partial order on it is called a partially ordered set or a poset.
We use Hasse diagrams [4] to visualize finite posets.

Definition 2.4 Let (A,≤) be a poset and S ⊆ A. An ele-
ment v ∈ A is an upper bound of S if ∀s ∈ S : s ≤ v. If
v is an upper bound of S and v ≤ w for all upper bounds w
of S, then v is called the supremum of S. Lower bound and
infimum are defined dually. We write

⊔
A S (respectively�

A S) to denote the supremum (resp. infimum) of S ⊆ A,
when it exists. If both

⊔
A{a, b} and

�
A{a, b} exist for any

a, b ∈ A, then A is called a lattice. If both
⊔

A S and
�

A S
exist for any S ⊆ A, then A is called a complete lattice.

Lemma 2.5 (cf. e.g., [4]) Every finite lattice is complete.

Since three-way merging can both detect more con-
flicts [14] and generate more decisive merge results (as
shown in the running example) than its two-way variant, in-
formation about the common ancestor is taken into account
in our construction. Figure 3 presents four ordered sets in
Hasse diagrams. A3 provides a set of labels to show how
program elements from the common ancestor can evolve. In
the ancestor, initial (I) 1 indicates no evolution yet; subse-
quent versions will either preserve (P) or remove (R) such
elements. A2 provides labels for the converse type of evo-
lution, where new elements are added (A) that were nonex-
istent (N) in the ancestor.

If we attempt to merge two parallel versions that are cre-
ated from a common parent, we need the Cartesian products
of these posets. For example, the products A9 = A3 × A3

and A4 = A2 × A2 are shown in Figure 3. The first (resp.
1For succinctness, we just use the first letter of each element, where

this does not cause ambiguity.

A9 A4

AA

NN

NA AN

2A3A

PreserveRemove

Initial

IR PI

PPRR RP

RI IP

I I

PR

Nonexisting

Add

Figure 3. Orderings A3, A2, A9, and A4

�

PP

MA

RR

PM

PR

MR RM MP

RP

AM

AA

A13

MM

Figure 4. Evolutionary ordering A13

second) component of each element in the product repre-
sents the first (resp. second) evolved version’s knowledge.
Based on this labeling mechanism, if we consider the run-
ning example of Figure 2, the node send award in GA and
the arrow from send award to get point in GB will be an-
notated with the values PI of A9 and NA of A4 respec-
tively.

Finally, we need to combine both sets of labels to capture
the full range of program element evolutions. In order to
amalgamate A9 and A4, we introduce a single bottom value
M (Maybe) that combines I and N . For reasons that will
become clear in Section 3, we focus our discussion here on
complete lattices. Therefore, a top element (�, meaning
“incompatible”) is imposed to form a complete lattice. The
result, A13, is shown in Figure 4.

3 Category-Theoretic Preliminaries

3.1 Category Theory

The operation of merging an interconnected set of graphs
corresponds to the colimit operation in category theory. We
therefore appeal to category theory to provide the appropri-
ate constructs, and proofs of their existence. In this paper,
we will assume some familiarity with basic concepts of cat-
egory theory and only make use of pushouts, rather than the
more general colimits. An excellent introduction to cate-
gory theory from a computer science perspective is [1].

Definition 3.1 Set is the category whose objects are sets
and whose morphisms are total functions. Grf is the cat-
egory whose objects are graphs and whose morphisms are
graph homomorphisms.

Definition 3.2 A pushout of a pair of morphisms
f : C → A and g : C → B in a category C is a C -
object P together with a pair of morphisms j : A→ P and

c1

c2 c3

d1 d2

t3

t 2
b1

b3

t 1

b2

a4

s2
a1s1

a3a2

s3

{a3, b3}{a2, b2}

{a1, b1}

{a4}

{s1, t1} {s2, t2}

{s3}

{t3}
GC

GA

GB

GPψ

φ

ψ’

φ ’

Figure 5. Pushout example in Grf

k : B → P such that: j ◦ f = k ◦ g; and for any C -object
P ′ and pair of morphisms j′ : A→ P ′ and k′ : B → P ′

satisfying j′ ◦ f = k′ ◦ g, there is a unique morphism
h : P → P ′ such that the following diagram commutes:

C

A

B

P

P ′

........

........

........

........

........

........

........

........

........

........

........

.................

............

f

...

g

...

j

........

........

........

........

........

........

........

........

........

........

........

.................

............

k

....................
....................

....................
....................

....................
....................

....................
....................

....................
......................
............

j′

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
...............
............

k′

...........
..
...........
..
...........
..............
............

h

The canonical pushout construction of a pair of Set-
morphisms is described in [20]. An equivalent definition for
graph and graph homomorphism can be given by noticing
that a graph is a many-sorted algebra and a graph homomor-
phism is a many-sorted homomorphism [19]. This indicates
that (many-sorted) set is the underlying construct for graph
and graph homomorphism; and the pushout in Grf can be
computed component-wise for nodes and arrows by apply-
ing the canonical construction of pushout in Set.

Pushout formalizes the three-way merge technique dis-
cussed in this paper. For example, Figure 5 illustrates
that the pushout of a pair of morphisms φ : GC → GA and
ψ : GC → GB in Grf can be considered as the combination
of GA and GB with respect to a shared part GC . The pro-
gram graphs of Figure 5, (GC , φ, ψ), are chosen from the
running example’s call graphs of Figure 2, with the follow-
ing changes: Arrows are specified explicitly; a new node
(a2) is added to GA to correctly render the graph homomor-
phism φ; nodes or arrows in different graphs do not share
the same names; and the naming schema seeks concision
and conformity with the canonical pushout construction’s
guidelines [19].

3.2 Categories of Fuzzy Sets

Since its inception in the 1960s, fuzzy set theory has re-
ceived considerable attention from different computing dis-
ciplines. This section presents the definitions and results of
fuzzy set categories [8] needed in the paper. We have ex-

tended the term “fuzzy” to posets and lattices so that the
truth values in our framework differ in nature from the lin-
early ordered real interval [0, 1].

Definition 3.3 Let A be a poset. An A-valued set is a pair
(S, σ) that consists of a set S and a function σ : S → A.
We call S the carrier set of (S, σ) and A the truth-set of σ.
For every s ∈ S, the value σ(s) is interpreted as the degree
of membership of s in (S, σ).

Definition 3.4 Let (S, σ) and (T, τ) be two A-valued sets.
A morphism f : (S, σ) → (T, τ) is a function f : S → T
such that σ ≤ τ ◦ f , i.e., the degree of membership of s in
(S, σ) does not exceed that of f(s) in (T, τ). The function
f : S → T is called the carrier function of f.

Lemma 3.5 For a fixed posetA, the objects and morphisms
defined above, together with the obvious identities, give rise
to a category, denoted Fuzz(A).

Figure 6 (informally) shows two Fuzz(A4) objects
(GC , γ) and (GA, α) along with the carrier function
φ : GC → GA. Here, we adopt GC , GA, and φ from Fig-
ure 5 to emphasize the facts that graphs are special (many-
sorted) sets and morphisms between fuzzy graphs are han-
dled component-wise for nodes and arrows. In this paper,
we omit the formal procedure for constructing fuzzy graphs.
The interested reader should refer to [19] for further de-
tails. The truth-set A4, which is adopted from Figure 3, is
depicted in the same figure using Hasse diagram, with the
lines connecting truth values widened.

Theorem 3.6 All the pushouts exist for Fuzz(A) when A
is a complete lattice.

Proof of this theorem can be found in [20].
To guide our approach to graph-based software merg-

ing, we spell out the procedure for computing fuzzy graph
pushouts without directly using the underlying category-
theoretic constructs. Let A be a complete lattice. For
computing the pushout of a pair of Fuzz(A)-morphisms
φ : (GC , γ) → (GA, α) and ψ : (GC , γ) → (GB , β), first
compute the canonical Grf -pushout of the carrier mor-
phisms φ : GC → GA and ψ : GC → GB in order to find a
graph GP along with graph homomorphisms ψ′ : GA → GP

and φ′ : GB → GP . Then, compute a membership degree
for every p ∈ GP (component-wise for nodes and arrows)
by taking the supremum of the membership degrees of all
those elements in (GA, α) and (GB , β) that are mapped to
p. This yields an object (GP , ρ) and lifts ψ′ and φ′ to
Fuzz(A)-morphisms, all of which constitute the pushout
of φ and ψ in Fuzz(A).

a4

s2
a1s1

a3a2

s3

c1

c2 c3

d1 d2

AA

NN

NA AN

γ : GC → A4 φ

GA

α : GA → A4A4

GC

Figure 6. Example of fuzzy graphs

4 A Category-Theoretic Approach to Syntac-
tic Software Merging

When merging arbitrary software artifacts, it is impossi-
ble to guarantee that there are no undesirable interactions,
because any non-trivial property of a program’s execution
behavior is undecidable [14]. For this reason, we are com-
pelled to make some assumptions about the general struc-
ture of the programs to be merged. We restrict our discus-
sion to graph-based software merging. We assume that it
is sufficient to represent the structure of the programs as
graphs, and that the relationships between versions of a
program can be expressed as structural mappings between
these graphs.

In our approach, we represent the programs to be merged
as objects of the category Fuzz(A) for some fixed com-
plete lattice A. A diagram in Fuzz(A) can be regarded
as a family of different versions or variants of a software
system in which software artifacts are represented graph-
ically by Fuzz(A)-objects and artifacts’ interconnections
are represented by Fuzz(A)-morphisms. The result given
in Theorem 3.6 states that the pushout exists for any pair of
morphisms with a common domain 2.

It is worth pointing out that software merging can range
from a manual – and often time-consuming – process, over
a semi-automated process that requires interaction with the
user, to a fully automated approach. Only in very specific
situations is it possible to fully automate the merge pro-
cess [14]. This is why we consider our semi-automated
approach to be useful. By applying graph-based software
merging together with experience, domain knowledge, and
common sense, the user can build intuition about the con-
text, rationale, scope, and intent of software evolution.
However, we do not explicitly address how this might be
systematically achieved in this paper, as it is beyond of the
scope of our current work.

2Note that this result generalizes to allow us to integrate any finite set of
graph-based software artifacts with known interconnections by construct-
ing the colimit.

4.1 Preprocessing

Preprocessing takes advantage of reverse engineering
techniques to transform source codes into graph-based soft-
ware artifacts, such as call graphs, attributed graphs, and
the like. The process of analyzing a subject software to
create graphical representations of the system’s structure at
higher levels of abstraction is well studied, and many tools
are available in the reverse engineering literature.

Figure 7 highlights the process, with bi-directional ar-
rows showing correspondences. The dashed “inclusion” ar-
row renders a graph homomorphism. Single-directed ar-
rows represent actual operations. Rigi [15] is an interac-
tive, visual tool designed to help understand and reengineer
legacy systems. We used Rigi for our initial study, but we
anticipate that any program comprehension tool that offers
graphical representations of a system structure will fit into
this process.

Coping with huge amounts of data is one of the major
problems associated with software evolution, as several ver-
sions of the same software must be analyzed in parallel.
Current approaches reduce this complexity by filtering out
irrelevant information. The “projection” operation in Fig-
ure 7 facilitates abstraction through subsystem identifica-
tion, which is end-user programmable in Rigi. This makes
subsystem identification semi-automated by leveraging ap-
plication or programming domain knowledge. For example,
all nodes labeled with a common prefix according to some
naming convention can be collapsed into a single subsys-
tem. One can drill down into the subsystem of interest from
source codes directly, but this disregards various graphical
features provided by a visual reverse engineering tool. Pro-
jection is not mandatory, but it is often necessary in practice.

4.2 Pushout Diagram Construction

A typical three-way merge scenario is depicted in Fig-
ure 8a. Graphs G1, G′

A and G′
B are preprocessing results

of versions 1, 1a, and 1b, respectively. Newly added parts
by both later parallel versions are captured by the connector
graph Gnew. Figure 8b sketches this concept, in which ιA′

and ιB′ are inclusion homomorphisms.
It is important to make G1 and Gnew disjoint. This im-

plies that a program entity (node or arrow) captured in Gnew

must be really new and should not be viewed as a renamed,
moved, or otherwise changed version of an entity from G1.
While simple renaming and moving of program entities are
easy to define formally and fairly easy to detect, the more
general concept of matching entities in different versions
is not. Many techniques for identifying correspondence in
software evolution have been proposed, among which orig-
inal analysis [21] is a semi-automated process tailored for
deciding newly introduced program entities among differ-
ent versions. Tu and Godfrey’s prototype tool, Beagle [21],

source
code graph subgraph

inclusion

projection

system system subsystem

Rigi

Figure 7. Preprocessing

version 1b

version 1a

merged
version

(merged result)

version 1

(a) (b)

connector

(c)

G′
B

G′
A

GP

G1

G′
B

ιA′ ιB′

G′
A

Gnew

φ φ′

ψ

ψ′

GB = (G′
B ∪ G1)GC = (G1 ∪ Gnew)

GA = (G′
A ∪ G1)

Figure 8. Pushout construction in Fuzz(A13)

supports original analysis and can be used to construct
Gnew.

Figure 8c shows the pushout diagram,
(GC , φ : GC → GA, ψ : GC → GB), in the category of
Fuzz(A13). We adopted the idea of code clone detection
to help in building correspondences from the nodes and
arrows of version 1 (G1) to later versions’ (GA and GB)
counterparts. A code clone [11], which is a code portion in
source files identical or similar to another code fragment, is
considered a serious problem in industrial software because
it creates difficulties in maintaining source files consis-
tently. Various clone detection tools have been proposed
and implemented. In our study, we used CCFinder [11] to
gather clones from the candidate software systems and to
help construct mappings from G1 to GA and GB .

The morphisms to the truth-set A13 are omitted to keep
Figure 8c concise. We now describe the sequence of the
labeling operations of the elements (nodes and arrows) in
GC and GA (resp. GB) to build the truth-set mapping for the
Fuzz(A13)-morphism φ (resp. ψ):

1. Label every element in G1 of GC with MM;
2. Label every element in Gnew with AA;
3. Label every element in GA \ G′

A (resp. GB \ G′
B) with

RM (resp. MR);
4. Label every element in the image of the carrier func-

tion φ(Gnew) (resp. ψ(Gnew)) with AA;
5. Label every element in GA \ GC (resp. GB \ GC) with

AM (resp. MA); and
6. Label all remaining elements in GA (resp. GB) with

PM (resp. MP).

The condition for all annotating operations defined in the
sequence is the following: A subsequent operation cannot
override the labeling effects of previous operations. It can
be checked that the given labeling sequence and the car-
rier functions φ : GC → GA and ψ : GC → GB give rise to
a pushout diagram in Fuzz(A13).

4.3 Pushout Computation and Analysis

Given the pushout diagram (GC ,φ,ψ), the pushout
object GP , along with morphisms φ′ : GB → GP and
ψ′ : GA → GP , can be computed automatically in
Fuzz(A13) by applying the procedure described in Sec-
tion 3. The dashed arrows in Figure 8c indicate this
automated construction for the merged result.

A fundamental problem in visualizing software changes
is the choice of effective visual representations for data that
are not inherently physical. The goal is an insightful rather
than a faithful depiction of the data [5]. Multiple views
are often shown side-by-side in current visual reengineer-
ing tools. This increases developers’ cognitive overhead
when they are in the process of understanding parallel soft-
ware modifications. In our approach, the pushout result GP

in Fuzz(A13) characterizes much evolutionary information
within one view. This provides developers with a central-
ized vision to comprehend and analyze the merge process
more effectively and efficiently.

The truth ordering lattice A13 offers interpretations
of software artifacts according to certain semantics. In
our framework, a system of interconnected graphs in
Fuzz(A13) is syntactically inconsistent if the colimit of the
diagram corresponding to the system has some node or ar-
row with an inconsistent truth value.

It is up to the maintainers to designate (in)consistent val-
ues of A13. For example, we may regard RR, PP, and AA

as consistent and the rest of the values as inconsistent. This
is a reasonable choice when the system we are modeling
mandates the total agreement of both parallel versions in
every aspect. If we are only interested in explicit conflicts
and incompatibilities, we can relax this constraint and only
designate PR, RP, and � as inconsistent. If a three-way
consolidation merging occurs, in which most of the parallel
revisions are complementary (e.g., when changes are made
to different subsystems, workspaces, or modules) [16], RR

and AA may be deemed inconsistent as well.
A limitation to our proposed approach is that nodes and

arrows are treated equally when graph-based software arti-
facts are annotated. We deliberately choose to use the same
evolutionary ordering lattice for labeling, as our intention
is to explore the graph-based syntactic software merging
problem. From this perspective, A13 is a suitable truth or-
dering candidate, since it provides the basic expressive and
analytical power to capture the intuitive nature of software
evolution. However, we have constructed pushouts in Grf

by handling nodes and arrows component-wise. Following
Theorem 3.6, nodes and arrows of graph-based software ar-
tifacts can have different complete lattices for annotation,
where labels of nodes and arrows in the merged pushout
graph must be constructed and interpreted separately in two
fuzzy set categories.

Nevertheless, having two disparate evolutionary lattices
for nodes and arrows does not address the orthogonal prob-
lem of modeling different software versions or variants by
using different truth orderings. We anticipate that such a
limitation could be tackled by introducing institutions [9]
for consistently transforming signatures, sentences, and
models from one logical system into another; however, we
have not yet investigated this idea.

5 A Proof-of-Concept Example

We applied the technique described in this paper to the
software produced by a software company in Beijing, PR
China, which offered us access to parallel changes in an
industrial software system. The company was highly coop-
erative and generous with regards to our research, sharing
not only their data, but also staff time and other resources.

The subject system of our study is a commercial propri-
etary system developed in-house by a single company. In
order to honor confidentiality agreements, we will call it
iBBS. iBBS aims to turn a PC into a customizable online
service that supports multiple simultaneous users with hi-
erarchical message and file areas, multi-user chat, and the
ever-popular BBS door games.

iBBS’s development began in the early 1990s for single-
tasking MS-DOS compatible computers and Hayes compat-
ible modems. The program was commercialized and re-
leased for both the 16-bit DOS and 32-bit OS/2 platforms to
contracted customers, which were mainly LAN-supported
local companies. iBBS continued to evolve during the
1990s with a specific focus on the Internet community, em-
bracing and integrating standard Internet protocols such as
Telnet, FTP, SMTP, POP3, IRC, NNTP, and HTTP. iBBS
has since been substantially maintained as a BBS package
for Win32 and Unix-x86 platforms as both an Internet- and
LAN-compatible system. iBBS is written in C, and Mi-
crosoft SourceSafe is used as the version control system.

In Burd and Munro’s studies investigating software evo-
lution [2], they pointed out that the calling structure was one
of the most important units of understanding used within the
composition of the maintainer’s mental model. Figure 9a is
a Rigi screen dump showing the overall calling structure of
one variant of iBBS. This graph, in which 119 functions
(nodes) and 75 calls (arcs) are presented, exemplifies the
scalability and complexity problem encountered in the pro-
gram comprehension and maintenance process. The pro-
jected and more manageable “util” subsystem’s call graph

(a) overall system (b) subsystem“util”

Figure 9. Call graphs of iBBS (version 1b)

Table 1. Comparison of “util” programs

overview

LOC (lines of code)

number of functions

number of calls

cyclomatic complexity

fix bugs

27

 2,476

19

Linux86

43

 2,722

28

22 31

version 1b1a1

 WIN32

10

 2,159

13

7

is shown in Figure 9b.
Table 1 summarizes a brief comparison of the com-

mon ancestor and two later versions of the “util” subsys-
tem of iBBS that are under study. Platform-dependent and
security-related files are mainly included in the “util” mod-
ule. Development of versions 1a and 1b took place in par-
allel, since time-to-market was among the top priorities for
such a business application. Changes made by later versions
were complementary, but unavoidably had some overlaps.
This generated a rich and real environment for a software
merging study – after all, one iBBS package that originated
from version 1 was released by incorporating both modifi-
cations of 1a and 1b.

Figure 10 shows the interconnection of the call relations
from version 1 (GC) to 1a (GA) of iBBS’s “util” subsys-
tem. For simplicity, we have adopted some labeling con-
ventions: A rectangle with a natural number and an A13

element – such as 1 MM – denotes a “function of inter-
est” and its corresponding truth value; call relations are also
decorated with truth values from A13. The morphism from
GC to GB is analogous, but is omitted due to space con-
straints. Beagle [21] and CCFinder [11] were used to help
extract facts from and build mappings among software arti-
facts. This examination and determination were performed
independently by the first author and one of the original de-
velopers of iBBS, and the differences were reconciled. It
also should be noted that the results given by auxiliary tools
had false negatives (e.g., mappings to some renamed and
slightly modified functions were unable to be established).
Under these circumstances, more human input was needed.

The pushout of Figure 11 shows the three-way merging
result of “util” in iBBS, and yields an insightful view for

13 MM
2 MM

3 MM
1 MM

14 AA

14 AA

GC

GA

4 MM

5 MM

6 MM

MM

7 MM

8 MM

MM

9 MM

MM
MM

10 MM

11 MM

12 MM

4 PM

5 RM

6 PM 7 RM

8 PM

9 PM
PM

10 PM

11 PM

12 PM

1 PM
3 PM

2 PM
13 PM

15 AM AM

16 AM

17 AMAM
AM

AM

AM
18 AM

19 AM

AM
AM

AM

20 AM

21 AM

AM

MM

PM

AM

PM

MM

PM

PM

MM

RM

AM

MM

RM

MM

RM

RM
MM

PM

AM

AM
AM

AM
AM

AM

AM

AM

AM

AM

Figure 10. Interconnecting the call relations

14 AA

21 AM

26 MA

24 MA

23 MA

22 MA

Gp

4 PP

5 RP

6 PP 7 RP

8 PP

9 PP

10 PP

11 PP

12 PP

1 PP
3 PP

2 PP
13 PP

15 AM AM

16 AM
AM

AM
18 AM

19 AM

AM
AM

AM

20 AM
AM

AM

AM

PP

AM

AM
AM

AM

AM

AM

AM

17 AM

RP

RP

PP

RP

RP

AM

AM

AM AM

PP
PP

AM

PP

28 MA

27 MA

PP
MA

MA

MA

29 MA

30 MA

MA

31 MA

MA

MA

32 MA

33 MA

MA

MA

MA

34 MA

MA
MAMA

MA

MA

25 MA

MA
MA

MA

MA

MA

35 MA
MA

MA

MA

MA

MA

MA
MA

MA

MA

MA

MA
MA

MA

MA

Figure 11. Pushout computation

understanding software evolution. Assuming PR, RP, and
� are designated as inconsistent values inA13, six instances
of syntactic inconsistency occur in the pushout surrounding
nodes 5 and 7, and four related arrows. Careful code inspec-
tion suggests that these functions partly fulfill the message
censorship requirement. Version 1a refactored this imple-
mentation by removing node 5 and changing function 7 to
15. The security-related structure was preserved by version
1b, whose major task was to add Linux86-compatible files
to the software package. The RP-like inconsistencies de-
tected in our framework, which would also catch the run-
ning example’s problems, did reflect conflicts between par-
allel changes in iBBS. Additional work was sought to han-
dle these inconsistencies during the merge process.

The fact that many AM- and MA-labeled nodes and ar-
rows appear in the pushout graph illustrates the comple-
mentary nature of iBBS’s consolidation merging. Only
one function (node 14) is annotated with AA. In discus-
sions with the developers, this revealed a pre-determined
new function during maintenance. The function prototype
was declared a priori, permitting both revisions to succeed
in unit testing, but the actual implementation was assigned
solely to 1a (as indicated by two incoming AM-calls to
function 14) to circumvent any inconsistencies. Our study
implies the existence of “hot spots” for inconsistency in

AA-annotated entities, so newly added components by both
parallel revisions need to be treated with great caution.

Intuitively, PP captures the base structure of the software
system, which is common across all variants. This gen-
erally holds for iBBS’s security-related components (e.g.,
nodes 4, 6, 8, 9, and the call relations among them). It
also turns out, in hindsight, that some PP-labeled elements
in the pushout are legacy code. For example, function 3
contributed to supporting UC-DOS 4.0, a Chinese operat-
ing system. The review of SourceSafe records implied that
iBBS stopped supporting UC-DOS two years ago. There-
fore, function 3 became dead code (i.e., functions not called
directly or indirectly).

Another possible A13 truth value that can arise in the
pushout graph is RR. But this example does not present
any RR-annotated nodes or arrows, even though dead code
appears in the system. This demonstrates, not surprisingly,
Lehman’s laws of software evolution: A program hardly
ever decreases in size and complexity, and its structure tends
to deteriorate as the software system evolves [12].

It is important to point out that this is a single study on
one application, rather than a controlled experiment on a
number of representative subjects. An important threat to
the validity of this study is that our results rely on con-
structing morphisms among fuzzy graphs. As noted earlier,
matching entities in different software versions can be prob-
lematic. To address this threat, we used semi-automated
tools to increase the accuracy of matching, performed the
experiment independently by two different researchers, and
reconciled the results, as described previously.

6 Conclusions

6.1 Discussion

In [14], Mens presented an excellent summary of all but
the most recent work in software merging, showing the di-
verse range of techniques employed. Some of the syntactic
merge techniques surveyed therein use graphs as the un-
derlying data structure. Rho and Wu [18] use attributed
graphs to represent software artifacts. The same is true for
Mens [13], who additionally makes use of graph rewriting
techniques in order to provide a formal foundation for soft-
ware merging. We do not prescribe specific structures for
graph-based software artifacts in general, and restrict our-
selves to call graphs in the study to illustrate our ideas.

The fact that a pair of call graphs (corresponding to a pair
of parallel versions of a piece of software) can be merged
into a well-formed fuzzy graph in our approach does not
guarantee that everything will behave correctly. For exam-
ple, a PP-annotated arrow is dangling if its target (callee)
is labeled with PR. Another semantic constraint inferred
from our example is that call graphs must be simple [1]; i.e.,
at most one call relation exists between a given caller and

a given callee. To handle such problems, semantic merge
techniques need to be sought.

We have exploited original analysis [21] for the construc-
tion of morphisms among software artifacts. Godfrey and
Zou [7] have extended original analysis to aid in the de-
tection of merging and splitting of files and functions in
procedural code. They identify a set of merge/split pat-
terns, such as service consolidation, clone elimination, and
pipeline contraction, to show how reasoning about call re-
lationships can help software developers locate merge/split
occurrences in software evolution. We note that their work
primarily concentrates on the sequential development of a
software system, whereas we have focused on merging par-
allel changes. Our approach enhances the overall compe-
tence in parallelism and inconsistency management for the
merge techniques derived from original analysis.

Our introduction of partially ordered sets for construct-
ing fuzzy set categories differs substantially from the com-
monly used linear ordering [0, 1] in fuzzy logic. The ex-
istence of truth ordering posets and lattices is not due to
mere chance. In fact, the poset A9 in Figure 3 partly forms
an instance of a family of multi-valued logics known as
Kleene-like logics [6]. We have appealed only to the in-
tuitive nature of such logics and sketched the informal con-
struction of A13 in Section 2. The complete latticeA13 pro-
posed in this paper is, to the best of our knowledge, the
first attempt to characterize evolutionary orderings capable
of modeling uncertainty and disagreement in the three-way
software merging context. Multi-valued exploratory order-
ings can be fine-tuned to bear more analytical power. For
example, the value P (meaning “preserved”) may be refined
to “unchanged”, “renamed”, “splitted”, and the like.

The idea of using colimits as abstract mechanisms for
putting structures together in (finitely) cocomplete cate-
gories is not new: Of the prominent industrial experience
is the work of Williamson et al., who have investigated
the software synthesis problem using SpecwareTM [22]. In
their study, colimits are employed to modularly combine
specifications so that forward engineering is supported. We
notice that Williamson’s approach does not explicitly con-
sider graph-based software merging that facilitates reverse
engineering, which is the focus of our work here. We
also note that the “general systems engineering” concept
in Williamson’s work bolsters our perception that our ap-
proach should be regarded as a semi-automated compre-
hension task. Therefore, practitioners are encouraged to in-
corporate knowledge from other disciplines to gain a more
complete and accurate understanding of software merging.

6.2 Summary

The ability to merge parallel changes is needed during
the development and maintenance of large-scale software
systems. However, traditional textual merge techniques are

insufficient for detecting syntactic merge conflicts. In this
paper, we have designed a category-theoretic approach for
three-way syntactic merging that facilitates software reverse
engineering and reengineering. Our mathematically rigor-
ous approach is general, since graphs are used as an under-
lying representation for evolving software. Syntactic incon-
sistencies and evolutionary properties are captured through
lattices, and an exploratory ordering A13 is defined to guide
our study. Our use of supremum and colimit exposes a nat-
ural and correct-by-construction way to join parallel modi-
fications.

From our initial experiences with the approach, we feel
that it has rich value in helping maintainers understand, jus-
tify, and manage software merging, and software evolution
in general. Empirical studies are needed to lend strength to
the exploratory findings reported here. Systematic experi-
ments in merging open source software may render results
supplementary to our analysis, since reconciliation [16], in-
stead of consolidation, is typically involved in the merge
process. Our future work also includes adding support
for hierarchical structures so that software merging can be
studied at different architectural granularities and structural
merge conflicts can be detected. Also of interest would
be addressing typing constraints in such a way that graph-
based software representations can contain heterogeneous
nodes and arrows in one view; meanwhile, proper merge
techniques can preserve both graphical integrity and the typ-
ing information. Finally, the constructive nature of cate-
gory theory leads our approach to automation. We have im-
plemented a proof-of-concept Java tool for merging fuzzy
graphs. By performing more trials with this automated sup-
port, we can critically evaluate our approach, investigate the
efficiency and scalability of graph-based merge algorithms,
and explore a deeper understanding of the rudimentary prin-
ciples of software merging.

Acknowledgments. We thank the partner company for
the generous support throughout our study, Hongying Zhao
for help with extracting and analyzing iBBS systems, and
Kenny Wong and Li-Shih Huang for providing valuable
comments on drafts of this paper. Financial support was
provided by NSERC and MITACS.

References

[1] M. Barr and C. Wells. Category Theory for Computing Sci-
ence. Les Publications CRM Montréal, third edition, 1999.

[2] E. Burd and M. Munro. Investigating component based
maintenance and the effect of software evolution: a reengi-
neering approach using data clustering. In Intl. Conference
on Software Maintenance, pages 199–207, 1998.

[3] R. Conradi and B. Westfechtel. Version models for soft-
ware configuration management. ACM Computing Surveys,
30(2):232–282, June 1998.

[4] B. Davey and H. Priestley. Introduction to Lattices and Or-
der. Cambridge University Press, second edition, 2002.

[5] S. Eick, T. Graves, A. Karr, A. Mockus, and P. Schuster.
Visualizing software changes. IEEE Trans. on Software En-
gineering, 28(4):396–412, 2002.

[6] M. Fitting. Kleene’s logic, generalized. Journal of Logic
and Computation, 1:797–810, 1992.

[7] M. Godfrey and L. Zou. Using origin analysis to detect
merging and splitting of source code entities. IEEE Trans.
on Software Engineering, 31(2):166–181, 2005.

[8] J. Goguen. Categories of Fuzzy Sets: Applications of Non-
Cantorian Set Theory. PhD thesis, University of California,
Berkeley, 1968.

[9] J. Goguen and R. Burstall. Institutions: Abstract model the-
ory for specification and programming. Journal of ACM,
39(1):95–146, 1992.

[10] T. Hendrix and J. Cross. Language independent generation
of graphical representations of source code. In Annual Con-
ference on Computer Science, pages 66–72, 1995.

[11] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: A multi-
linguistic token-based code clone detection system for large
scale souce code. IEEE Trans. on Software Engineering,
8(7):654–670, 2002.

[12] M. Lehman and L. Belady. Program Evolution: Process of
Software Change. Academic Press, 1985.

[13] T. Mens. A Formal Foundation for Object-Oriented Software
Evolution. PhD thesis, Vrije University, 1999.

[14] T. Mens. A state-of-the-art survey on software merg-
ing. IEEE Trans. on Software Engineering, 28(5):449–462,
2002.

[15] H. Müller and K. Klashinsky. Rigi — a system for
programming-in-the-large. In Intl. Conference on Software
Engineering, pages 80–86, 1988.

[16] J. Munson and P. Dewan. A flexible object merging frame-
work. In ACM Conference on Computer Supported Cooper-
ative Work, pages 231–242, 1994.

[17] D. Perry, H. Siy, and L. Votta. Parallel changes in large scale
software development: an observational case study. In Intl.
Conference on Software Engineering, pages 251–260, 1998.

[18] J. Rho and C. Wu. An efficient version model of software
diagrams. In Asia-Pacific Conference on Software Engineer-
ing, pages 236–243, 1998.

[19] M. Sabetzadeh. A category-theoretic approach to represen-
tation and analysis of inconsistency in graph-based view-
points. Master’s thesis, University of Toronto, 2003.

[20] M. Sabetzadeh and S. Easterbrook. Analysis of inconsis-
tency in graph-based viewpoints: a category-theoretic ap-
proach. In Intl. Conference on Automated Software Engi-
neering, pages 12–21, 2003.

[21] Q. Tu and M. Godfrey. An integrated approach for study-
ing software architectural evolution. In Intl. Workshop on
Program Comprehension, pages 127–136, 2002.

[22] K. Williamson, M. Healy, and R. Barker. Industrial applica-
tions of software synthesis via category theory – case studies
using specware. Automated Software Engineering, 8(1):7–
30, 2001.

