
Eliciting Architectural Decisions from Requirements using a Rule-based
Framework

WenQian Liu Steve Easterbrook
Department of Computer Science

University of Toronto
Toronto, ON, M5S 3G4, Canada
{wl,sme}@cs.utoronto.ca

Abstract

Making architectural decisions based on requirements,
analyzing cost-benefit trade-offs, and keeping design op-
tions open is a difficult task. Existing work on classification
of architectural styles and features of reusable components,
and derivation of relevant architectural styles provides use-
ful heuristics to the task, but it remains to be largely a labor-
intensive activity.

In this paper, we propose a rule-based framework with
automated reasoning for eliciting architectural decisions
from requirements. Our goal is to gain a deeper under-
standing of the relationships between requirements and ar-
chitectural decisions, define generic mappings based on
these relationships, and use these mappings to guide archi-
tectural design with a higher degree of automation.

Keywords

Architecture, requirements, mapping, decision elicita-
tion, design guidance, rule-base

1 Introduction

It has been recognized by the research community that
building a systematic bridge between requirements and soft-
ware architecture plays an important role in software engi-
neering [1]. In particular, making architectural decisions
based on requirements, analyzing cost-benefit trade-offs,
and keeping design options open remains to be a labor-
intensive task. A number of approaches have made progress
towards providing assistance to software architects.

Early works include Shaw and Clements’ classification
of architectural styles that had appeared in the published lit-
erature [8]. Each style is categorized according to its char-
acteristics with respect to constituent parts (components and

connectors), control issues, data issues, control and data
interaction issues, and reasoning. Moreover, intuition and
rules of thumb on choosing styles to fit the problem are dis-
cussed as a preliminary step to design guidance.

Around the same time, Kazman, Clements, and Bass
provided a classification on architectural elements in terms
of features, which can be used to identify reusable elements
that match required feature criteria [5]. In their approach,
temporal and static features are defined for classifying ar-
chitectural elements and describing the matching criteria of
requirements.

More recently, Egyed et al. addressed this problem us-
ing the CBSP (Component-Bus-System, and Properties) ap-
proach [4]. In this work, the WinWin negotiation model [2]
is adapted to classify the requirements according to the
CBSP properties in the architectural context. Based on
these properties, a CBSP model can be built to derive and
validate architectural styles.

There are five characteristics in common in these ap-
proaches:

1. classification of requirements and architectural proper-
ties

2. definition of a partial mapping from requirements
properties to architectural elements or decisions using
a common language

3. provision of design alternatives and trade-off analysis

4. abstraction of information

5. reuse through styles by condition matching

Despite these advances, a number of key issues in bridg-
ing the gap between requirements and software architecture
are not well addressed to date.

Unified description language In order to bridge the gap
between requirements and architecture, we need to define
mappings between them. To establish these mappings, re-
quirement specifications and architectural descriptions must
be formulated in a common language. This motivates the
development of a unified language. We have seen that this
is done implicitly in the above approaches. But we do not
yet know the following.

• How feasible is it to use a unified language?

• How to express requirements and architectural descrip-
tions effectively using a unified language?

• What are the key properties of such a language?

Relationship between requirements and architectural
decisions

• What kind of architectural decisions are frequently
made in building large systems?

• Clearly, the architectural decisions made are related to
the benefits and risks that are induced. Are we able
to define relationships between them in assisting the
trade-off analysis?

• How do architectural decisions relate to the system’s
requirements?

• Are we able to classify relations between require-
ments and architectural decisions that are generic and
reusable?

• How do we abstract key architectural decisions made
in existing systems?

Studying decision making processes in existing systems
may provide insight into general relationship between re-
quirements and architectural decisions.

Architectural decisions deferral and trade-off In prac-
tice, it is often necessary to defer an architectural deci-
sion until further information is acquired and to keep de-
sign options open. Therefore, it is undesirable to make
every decision up front and have little flexibility in mak-
ing changes. However, having too many open ends will
make decision making difficult and prevent the development
progress. This leads to the questions below. Answers to
these questions can help analyzing the trade-offs between
different architectural decisions, and project architectural
evolutions with changing requirements.

• At what stage must these decisions be made before
proceeding further? How much can they be deferred?

• To what extent does architectural evaluation help in
choosing the best solutions for deferred decisions?

• To what extent do architectural decisions precede and
shape identification of requirements?

• Are there any common factors for deferring decisions?
Do they relate to specific classes of requirements?

The earlier work has provided insights to the questions
posed above, but answers to many of them remain unknown.
In particular, answers to the question of what are the generic
and reusable mappings between requirements, architectural
properties, and decisions can lead to significant progress.
Our research is mostly motivated by these questions. In
answering these questions, we could gain a deeper under-
standing of the relationships between requirements and ar-
chitectural properties, define generic mappings based on the
relationships, and use the mappings to guide the architec-
tural design with a higher degree of automation.

In this paper, we propose a framework that can be used
to elicit architectural decisions from requirements, and de-
scribe a potential rule-based implementation with auto-
mated reasoning capability. Although user interaction is
required in this framework, we believe it is a worthwhile ex-
periment. Our reasons are the following. Firstly, the frame-
work can be customized for any application domain, and
the rule-base can be easily updated as new mappings are
required. Secondly, existing architectural decision making
knowledge can be evaluated using this framework. Thirdly,
the evaluation of knowledge can help us define the relation-
ships between requirements and architectural properties.
Lastly, this framework can be extended with higher degree
of automation once the reasoning system covers enough de-
cision making strategies.

We plan to build a rule-based tool to capture the map-
pings, and in the process of doing so, to study how deci-
sions are made, what is the essential knowledge required,
and the structure of the knowledge. Our prior experience
[6, 7] shows that attempting to develop a rule-based (or pro-
duction) system raises useful questions about what knowl-
edge and heuristics to apply and how they interrelate.

In section 2, we describe our proposal of a general design
guidance framework for eliciting architectural decisions. In
section 3, we outline a rule-based implementation of the
framework. In section 4, we present concluding remarks.

2 Architectural Decision Elicitation Frame-
work

Requirements need to be obtained from stakeholders.
Likewise, architectural decisions need to be elicited from
requirements. Even though a large body of research results
and practical heuristics is available for making architectural

Mapping

Elicit Architecturally
Significant Properties

Convert
Requirements to
Architecturally

Significant Properties

Analysis

Resolve Conflicting
Decisions

Making Architectural
Decisions

Convert to
Analyzable

Representations

Present
Architecture

Recommendations

component of the
current proposal

component of
future extension

Legend

Reasoning Presentation

Figure 1. The Architectural Decision Elicitation Framework

decisions, architects still need to carefully go through their
knowledge-base (usually their experience) to identify rel-
evant information, and analyze cost-benefit trade-offs, be-
fore making a decision. We propose an architectural de-
cision elicitation framework (ADEF) that encapsulates the
knowledge required of making architectural decisions, and
provides automated mapping from architecturally signifi-
cant properties to architectural decisions. This framework
adapts a general Waterfall model.

There are two main modules,ReasoningandPresenta-
tion in ADEF, as shown in figure 1.

The Reasoningmodule encapsulates the decision mak-
ing knowledge, and reasons about the requirements to elicit
relevant architectural decisions. This module consists three
parts:mapping, conversion, andanalysis.

TheMappingsubmodule uses built-in decision trees (di-
rected acyclic graphs) to provide guidance to the user in
manually mapping each requirement specification to one
or more architecturally significant properties. Figure 2 il-
lustrates an example of a partial decision tree with only
the properties that are significant in choosing architectural
styles (the ideas in this example are adapted from [4, 8]).
We usedecision nodeto refer to both interior node and leaf
node in the decision tree, andproperty nodeto refer to leaf
node only.

Here is how the mapping is achieved. For each require-
ment specified, starting at the root of the decision tree,
present the user with the choices represented by the decision
nodes associated (i.e. immediately below and connected) to
the root, and ask the user to decide whether each choice is
relevant to the current requirement. For each relevant deci-
sion node chosen by the user, its associated decision nodes
are then presented to the user in a depth-first fashion until
no more nodes are available as a choice. The descriptions
of the property nodeschosen by the user are the architec-
turally significant properties. Such a property and its deci-

sion making history, including the nodes along the branch
and the source requirement, are described as adecision unit
and sent to the conversion submodule.

A future extension to this module is the automated map-
ping from requirements to architecturally significant prop-
erties shown as the dotted box in figure 1. This extension
dictates that the requirements be stated in a formal lan-
guage.

TheConvert to Analyzable Representation(conversion)
submodule converts thedecision unitscreated in the map-
ping module to a form that can be interpreted by the anal-
ysis module. The converted decision units are then sent to
the analysis module as new facts.

The Analysis submodule provides ongoing automated
reasoning of the following types using a predefined
knowledge-base:

1. making architectural decisions: based on change in the
fact base (either a newly converted decision unit, or a
newly made decision), make appropriate architectural
decisions using heuristics defined in the knowledge-
base, then store the decisions as new facts

2. resolve conflicting decisions: provide resolution and
explanation when multiple conflicting decisions are
made for the same part of the system

The Presentation module presents the resulting archi-
tectural decisions to the user and updates changes made to
previous results. The process then is repeated for another
requirement specification.

Next, we describe a rule-based implementation proposal
for this framework.

interpreterClient/server Batch/pipeline Pipeline Event based

Component System Bus Property

Root

Reasoning rules
require frequent

changes

There exists
consumer and
producer relation

There exists a sequential
ordering of problem
decomposition

Requires transformations
on continuous streams of
data (or long streams)

Recipient of signal
and its sender are

detached

Figure 2. An Example Decision Tree

3 A Rule-based Implementation

In section 2, we have seen that the knowledge-base for
the mapping submoduleis implemented in a decision tree.
In this section, we describe a rule-based approach to achieve
the automated reasoning capability provided by theanalysis
submoduleusing a production system.

A production system keeps the fact knowledge-base (or
fact base) separate from the rule base. Rules can be de-
fined a priori and maintained independently in the rule base.
The fact base is updated during the system execution. Not
only can new facts be added, but also the results made by
each reasoning cycle are fed back to the fact base as up-
dates. Ongoing reasoning is performed whenever updates
to the fact base are received. These characteristics of pro-
duction system help to achieve dynamic analysis required of
the framework. In addition, our prior experience has shown
positive results in applying the rule-based approach for au-
tomated reasoning [6, 7]. Thus, we believe it is viable to use
a rule-based implementation for theanalysis submodule.

We first give a brief overview of production systems,
then discuss the rule-based implementation for theanaly-
sis submodule.

3.1 Production System Overview

A production systemis a reasoning system that uses
forward-chaining derivation techniques. It uses rules, called
production rulesor productionsin short, to represent its
general knowledge, and keeps an active memory, known as
the working memory(WM), of facts (or assertions) which
are calledworking memory elements(WMEs) [3].

A production ruleis usually written as:
IF conditions THEN actions

The conditions, also known aspatterns, are partial de-
scriptions of working memory elements, which will be

tested against the current state of the working memory. For
example, the following rule debits a bank account.

IF (transaction
(type debit)
(amt ?x)
(account ?a))

(account
(id ?a)
(balance ?y ∧{≥?x }))

THEN REMOVE1
MODIFY 2 (balance [?y - ?x])

where ?a, ?x and ?y are variables;{≥?x } is a test for
balance ≥x; REMOVE 1deletes the first (i.e.transaction)
WME from the working memory; andMODIFY 2selects the
second WME and assigns the value ofy-x to balance .

Each condition can be either positive or negative. A neg-
ative condition is of the form- cond , wherecond represents
a positive condition. A rule is applicable if all of the vari-
ables can be evaluated using the WMEs in the current WM
such that the conditions are met. A positive condition is sat-
isfied if there is a matching WME in the WM; a negative
condition is satisfied if there is no matching WME in the
WM.

A working memory elementhas the following form,
(type (attribute 1 value 1) ... (attribute n value n))

wheretype andattribute i are atoms, i.e. a string, a word,
or a numeral; andvalue i is an atom or a list.

The basic operation of a production system is a cyclic
application of three steps until no more rules can be applied:

1. recognize: identify applicable rules whose conditions
are satisfied by the WM;

2. resolve conflict: among all applicable rules (orconflict
set), choose one to execute;

3. act: apply the action given in the consequent of the
executed rule.

3.2 Rule-based Analysis

In the analysis submodule, there are two goals to
achieve: architectural decision making, and conflicting de-
cision resolution. We use production rules to capture the
knowledge and strategies for these goals. The challenges
here are to identify commonly used architectural decisions
and the architectural properties required for making these
decisions, choose an effective and concise representation
scheme for facts, identify conflict conditions and resolu-
tions, and design rules ro reflect these properties.

To illustrate how a decision making rule is defined and
executed, we use the example decision tree shown in figure
2. In this decision tree, the property nodes are closely re-
lated to some well known architectural styles. We use this
information to design the rules. For example, taking the
first property node from the left, we can characterize it with
a rule of the following form:

IF (there exists consumer and producer
relation)

THEN ADD (use client/server style)

However, this rule does not capture key decision nodes
along the branch and the source requirement. In addition,
the representation used in the rule is not concise. We refine
the rule to be the following:

IF (property
(uid ?id)
(relation consumer-producer)
(source ?reqID)
(concern ?part))

THEN ADD (style
(name client-server)
(property (uid ?id)))

where the variable?id is matched to the unique identifier of
the decision unit (denoted asproperty); ?reqID is matched
to the unique source requirement identifier; and?part is
matched to the part that the decision unit is concerned about
at the top level of the decision tree:component, system, bus,
or property.

When this rule matches a WME and is executed by
the production system, the client-server style WME is then
added to the fact base as a recommended architectural style
to use for the part concerned.

Note that this rule is defined in close relation to what is
in the sample decision tree. This is indeed the case when
designing rules. They must provide means to match the de-
cision units to architectural decisions.

When two decisions made by the rules are associated
with the same part of concern, and cannot be used together
in the architecture consistently, a conflict is identified. The
conflicting decision resolution rules are designed to capture
such conditions and provide solutions thereto.

4 Conclusions

In this paper, we have posed many open questions for
bridging the gap between requirements and software archi-
tecture. Our research is motivated by these questions. In
particular, we are interested in exploring the applicability
of a unified description language for requirement specifica-
tions and architecturally significant properties, classifying
architectural knowledge for building decision trees and pro-
duction rules for requirement mapping and analysis, identi-
fying the relationships between requirements, architectural
decisions and properties.

We have proposed a framework to provide design guid-
ance in eliciting architectural decisions from requirements,
and a rule-based implementation. Although human interac-
tion is required to map requirements to architecturally sig-
nificant properties in the framework, we believe that using
a tool implementing the framework can help us evaluate ex-
isting architectural decision-making knowledge, and define
the relationships between requirements, architectural deci-
sions and properties. Understanding of such relationships
can help us to provide higher degree of automation and min-
imize human involvement.

References

[1] In J. Castro and J. Kramer, editors,“The First International
Workshop on From Software Requirements to Architectures
(STRAW’01)”. At the 23rd International Conference on Soft-
ware Engineering, Toronto, 2001.

[2] B. W. Boehm and R. Ross. “Theory W Software Project Man-
agement: Principles and Examples”.IEEE Transactions on
Software Engineering, pages 902–916, 1989.

[3] R. J. Brachman and H. J. Levesque. “Knowledge Representa-
tion and Reasoning”. In preparation, 2001.

[4] A. Egyed, P. Gr̈unbacher, and N. Medvidovic. “Refinement
and Evolution Issues in Bridging Requirements and Architec-
ture - The CBSP Approach”. In J. Castro and J. Kramer, ed-
itors, “The First International Workshop on From Software
Requirements to Architectures (STRAW’01)”, pages 42–47.
At the 23rd International Conference on Software Engineer-
ing, Toronto, 2001.

[5] R. Kazman, P. Clements, G. Abowd, and L. Bass. “Classi-
fying Architectural Elements as a Foundation for Mechanism
Matching”. InACM SIGSOFT Symposium on the Foundations
of Software Engineering, 1996.

[6] W. Liu. “Rule-based Detection of Inconsistency in Software
Design”. Master’s thesis, University of Toronto, Department
of Computer Science, July 2002.

[7] W. Liu, S. M. Easterbrook, and J. Mylopoulos. “Rule-Based
Detection of Inconsistency in UML Models”. In L. Kuzniarz,
G. Reggio, J. Sourrouille, and Z. Huzar, editors,Workshop on
Consistency Problems in UML-Based Software Development,
pages 106–123. At the Fifth International Conference on the
Unified Modeling Language, Dresden, Germany, 2002.

[8] M. Shaw and P. Clements. A field guide to boxology: Prelimi-
nary classification of architectural styles for software systems,
1996.

