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ABSTRACT 
Anchoring and adjustment is a form of cognitive bias that affects 
judgments under uncertainty. If given an initial answer, the 
respondent seems to use this as an ‘anchor’, adjusting it to reach a 
more plausible answer, even if the anchor is obviously incorrect. 
The adjustment is frequently insufficient and so the final answer is 
biased. In this paper, we report a study to investigate the effects of 
this phenomenon on software estimation processes. The results 
show that anchoring and adjustment does occur in software 
estimation, and can significantly change the resulting estimates, 
no matter what estimation technique is used. The results also 
suggest that, considering the magnitude of this bias, software 
estimators tend to be too confident of their own estimations. 

Categories and Subject Descriptors 
D.2.9 [Software Engineering]: Management – time estimation, 
cost estimation.  

General Terms 
Management, Economics, Experimentation. 

Keywords 
Effort estimation, cognitive bias, anchoring and adjustment, 
empirical software engineering 

1. INTRODUCTION 
Anchoring and adjustment is a widely observed and documented 
phenomenon in cognitive psychology. Its effects consist of 
biasing the answer to a complex question towards an anchor (an 
initial, possible answer). We seem to adjust this anchor to reach a 
more plausible answer, but the adjustment tends to be insufficient, 
and our answer biased. Since software estimation is performed by 
people, under uncertainty, it is subject to cognitive biases such as 
this. If that is the case, then this heuristic deserves a deeper 
consideration than it has had to date. 

We conducted an experiment to test the effects of this form of bias 
on software estimates. Participants were given a detailed project 
description, and asked to estimate the time needed for a specific 
team to complete the project. In two conditions, the participants 
were given an initial estimate, one very low, the other very high. 
In a third, control condition, no initial estimate was given. 
Participants were asked to provide both an estimate, and a 
confidence interval for their estimate. 

Section 2 presents fundamentals and related work on the two 
subjects of this paper: Software estimation and anchoring and 
adjustment. Sections 3 through 5 describe the design and 
execution of the experiment. Finally, sections 6 and 7 provide the 
experiment results and conclusions. 

2. FUNDAMENTALS AND RELATED 
WORK 
There is a lack of research relating the work in Cognitive 
Psychology on anchoring and adjustment with the research in 
Software Engineering on software estimation. However, there is a 
wealth of information on each field separately. 

2.1 Anchoring and Adjustment 
Anchoring and adjustment is a cognitive bias observed when 
people must make choices under uncertainty, and is particularly 
evident when the result of the choice can be expressed as a 
number in a range. If judgment of the matter is difficult, we 
appear to grasp an anchor, that is, a tentative and possibly 
unrelated answer to the problem; and adjust such answer up or 
down according to our intuition or experience to reach the final 
result. The adjustment applied to the initial anchor is frequently 
insufficient to compensate for the negative effects of the anchor. 
Anchors, then, have the effect of attracting answers towards them 
and away from the correct result. 

Tversky and Kahneman [24] first reported this phenomenon with 
the following experiment: Participants were individually 
presented a wheel of fortune with numbers from 0 to 100. The 
experimenter spun the wheel in front of the participant, and after 
it stopped in an evidently random position, he questioned the 
participant to estimate various quantities, stated in percentages. 
For example, participants were asked to give the percentage of 
African countries that were members of the United Nations. 
Participants were first asked to indicate if the correct answer to 
the question was higher or lower than the random number that 
came up in the roulette, and then to estimate the correct value by 
moving upward or downward from the random number. 
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Tversky and Kahneman report that the arbitrary initial numbers 
obtained from the roulette had a marked effect on estimates: the 
median estimate for the African countries question was of 25 for 
people that received a 10 as their anchor, and 45 for those who 
received a 65. The researchers summarized the phenomenon as 
“different starting points yield different estimates, which are 
biased toward the initial values”. 

Since then, the phenomenon has been studied thoroughly, and 
although the cognitive processes involved in it have not been 
singled out, its existence is now rarely questioned. It has been 
shown to occur in situations as diverse as general knowledge 
issues, probability estimates, legal judgment, pricing decisions 
and negotiation [21]. 

For example, [7] indicates that anchoring occurs in legal 
applications, and suggests that “plaintiffs would do well to request 
large compensation awards” to bias awards granted by jurors. [22] 
demonstrated that professional real estate pricing decisions are 
also subject to anchoring biases, altering the pricing decisions of 
both experienced and inexperienced real estate professionals. 

Initial anchors do not even need to be recognized as starting 
points for a solution. [2], for example, affirms that the duration of 
a criminal sentence partially depends on numbers that are fresh in 
the mind of the sentencing judge. However, semantic anchoring 
effects are more potent than purely numeric effects; that is, the 
anchor is more effective if it is regarded as a possible, meaningful 
solution to the problem at hand [21]. 

Finally, a series of experiments by Wilson, Houston and Brekke 
[25] indicate that (a) anchoring occurs if people pay sufficient 
attention to the anchor value, (b) knowledgeable people are less 
susceptible to anchoring effects, and (c) anchoring appears to 
operate unintentionally: it is difficult to avoid even when people 
are forewarned. 

2.2 Software Estimation 
Effort estimation for software projects has proven to be an elusive 
and expensive problem in software engineering. On one hand, 
stakeholders expect precise estimates in the early stages of a 
project; on the other hand, reliably producing those numbers is 
extremely difficult and may well be technically infeasible. Boehm 
et al. [5] report that estimating a project in its first stages yields 
estimates that may be off by as much as a factor of 4. Even at the 
point when detailed specifications are produced, professional 
estimates are expected to be wrong by ±50%. 

This precision problem is compounded with the confusion 
surrounding the term ‘estimate’. While managers and clients make 
their plans assuming that software projects are likely to be 
finished at, or close to, the estimated time, developers tend to 
produce estimates that only work for a best-case scenario. 
According to DeMarco [8], the default definition of estimate 
among professionals is “the most optimistic prediction that has a 
non-zero probability of coming true”. He argues that a better 
definition is “a prediction that is equally likely to be above or 
below the actual result”, which seems to be the definition that 
most software estimation researchers use (although it is still too 
risky for most real business plans). 

If estimates are predictions, we should explore the psychology of 
human prediction processes. But unfortunately, according to 
Brown and Siegler [6], “psychological research on real-world 

quantitative expert estimation has not culminated in any theory of 
estimation, not even in a coherent framework for thinking about 
the process”. It is not surprising then that software engineers 
prefer to create mathematical estimation models than to explore 
the intricacies of human judgment applied to software estimation. 

The Constructive Cost Model (COCOMO, [4]) is probably the 
most widely known method for software estimation. In its original 
incarnation, its core effort equation uses lines of code (LOC) as an 
input, and the equation can be adjusted to account for particulars 
of each software project. Boehm claims that the intermediate 
version of the model renders results that are within 20% of actual 
numbers 68% of the time. However, other empirical validations 
suggest that the performance of the model is much worse, 
especially if it has not been carefully calibrated for the 
organization in charge of the project [20, 14]. 

There are several arguments against the use of COCOMO and 
other LOC-based models. One of the most powerful is that they 
require the estimator to predict the number of lines of code the 
future system will have, a quantity that is as unknown to the 
estimator as the time it will take to produce them, but even less 
intuitive. Estimators are better at estimating effort than size, which 
cancels the benefits of size-based models (although they generally 
do not seem to be very good at either) [12]. Critics argue that 
COCOMO disguises the guesswork of estimating, but it does not 
eliminate it [15]. Furthermore, an analysis of the reported project 
data of several empirical validations of estimation models shows 
that the size-effort correlation is not evident and size may not be 
the primary determinant of project effort [10]. It is the creative 
content and the quality imbued in the code, not its number of 
lines, which determines the required effort for an application. 

Another popular set of estimation techniques is based on function 
points (FPs) [15]. FPs remove many of the inconveniencies of 
LOC metrics since they are based on the required functionality of 
the desired software product. 

However, there are still factors that make FPs an inaccurate 
technique. One is the variation in the productivity of developers. 
For example, it has been found that the best programmers are 10 
times more productive than the worst, and 2.5 times better than 
the median [9]. Team performance variations are also extremely 
wide. Another factor is an incomplete or defective specification. 
Badly stated requirements can increase a project’s time and cost to 
several times its intended values. And finally, software 
development needs a degree of creativity, inventiveness, and 
social interaction that is extremely difficult to capture in an 
estimation model. 

Model-based estimation is not the only alternative available for 
software engineers, nor the most widely adopted [12]. Learning-
based techniques [23], for example, help estimators to establish 
analogies between the project at hand and previous experiences, 
and they are helpful when performed in a familiar, predictable 
environment. 

The most commonly used estimation method, which can be called 
expert-based estimation, is arguably the method with the worst 
standing among software engineering researchers. Although there 
are ways to structure this technique, such as the Delphi process 
[11] or work breakdown structure analyses [3], its basic feature is 
the lack of a mechanical process to estimate. Instead, experts are 



assigned the responsibility of reaching an estimate by whichever 
means they see reasonable. However, for all its fuzziness, it is not 
clear that other methods are more effective than expert-based 
techniques, as empirical validations provide conflicting results on 
the superiority of any technique [16]. 

Even though much research has focused on software estimation, it 
is still an ambiguous process. This is relevant for us because 
ambiguous and uncertain thought processes are prime candidates 
to be victims of judgmental biases. 

The relevance of human thought processes is present in all 
estimation techniques, even model-based, where humans need to 
define the input parameters that models require. 

There is a growing amount of research exploring software 
estimation as a primarily human activity [16]. It has been found, 
for example, that the confidence estimators have in their own 
estimates is unjustifiably high, that they do not seem to 
distinguish between several degrees of confidence in an estimate 
[17], and that experience is not a good indicator of expertise when 
it comes to software estimation [13]. Of most relevance for this 
paper, it has also been recently found that anchoring and 
adjustment affects estimates on coursework for computer science 
students [19], and that customer expectations affect estimates of 
short software tasks when using work breakdown structure 
analyses [18]. 

Although these studies hint that it is reasonable to expect 
anchoring and adjustment biases in software estimation, we are 
not aware of any empirical study explicitly exploring this effect in 
the estimation of software projects. Considering the economical 
and personal impact that incorrect estimations carry, it is 
important to inquire experimentally the influence of this cognitive 
bias on the matter. 

3. RESEARCH QUESTIONS 
Software estimation is essentially a human judgment activity, and 
as such it is subject to judgmental biases. Efforts to standardize 
estimation, although successful in giving shape to such an 
activity, do not eliminate or reduce the effect of human bias. 

In order to find out if software estimation is affected by anchoring 
and adjustment, we set the following as our research questions: 

• Does the phenomenon of anchoring and adjustment take 
place in software estimation processes? 

• Is the influence of anchoring and adjustment weaker for 
estimators that have had previous experience estimating 
software projects? 

• Is the influence of anchoring and adjustment stronger 
for estimators that rely solely on expert-based 
estimation, as opposed to estimators that use a model-
based technique? 

• Does the confidence (or lack thereof) estimators have in 
their answers compensate for possible anchoring and 
adjustment biases? 

The experiment reported here provides some answers to all of 
these. 

4. EXPERIMENT PLAN AND DESIGN 

4.1 Experiment Design 
The experiment consisted of a software estimation exercise that 
participants worked on individually. They were asked to estimate 
the time it would take for a specific development team to deliver a 
particular software application. The application, a fictional 
software project for international commerce statistics based on a 
real project developed by one of the authors, was described in a 
ten-page requirements document and a three-page project setting 
document [1]. The requirements document stated the functionality 
necessary for the system to be developed, as well as notes for 
relevant non-functional requirements. The project setting 
document gave participants informal data on two areas: the client 
organization (their work culture, hierarchy, and “quotes” from 
interviews with them) and the development team in charge of the 
project (their language experience, previous projects performance 
and team dynamics). 

Participants were given as much time as necessary to produce 
their estimates, but most of them reported taking around two 
hours to complete the exercise. Participants had complete freedom 
on their choice of estimation techniques, as long as they worked 
on the exercise by themselves. They could use software estimation 
tools to aid their judgment if they desired. 

Once participants performed their calculations, they were given a 
questionnaire. The two most relevant questions were: 

• “Give your estimate for the duration of the project 
described in the attached documentation, in months, to 
the nearest integer”, and 

• “I think that if this project was really developed, my 
estimate might be off by as much as ___%” 

Additionally, participants were asked to give a justification for 
their estimates, to describe their previous estimation experience, 
and to rate the information they read in the documentation. 

Each participant was paid $10 for their involvement in the study. 

The experiment had three conditions. The only difference between 
them was a paragraph in the second page of the project setting 
document. In a box with quotes from a middle manager of the 
client organization, a sentence was altered in each group: 

For the experiment’s control condition, the manager was quoted 
as saying: “I’d like to give an estimate for this project myself, but 
I admit I have no experience estimating. We’ll wait for your 
calculations for an estimate.” 

For a second, “2 months” condition, the quote was modified to 
include an anchor. It read as follows: “I admit I have no 
experience with software projects, but I guess this will take about 
2 months to finish. I may be wrong of course, we’ll wait for your 
calculations for a better estimate.” 

Finally, a third, “20 months” condition, had another anchor in the 
manager’s statement. It was exactly the same as the second group, 
except for a change from “…I guess this will take about 2 months 
to finish...” to “…I guess this will take about 20 months to 
finish…”. The conditions were equal in all other aspects. 



There are several issues worth noting at this point: First, the 
difference among anchors is of an order of magnitude. This 
difference is quite large, but for early stages of a software project, 
not completely far-fetched [5]. Second, the anchor given to 
participants is semantically linked to the answer they are asked to 
provide. According to Mussweiler and Strack [21], semantic 
anchors are more powerful than simple numeric anchors. Third, 
the manager does not push for his guess to be considered as a 
starting point for negotiation. He admits that he has no experience 
with software projects, that he may be wrong, and labels his own 
quantity as a guess. And fourth, participants did not hear the 
individual saying this sentence, they did not meet him in person, 
and the sentence was not highlighted in the document. 
Participants are thus less likely to be socially influenced and to try 
to please the manager by giving a final estimate that confirms his 
guess than if they had actually sat with him in an interview and 
were told just that. Attempting to please is also a judgmental bias, 
but of a social, not cognitive, nature [2]. The research questions of 
this study focus on cognitive aspects, and therefore it was 
important to limit the influence of social biases in the 
experimental design. 

4.2 Variables 
The following variables were recorded: 

Independent Variable: The only independent variable was the 
anchoring statement discussed in the previous section. It had three 
values: “2 months” anchor, “20 months” anchor, and no anchor. 

Controlled Variable: While assigning participants to each 
condition, we attempted to reach a similar number of experienced 
participants in all conditions. Experience was classified in three 
levels: Experience in large/medium software projects estimation; 
experience in small software projects estimation; and only 
academic experience. Experience was self-assessed; each 
participant’s definitions of project size, involvement in estimation, 
and amount of time dedicated to learning estimation processes 
were not probed. 

Dependent Variables: Three dependent variables were considered 
of relevance for this study: (a) the actual estimate as given by 
participants, which is a positive integer representing a number of 
months; (b) confidence range, expressed as a percentage that can 
be added or subtracted from an estimate to reach an acceptable 
range of results; and (c) estimation method. Participants were not 
asked to name the estimation method that they used, but they were 
asked to provide a justification for their estimate. These 
justifications were analyzed to classify the estimation technique as 
being either model-based or expert-based. Further classifications 
within each subgroup were LOC-based or FP-based (for model-
based techniques) and WBS (work breakdown structure) or 
unstructured process (for expert-based techniques). If a participant 
used more than one technique, an assessment of their primary 
technique was performed. 

4.3 Hypotheses 
The following are the null hypotheses for this experiment: 

H0, LOW-HIGH: Estimates of participants given a low (“2 months”) 
anchor are not statistically different from estimates of participants 
given a high (“20 months”) anchor. 

H0, LOW-CONTROL: Estimates of participants given a low (“2 
months”) anchor are not statistically different from estimates of 
participants given no anchor at all. 

H0, HIGH-CONTROL: Estimates of participants given a high (“20 
months”) anchor are not statistically different from estimates of 
participants given no anchor at all. 

A similar set of hypotheses was generated for analyzing the results 
of experienced participants, model-based techniques users and 
expert-based techniques users. 

To address our last research question, regarding the confidence of 
estimators in their own results, one additional hypothesis was 
generated: 

H0, MaxLow-MinHigh: The maximum estimates of participants given a 
low (“2 months”) anchor are not statistically different from the 
minimum estimates of participants given a high (“20 months”) 
anchor. 

4.4 Threats to Validity 
The following discussion on threats to validity is based on the list 
of threats proposed by Wohlin et al. [26]. 

Conclusion validity: The group of participants that performed the 
software estimation exercise was relatively heterogeneous, 
consisting of software industry professionals and computer 
science graduate students. We have no way of assessing whether 
these participants are a representative sample of the broader 
population of estimators. Another aspect of this threat is that some 
participants (43%) had only academic experience of software 
estimation (through coursework and self-learning) and had not 
been asked to produce an estimate in a real-world software project 
previously. However, all participants had at least basic 
qualifications to perform real software estimation; that is, they all 
were potential software estimators with enough authority, either 
because of background, academic formation or a combination of 
both, to produce estimates in real software development projects. 
For this reason they may be regarded as part of the same group, 
and this threat is reduced. 

It is also possible that the task might not have been representative 
of real estimation tasks. For example, it may be unusual to require 
that estimates be provided in months, or to estimate a project for 
an organization with which the estimator has had no direct 
contact. However, we think our study replicates real estimation 
tasks adequately, within the restrictions of a controlled 
experiment. 

Internal validity: Respondents might be reacting to a social bias 
rather than the intended cognitive bias. Furthermore, it is possible 
that participants might have put even more importance on the 
anchor than we intended, interpreting it as a hint about available 
resources. However, as discussed previously, we tried to minimize 
these possibilities with the way our anchor was presented. The 
opposite is also possible: respondents might fail to notice the 
sentence with the manager’s estimate. We believe that if this was 
the case it would lead to very different results than the ones we 
obtained.  

Construct validity: This experiment might suffer from a mono-
operation bias, since it used only one set of project specification 
documents. It would have been interesting to perform it with 



several (at least two) different software projects and to see if the 
relations between conditions are replicated among them. 
Economical limits and a difficulty to find participants prevented 
the study from going in that direction. 

External validity: Our participants were volunteers who 
responded to an invitation. However, volunteers are especially 
motivated, and are therefore not representative of the whole 
population [26]. This was a necessary evil, since hiring a 
significant number of professional estimators and paying them 
their usual fees for their services was not economically feasible. 

Another threat to external validity lies in the fact that real software 
estimation carries consequences that may be suffered for a long 
time by the people involved, potentially altering their career paths. 
Participants in this study knew that they would not be held 
accountable for their answers, and this difference between the 
experiment and real estimation experiences may affect the results. 
This, unfortunately, is a consequence of performing a controlled 
experiment. The alternative would be to observe real software 
estimations within their natural environments. 

5. EXPERIMENT EXECUTION 
Our experiment took place during the second half of 2004. 
Participants were recruited through email invitations sent to 
graduate computer science students and software developers. 
After candidate participants expressed their interest they were 
visited at the time and place of their choice and they were given 
their documentation package. 

Participants were not told the purpose of the study. They were 
told that they were participating in a software estimation 
experiment, without going into further detail. All participants 
signed a consent form and were guaranteed anonymity. 

Participants were allowed to work on the study whenever they 
wanted, although most of them reported having finished within 
three days of being visited. They could use software tools and 
reference books if they wished. 

23 people participated in the study. The majority of them (78%) 
were graduate students in Computer Science, the remaining 22% 
were professionals from the software industry. 57% of participants 
declared they had been involved in real software estimation 
activities before (22% were involved in medium to large software 
projects, 35% only in small projects). 43% had only academic 
experience in the area. 

An even distribution among conditions was intended. The final 
number of respondents, however, was variable among conditions 
due to participation cancellations. The “2 months” condition 
received 9 responses, the control condition, 6 responses, and the 
“20 months” condition, 8 responses. 

Each participant’s answers were recorded, and their estimates 
were analyzed using independent t-tests for each hypothesis. 

6. DATA ANALYSIS AND 
INTERPRETATION OF RESULTS 

6.1 General Results 
The responses presented a very wide range of estimates: from 3 to 
28 months. The average estimate was 10.9 months. Participants 

gave their estimates a confidence interval of ±26% on average 
(minimum 10%, maximum 60%). 

Two types of estimation techniques were used: model-based and 
expert-based estimation. 31% of estimators chose primarily a 
model-based technique (22% LOC-based, 9% FP-based). The 
remaining 69% used an expert-based technique (39% with work 
breakdown structures, 30% unstructured process). 

Figure 1, on the next page, presents all estimates. The chart is 
divided in three areas. The lower area corresponds to the “2 
months” condition, the middle area to the control condition and 
the higher area to the “20 months” condition. For each estimate 
the graph includes the confidence interval of its estimator. The 
graph also shows the mean estimate for each group and the 
anchors for the “2 months” and “20 months” conditions. 

Although the patterns on each condition are visible on the chart, 
the following numbers help to clarify it. The “2 months” 
participants had a mean estimate of 6.8 months. The control 
condition has a slightly higher mean estimate, at 8.3 months; and 
the “20 months” condition’s mean estimate is 17.4 months. 

Within each group there is a considerable variation as well. The 
“2 months” condition’s greatest estimate is 4.33 times higher than 
its lowest. The corresponding proportion is 3.75 for the control 
condition and 2.80 for the “20 months” condition. 

The t-test results are: For hypothesis H0, LOW-HIGH, t = 4.273, the 
null hypothesis is rejected (p < 0.001). For hypothesis H0, LOW-

CONTROL, t = 0.661, the null hypothesis cannot be rejected (p > 
0.1). And for hypothesis H0, HIGH-CONTROL, t = 3.137, the null 
hypothesis is rejected (p < 0.01). 

Therefore, these results show that the anchoring and adjustment 
bias takes place in software estimation processes, at least when the 
effects of providing a high anchor are compared with the effects 
of providing a low anchor or no anchor at all. However, no 
significant difference between low anchors and no anchors was 
found. 

6.2 Experienced participants’ results 
If we consider only the results of those participants who declared 
to have real-life estimation experience (57% of the total number 
of participants) we obtain Figure 2 (on next page). 

As can be seen in the chart, the pattern remains unchanged after 
removing inexperienced estimators, although the statistical 
significance is slightly weaker due to the reduced number of 
participants. 

Within this subgroup of experienced estimators, the “2 months” 
condition mean is 7.8 months. The control condition has a mean 
of 9.0 months; the “20 months” condition is at 17.8 months. 

The t-tests for the subgroup of experienced participants provide 
the following results: For hypothesis H0, LOW-HIGH, Experienced, t = 
3.150, null hypothesis rejected (p < 0.02). For hypothesis H0, LOW-

CONTROL, Experienced, t = 0.425, null hypothesis cannot be rejected (p 
> 0.1). For hypothesis H0, HIGH-CONTROL, Experienced, t = 2.462, null 
hypothesis rejected (p < 0.05). 

These results indicate that the effect found in the generality of 
participants was also suffered by experienced estimators in 
particular. 
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Figure 1. All estimators’ results 

 

 
Figure 2. Experienced estimators only



6.3 Expert-based estimators’ results 
As shown in Figure 3, the same general pattern appears for 
estimators who used an expert-based technique, with two notable 
differences: First, the averages are lower than in the complete 
pool of participants. Second, standard deviations are also lower, 
indicating more homogeneous results. 

The particular numbers are as follows: For the “2 months” 
condition, the mean is 5.1 months. For the control condition it is 
7.8 months. For the “20 months” condition it is 15.4 months. 
Applying independent t-tests for each of the three relevant null 
hypotheses yields the following: Hypothesis H0, LOW-HIGH, Expert-

based, t = 7.567, rejected (p < 0.001). Hypothesis H0, LOW-CONTROL, 

Expert-based, t = 1.154, cannot be rejected (p > 0.1). Hypothesis H0, 

HIGH-CONTROL, Expert-based, t = 3.358, rejected (p < 0.02). 

Again, this shows that effects of anchoring and adjustment are 
suffered by estimators who choose an expert-based approach. In 
fact, these results were among the most powerful of the 
experiment. However, an effect comparing low anchor estimates 
and no anchor estimates was not found in this subset either. 

6.4 Model-based estimators’ results 
The complement of the previous subgroup is that of estimators 
who used primarily a model-based technique to reach their results. 
Figure 4 shows their data. 

Since only 7 estimators chose to use models, there are not enough 
data points to reach conclusions for them. Even though the same 
pattern as in previous groups is noticeable here, the sample was 
not large enough to provide statistically significant results. 

The numbers for this group are as follows: The mean of the “2 
months” condition is 12.5 months, for the control condition 9.5 
months, and for the “20 months” condition 20.7 months. The 
three null hypotheses concerning model-based estimators could 
not be rejected with independent t-tests (p > 0.1 in all cases). It is 
impossible to know if this was due to the low number of 
participants choosing model-based techniques or due to a weaker 
influence of anchoring and adjustment effects on this subgroup. 
Although existing data seems to indicate the former, it is not 
conclusive. 
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Figure 3. Expert-based techniques users 

 

 
Figure 4. Model-based techniques users



6.5 Confidence ranges 
To explore whether participants’ confidence ranges compensate 
for anchoring biases, we considered the data from Figure 1 again. 
A t-test between the “2 months” and the “20 months” conditions 
was performed, but considering the maximum (worst-case) 
estimates from the “2 months” group and the minimum (best-case) 
estimates from the “20 months” group. This addresses our last 
experimental hypothesis. 

The new numbers are as follows: The best-case estimates on the 
“2 months” condition have a mean of 8.7 months. The worst-case 
estimates on the “20 months” condition average 12.8 months. The 
result of the t-test for H0, MaxLow-MinHigh yields t = 2.182, and the 
null hypothesis is rejected (p < 0.05).Therefore, the effects of 
anchoring and adjustment seem to be so high that giving 
estimators the opportunity of including a confidence range in their 
estimates does not compensate for their biases. 

Additional insights are found if the data from each condition are 
concentrated to show the general agreement that estimators may 
have among themselves. Figure 5 displays, for each condition, the 

percentage of estimators who included each month within their 
confidence range. An initial observation is that agreement among 
estimators is rather low. In the “2 months” condition, agreement 
peaks at 56%, at the 4 months line. For the control condition the 
maximum agreement is 50%, at the 4, 5 and 11 months points. 
Finally, the maximum agreement for the “20 months” condition is 
63%, at the 16 and 17 months points. 

As participants in all conditions actually estimated the exact same 
project, it is reasonable to merge the three charts and see the 
general agreement among estimators. Figure 6, on the next page, 
shows this information. Once all estimators are considered, the 
maximum agreement is very low (39%), and appears at two points 
(11 and 16 months).  

This indicates that, were this project truly developed, at least 61% 
of the estimators would have been wrong in their predictions, no 
matter how long the project actually took. This is perhaps not 
perplexing considering how often estimates miss their targets in 
real software projects. 

 

 
Figure 5. Estimate ranges results by condition 
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7. DISCUSSION AND CONCLUSIONS 
Our results show that the anchoring and adjustment heuristic does 
take place in software estimation processes. When estimators are 
given a high anchor their estimates are significantly higher than 
when they are given a low anchor or no anchor at all. This effect 
is too strong to be ignored. On average, estimates on the high 
anchor condition were more than twice as long as those in the low 
anchor condition. The effects were so large that even the worst-
case scenario produced by estimators in the low anchor condition 
is significantly more optimistic than the best-case scenario from 
the high anchor condition. 

Furthermore, the effect is maintained across experienced 
estimators and users of expert-based techniques (who presented 
the strongest effects of this bias). However, although the trend 
seems to occur in users of model-based techniques as well, their 
data were not conclusive. The difference in effects between low 
anchors and no anchors was not conclusive either. 

There are at least four possible reasons why no difference was 
found between low anchor and no anchor conditions. First, 
estimators may be optimistic by nature, so participants in the 
control condition could be substituting external anchoring effects 
with their internal optimism. Second, the value for the low anchor 
(2 months) may not have been low enough. Third, a greater pool 
of participants may be needed to identify the differences between 
these two groups. And fourth, it is possible that low anchors do 
not affect estimation processes as powerfully as high anchors. 

There are several ways to expand this experiment to continue 
exploring this effect. In particular, we could run the experiment 
with other estimation units. Estimators were asked to provide their 
estimate in months, and the anchor was also provided in months. 
It would be interesting to see the effect of giving estimates in 
weeks when the anchors “2 weeks” and “20 weeks” are provided. 
Another possibility is to explore estimates at different stages of  
the project lifecycle, to see if the effect of anchors diminishes as 

projects are more and more detailed. The experimental materials 
are available to other researchers who wish to repeat the 
experiment, by contacting the authors. 

There are several things that can be done to compensate for 
anchoring biases. Ideally, estimators should be shielded from 
anchors. However, this is not always feasible. Estimators should 
be aware that anchors may bias their own results. Unfortunately, 
previous studies have shown that anchoring effects take place 
even when participants are forewarned [25]. 

Giving wide estimation intervals would help to compensate for 
the optimism in our calculations: Boehm [4] indicates that 
confidence ranges of about 50% or 60% are adequate at early 
project stages, and estimators should resist the temptation to 
narrow their estimates. Finally, some development lifecycles are 
riskier than others because of the weight they give to deadlines, 
and this study is further evidence that lifecycles such as the spiral 
model or incremental development are safer than others like the 
waterfall model. 

It is interesting to note that our software estimation exercise does 
not have a right answer. Even if the project was developed, it may 
be true that project goals are partially set based on estimates, and 
that a low estimate would produce a smaller product than a high 
estimate. If that is the case, the power of a seemingly innocuous 
anchor can shape a project as forcefully as its specifications. 

Anchoring and adjustment biases may not be the biggest problem 
of software estimation. Considering that estimation is frequently 
done irrationally, that estimation processes tend to resemble 
bargaining matches, and that accuracy expectations of initial 
estimates are unreasonable, there are more factors involved in 
flawed estimations than a misleading anchor. But the need to 
consider the effect of anchoring on estimates is nonetheless 
important if we intend to treat software estimation as anything 
more than guesswork. 
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