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Abstract

Inconsistency is a pervasive problem in software
engineering, where different aspects of a system are
described in separate models. Resolving all the in-
consistencies in a large set of models is often in-
feasible, in which case automated reasoning tools
based on classical logic have limited application. In
this paper we describe an automated tool for para-
consistent reasoning, using multi-valued logics.
The reasoning engine is an adaptation of classical
model checking, and works for any multi-valued
logic whose truth values form a quasi-boolean lat-
tice. We describe the design of the model checker,
and show how it can be used to reason about mod-
els created by merging information from multiple
conflicting sources.

1 Introduction
Inconsistency is a pervasive problem in software engineering.
Software engineers make use of a large number of different
models that are constructed and updated by different devel-
opers at different times during development. These models
incorporate information from multiple sources, reflecting dif-
ferent points of view. Such models have significant overlaps
because they typically describe orthogonal aspects of a sys-
tem, rather than hierarchical decompositions.

Recent work on inconsistency in software engineering has
focused on tools that detect and track inconsistencies in
large sets of interrelated models [Easterbrook and Nuseibeh,
1996; Grundy et al., 1998; Robinson and Pawlowski, 1999;
van Lamsweerde et al., 1998]. The rationale is that toler-
ation of inconsistency is desirable, to facilitate distributed
collaborative working, to prevent premature commitment to
design decisions, and to ensure all stakeholder views are
taken into account [Schwanke and Kaiser, 1988]. However,
there has been relatively little work on automated reason-
ing with inconsistent models. This means that many of the
kinds of analysis routinely performed on software models
cannot be applied in the presence of inconsistency. This
problem has stimulated an interest in paraconsistent reason-
ing in software engineering [Hunter and Nuseibeh, 1998;
Menzies et al., 1999]

In this paper, we describe an extension of model check-
ing to a family of paraconsistent logics. Model checking has
become established as an important analysis tool in software
engineering, mainly because of the potential for fully auto-
mated reasoning. Unlike theorem proving, a model checker
can be used for “push-button verification”: given a model M
(of a program, a design, or a specification) expressed as a fi-
nite state machine, and a property P expressed in a temporal
logic, a model checker will automatically determine whether
M j= P , by exhaustively searching the state space. The cur-
rent generation of model checkers can efficiently search very
large state spaces (e.g. 10

20 states [Burch et al., 1990]) us-
ing compact encodings and pruning techniques. However, the
current generation of model checkers are based on classical
logic, and hence cannot handle inconsistency.

The logics we use in this work are multi-valued logics
whose values form quasi-boolean lattices under the truth or-
dering. These logics provide most of the properties of clas-
sical logic, with the exception of the law of excluded middle
(a_:a=>) and the law of non-contradiction (a^:a=?).
We have found these logics to provide a natural formalism
for expressing uncertainty and disagreement between differ-
ent views. By developing a model checker to reason over
these logics, we can check which properties of a model are
affected by the uncertainty or disagreement, and can even de-
termine how much agreement there is over each property.

The paper is organised as follows. The next section gives a
formal introduction to quasi-boolean logics, and briefly con-
trasts them with other multi-valued logics described in the
literature. Section 3 describes the semantics of multi-valued
model checking, and outlines the design of the model checker.
Section 4 demonstrates how we apply the model checker for
reasoning about information merged from multiple sources.
Section 5 presents our conclusions.

2 Multi-Valued Reasoning

2.1 Why Multi-Valued Logics?
Multi-valued logics are useful for merging information from
inconsistent viewpoints because they allow us to explicitly
represent different levels of agreement. For example, if we
keep the usual boolean values TRUE and FALSE to mean ‘a
unanimous yes’ and ‘a unanimous no’, we can add any num-
ber of intermediate values to represent different kinds of dis-



agreement. Examples include ‘a majority said yes’, ‘4 yeses and
1 no’, ‘nobody knows’, ‘the designated expert said no, everyone
else said yes’. By adding these explicitly as values in the logic,
and defining a truth order over them, we can reason about the
level of agreement for any arbitrary proposition.

A number of specific multi-valued logics have been pro-
posed and studied. For example, Łukasiewicz [Łukasiewicz,
1970] first introduced a three-valued logic to allow for propo-
sitions whose truth values are ‘unknown’, while Belnap [Bel-
nap, 1977] proposed a four-valued logic that also introduces
the value ‘both’ (i.e. “true and false”), to handle inconsistent
assertions in database systems. Each of these logics can be
generalized to allow for different levels of uncertainty or dis-
agreement. For example, Belnap’s logic was generalized by
Ginsberg to a family of logics represented as bilattices [Gins-
berg, 1998].

The motivations that led to the development of these log-
ics clearly apply to the modeling of software behaviour, es-
pecially the exploratory modeling used in the early stage of
requirements engineering and architectural design:

� We need to allow for uncertainty – for example, we may
not yet know whether some behaviours should be possi-
ble;

� We need to allow for disagreement – for example, dif-
ferent stakeholders may disagree about how the systems
should behave;

� We need to represent relative importance – for example,
in the case where some behaviours are essential and oth-
ers may or may not be implemented.

Different multi-valued logics are useful for different pur-
poses. For example, we may wish to have several levels of
uncertainty. We may wish to use different multi-valued logics
to support different ways of merging information from mul-
tiple sources: keeping track of the origin of each piece of
information, doing a majority vote, giving priority to one in-
formation source, etc. Thus, rather than restricting ourselves
to any particular multi-valued logic, we are interested in ex-
tending the classical symbolic model-checking procedure to
enable reasoning about arbitrary multi-valued logics, as long
as conjunction, disjunction and negation of the logical values
are specified.

We originally considered the family of logics characterized
by Ginsberg’s bilattices [Ginsberg, 1998]. However, these do
not lend themselves well to modeling the process of merg-
ing information from multiple sources. The original intent
of Belnap’s logic was to model information being added in-
crementally to a database. Hence these logics represent how
much information (certainty) we have about each proposi-
tion, as well as it’s truth value. However, these logics do not
readily model disagreements between multiple authorities for
information. We adopted a simpler approach based on the
use of logics whose values form quasi-boolean lattices, and
use products of these lattices to represent merged information
sources. Our logics have the further advantage that classical
two-valued logic is a member of the family. We give a formal
introduction to these logics in section 2.2

For reasoning about dynamic properties of systems, exist-
ing modal logics can be extended to the multi-valued case.

Fitting [Fitting, 1991] suggests two different approaches for
doing this: the first extends the interpretation of atomic for-
mulae in each world to be multi-valued; the second also
allows multi-valued accessibility relations between worlds.
The latter approach is more general, and can readily be
applied to the temporal logics used in automated verifica-
tion [Chechik et al., 2001b].

Some automated tools for reasoning with multi-valued
logics exist. In particular, the work of Hähnle and oth-
ers [Hähnle, 1994; Sofronie-Stokkermans, 2000 ] has led to
the development of several theorem-provers for first-order
multi-valued logics. However, as yet the question of model
checking for multi-valued modal logics has not been ad-
dressed.

2.2 Quasi-Boolean Multi-Valued Logics
We wish to use a range of different multi-valued logics, and so
we need a way to specify each particular logic, and to ensure
that it has the properties needed by our model checking al-
gorithm. We can specify a logic by giving its inference rules
or by defining conjunction, disjunction and negation on the
truth values of the logic. Since our goal is model-checking
as opposed to theorem proving, we chose the latter approach.
Further, the logic should be as close to classical as possible; in
particular, the defined operations should be idempotent, com-
mutative, etc.

We achieve this by defining each logic using a lattice of
truth values, and define the logical operators in terms of lat-
tice operations. We restrict ourselves to those logics whose
values form a quasi-boolean lattice, as this ensures that nega-
tion in the logic has the expected properties. Finally, we use
products of lattices to handle information merged from mul-
tiple sources. In the remainder of this section we give a brief
overview of the relevant parts of lattice theory.

Definition 1 A Lattice is a partial order (L, v) for which a
unique greatest lower bound and least upper bound, denoted
a u b and a t b exist for each pair of elements (a, b).

The following are the properties of lattices:

a t a = a (idempotence)

a u a = a
a t b = b t a (commutativity)

a u b = b u a
a t (b t c) = (a t b) t c (associativity)

a u (b u c) = (a u b) u c
a t (a u b) = a (absorption)

a u (a t b) = a
a v a0 ^ b v b0 ) a u b v a0 u b0 (monotonicity)

a v a0 ^ b v b0 ) a t b v a0 t b0

a u b and a t b are referred to as meet and join, representing
for us conjunction and disjunction operations, respectively.
Figure 1 gives examples of a few logic lattices. Our partial
order operation a v b means that “b is more true than a”.

Definition 1. A lattice is complete if it includes a meet and
a join for for every subset of its elements. Every complete
lattice has a top (>) and a bottom (?).

? = uL (? characterization)

> = tL (> characterization)
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Figure 1: Examples of logic lattices: (a) a two-valued lattice representing classical logic; (b) a three-valued lattice reflecting
uncertainty; (c) a four-valued boolean lattice, a product of two (2-Bool,v) lattices; (d) a four-valued quasi-boolean lattice.

We only use lattices that have a finite number of elements.
Every finite lattice is complete. We adopt the convention of
using T to indicate > of the lattice, and F to indicate its ?,
although in principle> and ? might be labelled differently.

Definition 2 A finite lattice (L,v) is called a Boolean lattice
if every element a 2 L has a unique complement :a 2 L
satisfying the following conditions:

::a = a (: involution)

:(a u b) = :a t :b (de Morgan)

:(a t b) = :a u :b (de Morgan)

a v b , :a w :b (: antimonotonic)

a u :a = ? (: contradiction)

a t :a = > (: exhaustiveness)

In fact, : involution, de Morgan and antimonotonic laws fol-
low from : contradiction and : exhaustiveness.

Definition 2. [Bolc and Borowik, 1992] A finite lattice
(L, v) is quasi-boolean1 if there exists a unary operator :
defined for it, with the following properties (a; b are elements
of L):

::a = a (: involution)

:(a u b) = :a t :b (de Morgan)

:(a t b) = :a u :b (de Morgan)

a v b , :a w :b (: antimonotonic)

Thus, :a is a quasi-complement of a.

Therefore, all boolean lattices are also quasi-boolean,
whereas the converse is not true. Logics represented by quasi-
boolean lattices will be referred to as quasi-boolean logics.

The identification of a suitable negation operator is greatly
simplified by the observation that quasi-boolean lattices are
symmetric about their horizontal axes:

Definition 3 A lattice (L, v) is horizontally-symmetric if
there exists a bijective function H such that for every pair
a; b 2 L,

a v b , H(a) w H(b) (order� embedding)

H(H(a)) = a (H involution)

Theorem 1 [Chechik et al., 2001b] Let (L;v) be a
horizontally-symmetric lattice. Then the following hold for
any two elements a, b 2 L:

H(a u b) = H(a) tH(b)
H(a t b) = H(a) uH(b)

1also called De Morgan [Dunn, 1999]

Definition 4 A product of two lattices (L1;v), (L2;v) is a
lattice (L1 � L2), with the ordering v holding between two
pairs iff it holds for each component separately, i.e.

(a; b) v (a0; b0) , a v a0 ^ b v b0 (v of pairs)

Bottom, top, complement, meet and join in the product lattice
are component-wise extensions of the corresponding opera-
tions of the component lattices. Product of two lattices pre-
serves their distributivity, completeness and boolean proper-
ties. For example, out of the four lattices in Figure 1, only
(2-Bool, v) and (4-Bool, v) are boolean. The former is
boolean because : T = F, : F = T. The latter is a product
of two (2-Bool, v) lattices and thus is complete, distributive
and boolean. The lattice (3-QBool,v) is not boolean because
: M = M, and M u : M 6= ?.

Finally, we define an operator! as follows:

a! b � :a t b (de�nition of !)

3 Model-Checking
In this section we present an overview of our model checker,
�chek. �chekis based on classical Computational Tree Logic
(CTL) model checkers [Clarke et al., 1986]. We first briefly
introduce classical CTL model checking. We then extend this
to quasi-boolean multi-valued logics by defining multi-valued
state machine models, and extending the semantics of CTL.

3.1 Classical Model Checking
CTL model-checking is an automatic technique for verifying
properties expressed in a propositional branching-time tem-
poral logic called Computational Tree Logic (CTL) [Clarke
et al., 1986]. The system is defined by a Kripke structure,
and properties are evaluated on a tree of infinite computations
produced by the model of the system. The standard notation
M; s j= P indicates that a formula P holds in a state s of a
model M . If a formula holds in the initial state, it is consid-
ered to hold in the model.

A Kripke structure consists of a set of states S, a transition
relation R � S�S, an initial state s0 2 S, a set of atomic
propositions A, and a labeling function L : S ! P(A). To
ensure that all paths are infinite length, every state must have
at least one transition out of it, i.e. 8s2S; 9t2S : (s; t)2R.
If a state sn has no successors, we add a self-loop to it, so that
(sn; sn)2R. For each s2S, the labeling function provides a
list of atomic propositions which are True in this state.
CTL is defined as follows:

1. Every atomic proposition a 2 A is a CTL formula.



2. If ' and  are CTL formulae, then so are :', '^ , '_
 , EX', AX', EF', AF', EG', AG', E['U ],
A['U ].

The logic connectives :, ^ and _ have the usual meanings.
The temporal quantifiers have two components: A and E
quantify over paths, while X , F , U and G indicate “next
state”, “eventually (future)”, “until”, and “always (globally)”,
respectively. Hence, AX' is true in state s if ' is true in the
next state on all paths from s. E['U ] is true in state s if
there exists a path from s on which ' is true at every step
until  becomes true. Formally,

M; s0 j= a i� a 2 L(s0)
M; s0 j= :' i� M; s0 6j= '

M; s0 j= ' ^  i� M; s0 j= ' ^ M; s0 j=  
M; s0 j= ' _  i� M; s0 j= ' _ M; s0 j=  
M; s0 j= EX' i� 9t2S; (s0; t)2R ^ M; t j= '
M; s0 j= AX' i� 8t2S; (s0; t)2R !M; t j= '

M; s0 j= E['U ] i� 9 some path s0; s1; :::; s:t:
9i; i � 0 ^ M; si j=  ^
8j; 0 � j < i!M; sj j= '

M; s0 j= A['U ] i� for every path s0; s1; :::;
9i; i � 0 ^ M; si j=  ^
8j; 0 � j < i!M; sj j= ':

where the remaining operators are defined as follows:

AF (') � A[>U'] EF (') � E[>U']
AG(') � :EF (:') EG(') � :AF (:')

Definitions of AF and EF indicate that we are using a
“strong until”, that is, E['U ] and A['U ] are true only
if  eventually occurs.

3.2 Multi-valued state machines
Conventionally, a state machine model consists of a set of
states, a set of transitions between states, and a set of vari-
ables whose values vary from state to state. We extend this by
associating each model with a specific Quasi-Boolean logic.
‘Boolean’ variables now range over the values of the logic,
rather than just being TRUE or FALSE.

Transitions between states also range over the values of the
logic. In a conventional state machine model, all transitions
are implicitly TRUE, because FALSE transitions (i.e. transi-
tions that cannot occur) are simply omitted from the notation.
If we extend this to the multi-valued case, we can assign any
value of the logic to each transition. This allows us to model
cases where information sources disagree over which transi-
tions can occur. To avoid clutter, we adopt the convention
that FALSE transitions (i.e. transitions taking the value?) are
omitted from our diagrams.

For model checking purposes, we also need to define an
initial state. In a conventional state machine model, there is
one initial state. Because stakeholders may disagree on the
initial state, we allow a model to have a set of initial states.

We call our multi-valued models �views. Formally, a
�view is defined as a tuple (L; S; S0; R; I; A) where:

� L is a quasi-boolean logic given as a lattice (L, v).

� A is a (finite) set of atomic propositions

� S is a (finite) set of states, each with a unique label;

:AX' = EX(:') (: “next”)
A[?U'] = E[?U'] = ' (? “until”)
A['U ] =  _ (' ^ AXA['U ]

^EXA['U ]) (AU �xpoint)

E['U ] =  _ (' ^ EXE['U ]) (EU �xpoint)

Figure 2: Properties of CTL operators.

� S0 � S is the non-empty set of initial states.

� R : S � S ! L is a total function assigning a truth
value from the logic, L to each possible transition be-
tween states (including the transition from each state to
itself). Each state must have at least one non-FALSE tran-
sition out of it;

� I : S � A ! L is a total function giving a truth value
to each variable in each state. For simplicity we assume
that all our variables are of the same type, ranging over
the values of the logic. For a given variable a, we will
write I as Ia : S ! L.

Note that if the logic L is a two-valued boolean logic, then
a �view reduces to a standard Kripke structure. By adopting
Kripke structures as our underlying formalism, we gain gen-
erality and analytical power but lose some expressive power.
However, many modeling languages can be translated into
Kripke structures (e.g. SCR [Atlee and Gannon, 1993]), and
we plan to eventually adopt a richer specification language as
a front end to our framework.

Central to a symbolic model checking algorithm is the
computation of partitions of the state space w.r.t. a variable a
using I�1

a
: L ! 2

S. A partition has the following properties:

8a 2 A;8`i; `j 2 L :

i 6= j ! (I�1
a

(`i) \ I
�1
a

(`j) = ;) (disjointness)

8a 2 A;8s 2 S; 9` 2 L : s 2 I�1
a

(`) (cover)

3.3 Multi-Valued CTL
We extend the semantics of CTL operators to a �Kripke struc-
ture M over a quasi-boolean logic L. We will refer to this
language as multi-valued CTL, or �CTL. L is described by
a finite, quasi-boolean lattice (L;v), and thus the conjunc-
tion u, disjunction t and negation : operations are avail-
able. In extending the CTL operators, we want to ensure
that the expected CTL properties, given in Figure 2, are pre-
served. Note that the AU fixpoint includes an additional con-
junct, EXA[fUg]. This preserves a “strong until” semantics
for states that have no outgoing > transitions [Bultan et al.,
2000].

We first extend the domain of the interpretation function I
to any CTL formula ', using P'(s) to denote the truth value
that formula ' takes in state s. If s 2 S is a state, a 2 A is a
variable, and ' and  are CTL formulae:

Pa(s) � I(s; a) P'^ (s) � P'(s) ^ P (s)
P:'(s) � :P'(s) P'_ (s) � P'(s) _ P (s)

We proceed by defining EX . In standard CTL, this oper-
ator is defined using the existential quantification over next



states. We define quantification for our multi-valued log-
ics using conjunction and disjunction for universal and ex-
istential quantification, respectively. This treatment of quan-
tification in multi-valued logics is standard [Belnap, 1977;
Rasiowa, 1978]. EX is defined by:

PEX'(s) �
W
t2S

(R(s; t) ^ P'(t))

The definitions of AU , EU and AX are given using the
properties in Figure 2:

PAX'(s) � :PEX:'(s)
=

V
t2S

(R(s; t)! P'(t))
PE['U ](s) � P (s) _ (P'(s) ^ PEXE['U ](s))
PA['U ](s) � P (s) _ (P'(s) ^ PAXA['U ](s)

^PEXA['U ](s))

The remaining CTL operators, AF ('), EF ('), AG('),
EG(') are the abbreviations for A[>U'], E[>U'],
:EF (:'), :AF (:'), respectively.

3.4 Model-Checking Algorithm
In this section we give an overview of the design of our sym-
bolic multi-valued model checker, �chek. �chek takes as in-
put a model M taking its variable and transition values from
a lattice L, and a �CTL formula '. It produces as output
a total mapping from L to the set S of states, indicating in
which states ' takes each value `. This is simply P �1

'
, the

inverse of the valuation function defined in section 3.3; and
thus, the task of the model checker is to compute P' given
the transition functionR.

Since states are assignments of values to the variables, an
arbitrary ordering imposed on A allows us to consider a state
as a vector in Ln, where n = jAj. Hence P' and R are
functions of type Ln !L and L2n !L respectively. Such
functions are represented within the model checker by multi-
valued decision diagrams (MDDs), a multi-valued extension
of the binary decision diagrams (BDDs) [Bryant, 1992].

We give a detailed treatment of MDDs in [Chechik et al.,
2001a]. Here we illustrate them by means of a brief example.

Definition 3. [Srinivasan et al., 1990] Given a finite do-
main D, the generalized Shannon expansion of a function
f : Dn ! D, with respect to the first variable in the or-
dering, is
f(a0; a1; : : : ; an�1)!

f0(a1; : : : ; an�1); : : : ; fjDj�1(a1; : : : ; an�1)

where fi = f [a0=di], the function obtained by substituting
the literal di 2 D for a0 in f . These functions are called
cofactors.

Definition 4. Assuming a finite set of logic values, L, and
an ordered set of variables A, multi-valued decision diagram
(MDD) is a tuple (V;E; var; child; image; value) where

� V = Vt [Vn is a set of nodes, where Vt and Vn indicate
a set of terminal and non-terminal nodes, respectively;

� E � V � V is a set of directed edges;

� var : Vn ! A is a variable labeling function.

� child : Vn ! L ! V is an indexed successor function
for nonterminal nodes;

� image : V ! 2
L is a total function that maps a node to

a set of values reachable from it;

� value : Vt ! L is a total function that maps each termi-
nal node to a logical value.

For example, consider the function f = x1 ^ x2, with
`0 = F; `1 = M; `2 = T. The MDD built from this ex-
pression, and its lattice, are shown in Figure 3. The diagram
is constructed by Shannon expansion, first with respect to x1,
and then (for each cofactor of f ) with respect to x2. The
dashed arrows indicate f and its cofactors, and also the co-
factors of the cofactors.

MF T

x1

x2 x2 f2

f2,2

f1,1 f2,1f1,2 ,,

M

T
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b)a)

T

F

F M

FTMM

f 0

f

T

f1
, f , f1,0 2,0

Figure 3: (a) A three-valued lattice. (b) The MDD for f =

x1 ^ x2 in this lattice.

The efficiency of decision diagrams, binary or multi-
valued, comes from the properties of reducedness and or-
deredness. Orderedness is also required for termination of
many algorithms on the diagrams. We perform various logi-
cal operations on the functions represented by MDDs: equal-
ity, conjunction, disjunction, negation, and existential quan-
tification. MDDs have the same useful property as BDDs:
given a variable ordering, there is precisely one MDD repre-
sentation of a function. This allows for constant-time check-
ing of function equality.

Algorithms for manipulating BDDs are extensible to the
multi-valued case, provided they do not use optimizations
that depend on a two-valued boolean logic (e.g. comple-
mented edges [Somenzi, 1999]). The differences are dis-
cussed in [Chechik et al., 2001a]. The public methods re-
quired for model checking are: Build, to construct an MDD
based on a function table; Apply, to compute ^;_ and : of
MDDs; Quantify, to existentially quantify over the primed
variables; and AllSat to retrieve the computed partition
P�1
'

(L). Build ensures orderedness of MDDs while they
are being constructed, and Apply preserves it. An additional
function, Prime, primes all of the variables in an MDD.

The full model checking algorithm is given in Figure 4.
The function EX(P') computes PEX' symbolically; QUntil
carries out the fixed-point computation of both AU and EU .
AX' is computed as :EX:'. EG, AG, EF , and AF are
not shown in this Figure, but could be added as cases and
defined in terms of calls to EX, QUntil, and Apply.

Correctness and efficiency of this algorithm are analysed
in [Chechik et al., 2001a]. The worst-case running time for
�chek is O(jLj3n � h), where n is the number of variables
and h is the height of the lattice. Experimental results suggest
that the average case is O(jLj3n�2�h�jpj), where jpj is the



function EX(P')
return Quantify(Apply(^; R; Prime(P')); n)

function QUntil(quanti�er; P'; P )
QU0 = P 
repeat

if (quantifier is A)
AXTermi+1 := Apply(:; EX(Apply(:; QUi)))
EXTermi+1 := EX(QUi))

else
AXTermi+1 := P'
EXTermi+1 := EX(Apply(:; QUi)))

QUi+1 := Apply(_; P ; (Apply(^; P';
Apply(^;EXTermi+1;AXTermi+1))))

until QUi+1 = QUi
return QUn

procedure MC(p;M)

Case
p2A: return Build(p)
p=:': return Apply(:, MC(';M))
p=' ^  : return Apply(^, MC(';M), MC( ;M))
p=' _  : return Apply(_, MC(';M), MC( ;M));
p=EX': return EX(MC(';M))

p=AX': return Apply(:; EX(Apply(:; MC(M;'))))
p=E['U ]: return QUntil(E; MC(';M); MC( ;M))

p=A['U ]: return QUntil(A; MC(';M); MC( ;M))

Figure 4: The multi-valued symbolic model checking algo-
rithm.

size of the �CTL formula. This compares favourably with
classical model checking.

4 Merging and Analyzing �views
We use �chek for automated reasoning about models created
my merging information from multiple sources. Our analysis
process is shown in Figure 5. We take a set of source �views
and merge them using a set of interconnection primitives and
a merge template chosen by the analyst. The resulting merged
�view can then be model checked against a set of properties
expressed in �CTL. The model checker returns the value(s)
from the logic that each property takes in the initial state(s).
We use the same multi-valued state machine notation for both
the source �views and the merged �view. This enables us to
run the model checker on individual �views, as well as the
merged ones, and to perform further merges on an already
merged �view. Note that as classical two-valued logic is also
a quasi-boolean logic, any �view may just be a classical state
machine model.

4.1 Signature and Value Maps

For software engineering applications, we have identified a
number of different ways of composing models. For exam-
ple, given a set of �views, there are a number of possible
relationships between the behaviours they describe:

χview1
χviewn

χview

χCTL

property

χchek

(model 

checker)

Merge

Truth

values

Figure 5: The analysis process.

� They may be parallel devices that interact through
shared data or shared events.

� They may be projections of the overall state space of
a system—each view describes some of the states and
some of the transitions, leaving other parts undefined.

� They may be competing versions of a system, differing
over some of the variables or transitions, where each
view claims to describe all the possible behaviours of
the system.

� They may be features that add new behaviours and/or
modify existing behaviours of a system.

All of these are supported. Combinations of these are also
possible: versions of parallel devices; projections of a feature;
and so on.

We support exploratory approaches to composing models
by allowing the analyst to choose which logic to use for the
merged view, how to unify the vocabularies of the source
views, and how to map truth values of the source �views onto
truth values of the merged �view. Figure 6 presents a simple
example.

The first step in merging a set of �views is to define a sig-
nature map that unifies their vocabularies. Rather than as-
suming that the �views share the same vocabulary, we al-
low each �view to preserve its local namespace, and allow
the analyst to determine which states and variables should be
unified across the source �views. The analyst may choose
to rename states and variables in the merged �view, or may
keep some of the names from the source �views. Figure 6(c)
shows an example signature map.

A signature map must have the following properties:
1. Type information is preserved—state names can only be

mapped to state names, and variable names can only be
mapped to variable names.

2. Every state in the source �views must map to a state
in the merged �view. However, not all variables need
to be mapped—variables can be ‘private’ to the source
�views, and not appear in the merged �view.

3. A name in a source �view may map to more than one
name in the merged �view. This allows us to dupli-
cate a variable (or state) and treat the instances differ-
ently. This is useful for �views that are at different levels



(a) Alice

T

FA0
x=T

A1
x=F

T
T

(b)
Bob

T

F

B0
y=T
z=F

B2
y=T
z=F

B1
y=F
z=T

T

T

T

(c) Signature Map
Alice Bob Comb:

A0 B0 C0

A1 B2 C1

– B1 C2

x z a

– y y

(d) Value Map
Alice Bob Comb:

T T TT

T F TF

F T FT

F F FF

T UNDEF TT

UNDEF T TT

F UNDEF FF

UNDEF F FF

(e)

Combined

C0
y=TT
a=TF

C1
y=TT
a=FF

C2
y=FF
a=TT

TT

FF

TF FT

FT

FT

TF

FT

TF

Figure 6: (a)-(b) Sample �views; (c) a signature map used
to unify the vocabularies; (d) a value map; (e) result of the
merge.

of granularity, where a single state in one �view corre-
sponds to several states in another �view.

4. Two different names from the same source �view cannot
be mapped to the same name in the merged �view.

The next step is to define how the truth values of the source
�views are combined. A value map is a total function map-
ping each tuple of truth values in the source �views to a truth
value of the merged �view. In many cases the chosen logic
for the merged �view has a ‘natural’ value map. In general,
we expect there to be a small number of commonly-used log-
ics and value maps.

The final step is to extend the value map to handle gaps
in the available information during a merge. For example, if
we have a state, s, from one source �view, and a variable, a,
from another, we may not be able to determine what value a
should take in s.

4.2 Model Checking Merged Models
The model checker �chek allows us to verify properties of
our �views. For example, given the �view of Figure 6(e), we
can check the value of AX(a = FF) (roughly: “a is FALSE

in the next state on all paths (from the initial state)”). �chek
returns the value TF, indicating that this property is TRUE in

Alice’s �view and FALSE in Bob’s. Similarly, for EF (a=TT
_a= FF) (roughly: “you can reach a state where they agree
on the value of a”), �chek returns TT. Note that this question
cannot be expressed in Alice or Bob’s individual �views.

Interpreting the results returned by the model checker on a
merged �view requires some knowledge of the type of merge
that was used. For example, the value map in Figure 6(d)
represents a specific choice about the relationship between
Alice’s and Bob’s models: if only one person can answer the
question, we take that person’s answer as undisputed. Thus,
the property AG(y=TT) is FF for the �view in Figure 6(e),
but the value map does not allow us to distinguish whether
this is because the property is FALSE in each individual �view,
or because it is FALSE in one and UNDEFin the other. If we
really need to know which is the case, then a different type of
merge that distinguishes these possibilities would be needed.

5 Conclusions
In this paper we have presented an extension of classical
CTL model checking for a family of multi-valued logics.
The model checker works for any logic whose values form
a quasi-boolean lattice. We use the model checker as an
automated reasoning tool for analyzing disagreements when
merging information from multiple sources.

Because the analysis is fully automated, we can support
an exploratory approach to merging information: an analyst
can analyze whether critical properties still hold if informa-
tion is composed in different ways. Furthermore, the tool
can be used to support negotiation of conflicting viewpoints.
The model checker will determine whether disagreements in
the details of each model affect various key properties of the
combined model. Proposed changes to the individual models
can then be rapidly assessed for their effect on the level of
agreement about these key properties.

Compositionality is an important problem for formal mod-
eling in software engineering. The principle of separation of
concerns allows software engineers to manage the complex-
ity of large systems by modeling separately different aspects.
In formal modeling languages, this has been supported by in-
cluding various composition primitives within the modeling
language. However, the available set of composition primi-
tives in each modeling language has been limited. By treat-
ing composition at the logical level rather than embedding it
in the language, our approach provides greater flexibility. We
plan to extend our work by mapping various common model-
ing languages into our �view formalism.

Finally, we anticipate a wider set of applications for this
approach beyond its application in software engineering. The
model checker can be adapted to work for different types of
modal logic, and the underlying logics are general enough
to support general modeling tasks where information from
multiple conflicting sources must be combined.
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