
Guest Editorial: Special Issue on Model Checking in Requirements
Engineering

Steve Easterbrook and Marsha ChechikSteve Easterbrook and Marsha Chechik
Department of Computer Science, University of Toronto, Toronto, Ontario, Canada

In the past decade, practical model-checking techniques
have revolutionised research in formal software verifica-
tion. Until the mid-1980s, when model checking was
first introduced [1,2], formal verification research
focused primarily on techniques for proving a program
is correct against a formal specification. For many
reasons, such techniques had had little impact on
industrial practice [3]. In contrast, model checking has
rapidly transferred into industrial practice, both for
hardware and software verification. With its emphasis on
partial verification using fully automated techniques,
model checking has led to an interest in ‘lightweight’
formal techniques [4] that can be applied at different
levels of abstraction, and during any stage of the
development process. Model-checkers have become
popular debugging tools and have been used to reason
about system requirements [5], software architectures
[6], program behaviour [7–9], hardware and circuit
designs [10], communication protocols [11] and even
user interfaces [12]. Because model checking can be
used to analyse abstract behavioural models, it has a
number of natural applications in requirements engineer-
ing.

A model-checker takes as input a model, M, of a

system, expressed as a finite state machine, and a

temporal logic formula, j, and algorithmically deter-

mines whether or not the model satisfies the property;

i.e., it computes the value of the relationM |= j. From an

engineering point of view, it is natural to consider the

state machine model to be the central artefact, and to talk

of checking that various behavioural properties hold of

the model. We can summarise the key advantages of
model checking over other forms of formal analysis as

follows:

1. The procedure is fully automatic and quite fast, often
producing an answer in a matter of minutes.

2. If a property is not satisfied, a model-checker will
usually produce a counter-example – a sequence of
steps leading to the problem, thus showing why the
property is not satisfied.

3. Model checking can be applied to partial models, so it
is not necessary to fully specify a system nor all its
properties before analysing its correctness.

Model checking was first applied to requirements

engineering in the work of Atlee and Gannon [5]. In
requirements engineering, the state machine typically

represents an abstract description of the behaviour of
some portion of the system to be specified, or its

environment. The properties to be checked typically
represent high-level requirements including safety

properties (some undesirable situation will never
happen) and liveness properties (some desirable situation

will eventually occur). Reports of industrial case studies
(e.g. [13]) indicate that it is rare to have well-formulated
temporal logic properties from the outset. More usually,

the model is developed first in an attempt to understand
some aspect of a system’s behaviour, and the exercise of

model checking then involves the interaction of domain
experts to discover high-level properties that ought to

hold. In this sense, the model-checker becomes an
exploration tool, used to discover properties of a model

being developed, rather than to verify it against a pre-
existing specification. Because model checking does not

require completeness of either the model or the proper-
ties to be checked, it can be applied at very early stages
in requirements modelling.

Requirements Eng (2002) 7:221–224
Ownership and Copyright
� 2002 Springer-Verlag London Limited

Requirements
Engineering

Correspondence and offprint requests to: Steve Easterbrook,
Department of Computer Science, University of Toronto, Toronto,
Ontario M5S 2E4, Canada. Email: sme@cs.toronto.edu



It is useful to distinguish between a model-checking
engine, which computes the satisfaction relation for a
particular temporal logic, and a model-checking frame-
work, which includes modelling languages for expres-
sing the state machine models, abstraction techniques for
reducing large models to a size suitable for fast
checking, and tools for translating the models into the
input language of the checker engine and for visualising
the results. Model-checking engines can now be
considered mature technology – rather than describe
how they work here, we refer the reader to several good
tutorial introductions [14,15]. An example of a model-
checking framework is the SCRtool from NRL [16]. In
general, model-checking frameworks are still relatively
immature, and are the subject of much current research.
A good model-checking framework is essential for the
following reasons:

1. Temporal logics can be hard to work with, and most
people have difficulty in finding the correct logical
expression for all but the simplest properties.

2. Translations of requirements models to the input
languages of model-checking engines often cannot be
efficiently checked, because the resulting state spaces
are too large.

3. The counter-examples produced by most model-
checking engines do not mean anything to the
stakeholders, and need to be translated back into the
original modelling language.

The first problem has been ameliorated by the
development of a set of patterns that allow the analyst
to select the appropriate expression from a high-level
description of the type of property needed [17].
However, identifying and formalising suitable beha-
vioural properties is still a challenging task.
The second problem is inherently that of the model-

checking technology: the size of the state space grows
exponentially with the number of variables in the model.
This phenomenon is commonly called the state
explosion problem. Efficient algorithms, including
symbolic model checking, symmetry reduction, etc.,
allow current state-of-the art model-checkers to handle
models with around 400–450 propositional (i.e.,
Boolean-valued) variables [15]. However, many applica-
tions need models with real- or integer-valued variables,
and introducing these into a model rapidly expands the
state space beyond a size that can be practically checked.
Hence, for many applications, good abstraction techni-
ques are essential. For example, a simple abstraction step
replaces an integer variable with several Booleans,
testing whether the value is in a particular range. In
general, finding good abstractions is hard, so model-
checking frameworks need to provide automated
abstraction techniques tailored to the modelling lan-

guages they support, as well as some assurance that the

abstractions are sound with respect to the properties

being checked. Atlee reports that the performance of

some model-checkers is particularly sensitive to certain

modelling choices such as the order of introduction of

variables, their types, and modularity of the system [18].

Understanding the impact of these choices on the state

space of the system and enriching model-checking

frameworks to provide support for making these choices

correctly are part of ongoing research in this area.

The third problem is a result of the gap between the

practical modelling languages used in software engineer-

ing and the input languages of model-checking engines.

The former are designed to be conceptually easy to use,

and to provide modelling primitives appropriate for the

application domain. The latter are designed to be

efficiently analysed. Abstraction steps applied to the

users’ models increase this gap. Hence, model-checking

frameworks also need to be able to relate the output of

the model-checker back to the original model.

The papers in this special issue concern the

development of model-checking frameworks suitable

for expressing and checking requirements models. They

concentrate on validating requirements models ex-

pressed in various modelling languages via connections

with (extensions of) existing model-checking engines.

The first paper, by Choi, Rayadurgam and Heimdahl,

looks at the problem of finding abstractions for

requirements models with large state spaces. Require-

ments for control systems often include variables with

large input domains as well as interrelated numeric

constraints, e.g., altitude 5 1.05 * threshold, where

altitude and threshold range between 0 . . . 40,000 and

2000 . . . 35,000, respectively. Model checking such

systems can be successful only in the presence of

powerful abstractions that reduce the domain of such

variables while preserving their relationships. The paper

addresses this problem by proposing two types of

abstractions: domain reduction and trajectory reduction.

Both abstractions are computed statically, and the

reduced system can then be verified by any model-

checking tool. The first technique can be applied to

systems with no data constraints. It is based on a data

equivalence relation using the transition conditions on

the input variables to partition the infinite input domain

into a finite set of partitions from which one

representative input is selected. The technique results

in abstractions that preserve all CTL* properties of the

original system. In systems with data constraints,

trajectory reduction maps a possibly infinite set of

input variable trajectories through the state space to a

single representative trajectory in a finite domain. This

222 S. Easterbrook and M.Chechik



technique can handle systems with non-linear con-
straints, and abstractions generated with this technique
preserve ACTL* properties of the original system.

The second paper, by Eshuis, Jansen and Wieringa, is
a step towards a framework for model checking
hierarchical state machines. The paper considers the
problem of how model checking can be applied to
analyse object-oriented requirements models, in which a
variant of statecharts is used to capture behavioural
aspects of objects. Model checking in such a notation is
an obvious analysis step, but the case study presented in
the paper demonstrates that it is not a straightforward
task to couple an existing model-checking engine with
the modelling tool. The first part of the paper explores an
appropriate semantics for object-oriented requirements
models. For statechart-like notations to be used in
requirements modelling, they need a requirements-level
semantics, that is, they must abstract away from any
implementation details, for example by assuming a
perfect technology. The proposed semantics describes
how the configurations of statecharts evolve in response
to external events. For the case study, the authors used
existing model-checking engines to analyse their
models. The results show both the potential of model
checking for debugging and validating requirements
models, and also the limitations of current model-
checking technology. In particular, they show how a
knowledge of the model-checking engine is needed to
select appropriate encoding of the models, and suggest
that no one engine is sufficient for the range of analyses
needed in requirements engineering.

The final paper, by Campbell, Cheng and McUmber,
describes a model-checking framework for UML.
Analysis of UML models is complicated by the lack of
a precise semantics for most of the UML notations.
Campbell et al. solve this problem by making their
framework adaptable for different choices of semantics,
suitable for different application domains. The authors
demonstrate the framework using a case study of an
adaptive cruise control system. The case study shows
how various kinds of analysis can be performed on the
formalised UML models to reveal different kinds of
problem in the models, and clearly illustrates the role of
model checking in requirements analysis.

The papers in this issue together represent a snapshot
of the current state of the field. The application of model
checking in requirements engineering is still in its
infancy, and much current work focuses on the
development of model-checking frameworks. In parti-
cular, there is clearly a gap between the kinds of models
and modelling languages currently used in requirements
engineering, and the capabilities of existing model-
checking engines. But, as these papers show, that gap is
closing.

There are many additional problems that need to be
overcome before model checking becomes a routine
analysis technique for requirements models. One major
problem is the trade-off between expressive power of the
modelling languages and their decidability by model-
checking techniques. In addition, recent research
expanded the potential of the use of model checking in
requirements engineering beyond analysing classical
state machine models. We now have techniques for
reasoning about high-level goals [19], use of the model-
checker for test case generation [20,21], formal support
for analysing incomplete and inconsistent models
[22,23] and the use of the model-checker for general
model exploration via query checking [24]. Case studies
and further research would be necessary to determine
which of these applications of model-checking technol-
ogy will really scale up to realistic problems, and which
will remain confined to toy examples.

We feel that it is also necessary to mention that model
checking may not be appropriate for many problems in
requirements engineering, because of the level of
formality required. As with any formal technique, it is
only appropriate when a precise model can be
developed, and properties to be checked can be stated
precisely.

Acknowledgements. We would like to thank all the authors who
submitted papers to this special issue, and especially to the following
people who gave their valuable time to provide us with detailed
reviews: Myla Archer, Jo Atlee, Ramesh Bharadwaj, Tevfik Bultan,
Betty Cheng, Nancy Day, Benet Devereux, Matthew Dwyer, Dimitra
Giannakopoulou, Mats Heimdahl, Gerard Holzmann, Michael Huth,
Michael Jackson, Somesh Jha, Jeff Magee, Jeff Offutt, Corina
Pasareanu, John Penix, Marco Pistore, Alessandra Russo, Mark
Ryan, Margaret Smith, Willem Visser, Michal Young.

References

1. Clarke EM, Emerson EA, Sistla AP. Automatic verification of
finite-state concurrent systems using temporal logic specifica-
tions. ACM Trans Programming Lang Syst 1986;8(2):244–263

2. Vardi MY, Wolper P. An automata-theoretic approach to
automatic program verification. In: Proceedings of the 1st
symposium on logic in computer science, Cambridge MA,
1986, pp 322–331

3. Craigen D, Gerhart S, Ralston T. Formal methods reality check:
industrial usage. IEEE Trans Software Eng 1995;21(2):90–98

4. Jackson D, Wing J. Lightweight formal methods. IEEE Computer
1996;April:21–22

5. Atlee JM, Gannon J. State-based model checking of event-driven
system requirements. IEEE Trans Software Eng 1993;19(1):22–
40

6. Cheung SC, Kramer J. Checking subsystem safety properties in
compositional reachability analysis. In: Proceedings of the 18th
IEEE international conference on software engineering (ICSE-
18), Berlin. IEEE Computer Society Press, Los Alamitos, CA,
1996

7. Godefroid P. Model checking for programming languages using
VeriSoft. In: Proceedings of the symposium on principles of
programming languages (POPL’97), 1997, pp 174–186

8. Corbett J, Dwyer M, Hatcliff J, Laubach S, Pasareanu C, Robby,
Zheng H. Bandera: extracting finite-state models from Java

Model Checking in Requirements Engineering 223



source code. In: Proceedings of the 22nd international conference
on software engineering. Limerick, Ireland, June 2000, ACM
Press

9. Ball T, Rajamani S. Bebop: a symbolic model checker for
Boolean programs. In: Proceedings of SPIN 2000 workshop on
model checking of software, August–September 2000. Lecture
Notes in Computer Science 1885. Springer, Berlin, 2000, pp 113–
130

10. Clarke EM, Wing J. Formal methods: state of the art and future
directions. ACM Comput Surveys 1996;28(4):626–643

11. Holzmann G. A practical method for verifying event-driven
software. In: Proceedings of the 21st international conference on
software engineering (ICSE’99), May 1999, pp 597–607

12. Dwyer M, Carr V, Hines L. Model checking graphical user
interfaces using abstractions. In: Proceedings of foundations of
software engineering, Zurich, Switzerland, September 1997

13. Schneider F, Easterbrook SM, Holzmann GJ. Validating
requirements for fault tolerant systems using model checking.
In: Proceedings of the 3rd IEEE conference on requirements
engineering, Colorado Springs, CO, April 1998

14. Clarke E, Grumberg O, Peled D. Model checking. MIT Press,
Cambridge, MA, 1999

15. Clarke E, Schlingloff H. Model checking. In: Robinson J,
Voronkov A (eds). Handbook of automated reasoning. Elsevier,
Amsterdam, 2000

16. Bharadwaj R, Heitmeyer C. Model checking complete require-
ments specifications using abstraction. J Automated Software Eng
1999;6(1)37–68

17. Dwyer M, Avrunin G, Corbett J. Patterns in property specifica-
tions for finite-state verification. In: Proceedings of the 21st
international conference on software engineering. Los Angeles,
May 1999, ACM Press

18. Sreemani T, Atlee JM. Feasibility of model checking software
requirements: a case study’. In: Proceedings of COMPASS’96,
Gaithersburg, MD, June 1996

19. Fuxman A, Pistore M, Mylopoulos J, Traverso P. Model checking
early requirements specifications in Tropos. In: Proceedings of
the 5th IEEE international symposium on requirements engineer-
ing (RE’01), Toronto, Canada, August 2001. IEEE Computer
Society Press, Los Alamitos, CA, pp 173–181

20. Gargantini A, Heitmeyer C. Using model checking to generate
tests from requirements specifications. In: Proceedings of the joint
7th European software engineering conference and 7th ACM
SIGSOFT international symposium on foundations of software
engineering (ESEC/FSE99), Toulouse, France, September 1999.
ACM Press, New York, pp 146–162

21. Rayadurgam S, Heimdahl MPE. Coverage based test-case
generation using model checkers. In: Proceedings of the 8th
annual IEEE international conference and workshop on the
engineering of computer based systems (ECBS’01), Washington,
DC, April 2001. IEEE Computer Society Press, Los Alamitos,
2001, pp 83–93

22. Easterbrook S, Chechik M. A framework for multi-valued
reasoning over inconsistent viewpoints. In: Proceedings of the
international conference on software engineering (ICSE’01),
Toronto, Canada, May 2001. IEEE Computer Society Press,
Los Alamitos, CA, pp 411–420

23. Bruns G, Godefroid P. Generalized model checking: reasoning
about partial state spaces’. In: Palamidessi C (ed). Proceedings of
the 11th international conference on concurrency theory
(CONCUR’00), University Park, PA, August 2000. Lecture
Notes in Computer Science 1877. Springer, Berlin, 2000, pp
168–182

24. Gurfinkel A, Devereux B, Chechik M. Model exploration with
temporal logic query checking. In: Proceedings of SIGSOFT
conference on foundations of software engineering (FSE’02),
Charleston, SC, November 2002. ACM Press, New York (to
appear)

224 S. Easterbrook and M.Chechik


