IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 1, JANUARY 1998 1

Experiences Using Lightweight Formal
Methods for Requirements Modeling

Steve Easterbrook, Member, IEEE Computer Society, Robyn Lutz, Member, IEEE Computer Society
Richard Covington, John Kelly, Yoko Ampo, and David Hamilton

Abstract —This paper describes three case studies in the lightweight application of formal methods to requirements modeling for
spacecraft fault protection systems. The case studies differ from previously reported applications of formal methods in that formal
methods were applied very early in the requirements engineering process, to validate the evolving requirements. The results were
fed back into the projects, to improve the informal specifications. For each case study, we describe what methods were applied, how
they were applied, how much effort was involved, and what the findings were. In all three cases, formal methods enhanced the
existing verification and validation processes, by testing key properties of the evolving requirements, and helping to identify
weaknesses. We conclude that the benefits gained from early modeling of unstable requirements more than outweigh the effort

needed to maintain multiple representations.

Index Terms —Software requirements, formal methods, verification and validation, fault protection software, NASA.

1 INTRODUCTION

N the development of embedded, mission-critical soft-

ware there is a serious, unmet need for early feedback on
the viability of a system in the requirements and early de-
sign stages [1]. The impact of early feedback on cost and
safety has been demonstrated empirically. Boehm showed
that errors are cheaper to fix the earlier they are detected in
the development lifecycle [2]. In a study of 387 software
errors found during integration and system testing, Lutz
found that safety-related software errors arose most often
from inadequate or misunderstood requirements. [3]. It is
also clear that conventional techniques fail to catch many
requirements errors [4]. However, studies have suggested
that formal methods have tremendous potential for im-
proving the clarity and precision of requirements specifica-
tions, and in finding important and subtle errors [5], [6], [7].

This paper presents three case studies of successful ap-
plication of formal methods for requirements modeling.
The studies demonstrate that a pragmatic, lightweight ap-
plication of formal methods can offer a cost-effective way of
improving the quality of software specifications. The stud-
ies concern the Verification and Validation (V&V) of fault
protection software on the International Space Station and
the Cassini deep space mission. The three studies share a
number of features:

¢ S. Easterbrook is with NASA V&V Facility, 100 University Dr.,
Fairmont, WVA 26554. E-mail: steve@atlantis.ivv.nasa.gov.

* R. Lutz, R. Covington, and J. Kelly are with the NASA Jet Propulsion Lab,
Pasadena, CA 91109. E-mail: rlutz@cs.iastate.edu,
{richard.g.covington, john.c.kelly}@jpl.nasa.gov.

* Y. Ampo is with NEC Corp, Tokyo, Japan.
E-mail: KHF00272@niftyserve.or.jp.

» D. Hamilton is with Hewlett Packard Corp, San Diego, CA 92127.
E-mail: david_hamilton@hp.com.

Manuscript received 30 Sept. 1996; revised 25 May 1997.

Recommended for acceptance by L.K. Dillon and S. Sainkar.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 105983.

O

» Formal methods were applied in response to an existing
development problem. In each case the problem was to
provide an assurance that the fault protection re-
quirements were correct. The informal techniques
used on these projects had not been able to provide
the desired level of assurance. While the formal
methods did not assure correctness, they improved
the level of assurance by revealing errors that the in-
formal techniques had missed.

¢ Formal methods were applied selectively. Only the most
critical portions of the requirements were modeled, and
only a selection of properties of these requirements
were analyzed. The formal methods were applied by a
research team working in parallel with the require-
ments analysts, rather than by the analysts themselves.

 In each case, formal methods offered a partial solution to
the original problem. In particular, they provided a con-
sistent requirements model, and revealed a number of
errors, some of which had not been detected using in-
spection and traceability analysis. The studies in-
creased the confidence in the requirements, but did
not guarantee the completeness and correctness of the
specifications. We argue that this is appropriate for
early modeling of requirements.

* In each case, the results of the study fed back into the
development process to improve the product.

We summarize observations on the utility of formal meth-
ods in these studies, and describe problems we encountered
in applying them. Finally, we describe our current work
exploring applications of formal methods in evolutionary
design of new architectures for autonomous spacecraft
control systems, and the special challenges of formally
modeling evolutionary designs.

0098-5589/98/$10.00 © 1998 |IEEE

J:\PRODUCTION\TSE\2-INPROD\JANUARY\1059831105983_2.00C

| reguiarpaperg8.dot | SL 19,968 | 01/16/98 2:04 PM | 1711

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 1, JANUARY 1998

2 BACKGROUND

2.1 Fault Protection

For NASA spacecraft, the term fault protection is used to
describe system elements that detect and respond to per-
ceived spacecraft faults. There are two main requirements
when a fault occurs: the system needs to guarantee the
completion of any time critical activities, and that the
spacecraft is still safe, observable and commandable. Each
spacecraft function has a predefined set of operating pa-
rameters, where each parameter has a normal operating
range. Values beyond this range are out-of-tolerance. An out-
of-tolerance condition may have many possible causes, so
information from multiple sources must be combined to
locate the fault. The normal operating range for each pa-
rameter is derived from the results of various system analy-
ses, including failure modes and effects analysis (FMEA),
hazard analysis, and safety analysis. These analyses also
provide rules of inference for fault recovery.

Fault protection software initiates appropriate responses
when out-of-tolerance conditions are detected in hardware
and software components. Responses to loss of function
include recovery (e.g., switch to a redundant backup) or
retry (e.g., restart a device in an attempt to restore function-
ality where no backup is available). Hazardous conditions
generally require a safing response, to isolate the problem
and minimize damage. For unmanned spacecraft, a typical
safing response is to shut down all noncritical functions,
ensure the antenna is pointing towards Earth, and await
further commands. On Cassini, there is a requirement to be
able to maintain such a safe state for up to two weeks. For
manned spacecraft there is a possibility of crew interven-
tion, so a further requirement is to isolate the fault to the
smallest possible replaceable unit.

Because of the need to maintain a safe, habitable envi-
ronment for the crew, fault protection on the space station
has additional requirements over those for unmanned craft,
and is referred to as Fault Detection, Isolation, and Recov-
ery (FDIR). Responsibility for FDIR is divided up into five
layers, or domains. The lowest domain is the individual de-
vice. The next layer is the function that uses the device,
followed by the subsystem and system control layers. The
highest layer is manual FDIR. If a domain cannot provide
FDIR for some conditions, a higher layer must provide it.
For example, the subsystem layer, rather than the device
layer, might handle an error condition involving the inter-
action of two separate devices. Validation of the space sta-
tion FDIR is particularly problematic, as FDIR functionality
is distributed across many flight computers. The develop-
ment and construction schedule for the space station does
not permit full integration testing of the entire architecture
prior to on-orbit assembly. Hence, FDIR functionality must
be validated through a combination of inspection, simula-
tion, and analysis.

Fault protection operates asynchronously, and may be
invoked at any time. Hence, the addition of fault protection
software to a spacecraft system significantly increases the
complexity of the software. An error in the fault protection
software may compound an existing failure. This occurred
during the launch of Ariane 5, when the fault protection

software erroneously shut down two healthy processors, in
response to an unhandled floating point overflow exception
in a noncritical software function [8]. If the spacecraft is
executing a critical function (e.g.,, an orbital maneuver)
when the failure occurs, the fault protection must respond
quickly to allow the critical function to proceed.

2.2 The Need for Formal Methods

Current requirements engineering processes within NASA
rely extensively on informal processes, largely based on
inspection. Inspection helps to remove a large number of
specification errors, but cannot provide the desired level of
assurance for the new generation of software-intensive
spacecraft [4]. Remaining errors are detected throughout
the lifecycle as the developers attempt to implement and
test the system. There is a significant lack of effective meth-
ods and tool support for the requirements phase in com-
parison to those available for detailed design and coding.

The lack of rigorous requirements engineering tech-
niques is well illustrated in the fault protection area. Fault
protection requirements are more volatile than most other
requirements, as they are sensitive to any change during
the development of the primary system. Interactions be-
tween requirements can be hard to identify, let alone vali-
date. Formal methods can help provide this validation in a
number of ways. The process of formalizing a specification
provides a simple validation check, as it forces a level of
explicitness far beyond that needed for informal represen-
tations. Once a formal specification is available, it can be
formally challenged [9], by defining properties that should
hold, and proving that they do indeed hold. Formal chal-
lenges may be achieved both through theorem proving, and
through state exploration or “model checking.”

Rushby [9] points out that there is considerable scope for
selective application of formal methods. Formal methods can
be applied just to selected components of a system, and can
be used just to check selected properties of that system. Most
importantly, a great deal of benefit can be derived from for-
mal methods without committing a project to the use of for-
mal notations for baseline specifications. In the studies de-
scribed in this paper, we used formal modeling to find errors
in critical parts of existing informal specifications, but did not
replace the informal specifications with their formal counter-
parts. We use the term “lightweight” to indicate that the
methods can be used to perform partial analysis on partial
specifications, without a commitment to developing and
baselining complete, consistent formal specifications. This
approach is also consistent with the advocacy of multiple
representations as a way of overcoming analysis bias [10].

2.3 Methodology

The authors are (or were) members of a multicenter team
within NASA, funded primarily by the NASA Office of
Safety and Mission Assurance, to explore the potential of
formal methods for increasing safety and reducing cost of
mission-critical software [11], [12]. The team combines per-
sonnel with experience in formal methods, in the domains
where formal methods are being applied, in software as-
surance and V&V, and in technology transfer. We have ex-
plored formal methods on a number of NASA programs,

J:\PRODUCTION\TSE\2-INPROD\JANUARY\1059831105983_2.D0C

| regulampaper98.dot | SL 19,968 | 01/16/98 2:04 PM | 2/11

EASTERBROOK ET AL.: EXPERIENCES USING LIGHTWEIGHT FORMAL METHODS FOR REQUIREMENTS MODELING 3

including Space Shuttle [6], Space Station [13], [14], and
Cassini [15]. Throughout these studies, the emphasis has
been on pragmatic application of formal methods in areas
where there appears to be the greatest need. Experiences
gained from these studies have been used to develop two
NASA guidebooks [16], [17].

Although some development of the methods themselves
has been necessary in order to fit them to our purpose, this
has not been the main focus of the studies. Rather, we have
concentrated on addressing issues such as:

¢ Can formal methods provide a cost-effective addition
to existing techniques to improve the quality of re-
guirements specifications?

¢ Can formal methods increase confidence in the valid-
ity of the requirements?

¢ Can early application of formal methods be beneficial
even while requirements are volatile?

¢ How much effort is needed to apply formal methods,
and what is the most appropriate process for applying
them?

¢ Within any particular formal methods process, which
activities require more effort, and which activities
yield the greatest benefits?

* Which formal methods and tools are useful for which
tasks?

In this paper we describe three studies that were imple-
mented in the early requirements phase for new systems.
These studies were responses to real needs on the projects.
The requirements were often still volatile, and hence some
effort was needed to ensure the formal analysis was kept
up to date. Our goal was to demonstrate that formal meth-
ods could be applied and could add value in this context.

Although the three studies described here used different
tools and notations, the basic approach was the same:

1) Restate the requirements in a clear, precise, and un-
ambiguous format.

2) Identify and correct internal inconsistencies.

3) Test the requirements by proving statements about
expected behavior.

4) Discuss the results with the requirements’ authors.

The formal methods used in the studies were chosen ac-
cording to need. PVS [18] was chosen for two of the studies,
because it offers automated support for proof construction,
and because the specification language appeared to be
readily understandable to engineers and programmers.
SCR [19] was chosen for the remaining study as it offered a
tabular notation that corresponded well to the structure of
the requirements, and provided tool support for consis-
tency checking. In each study, an intermediate notation was
used as a prelude to translating the requirements into the
formal specification language. The first study used an an-
notated flowchart notation, the second used AND/OR ta-
bles [20], whilst the third used OMT (Object Modeling
Technique) diagrams [21]. The intermediate notations
helped to clarify ambiguities, and gain a better understand-
ing of the structure of the requirements. This in turn helped
to determine how the formal notation would be used.

3 STUDIES

3.1 Study 1. High Level FDIR Requirements for
Space Station

This study was commissioned by the space station inde-
pendent assessment’ panel, which was seeking some assur-
ance that the high level FDIR concept was clearly defined
and validated, before detailed requirements were derived
from it. Subsequent changes to the FDIR concept would
have significant impacts throughout the requirements and
design of the entire system. The study analyzed 18 pages of
FDIR requirements, and was conducted over a period of
two months, by two people working part-time. The total
effort was approximately two-person-months.

3.1.1 Approach

Three views of the FDIR had been documented: the func-
tional concept diagram (FCD) which is a flowchart-like rep-
resentation of the generic FDIR algorithm; baseline FDIR
requirements; and capabilities, in which the requirements
are grouped into related functional areas. This study con-
centrated on the first two of these views, developing a for-
mal model of each, and testing traceability between them.

The four-step approach described above was used as
follows:

1) The FCD was restated by abstracting out common
features. The 53 processing steps of the original FCD
were partitioned, in order to reduce the detail. For ex-
ample, the first 12 steps check parameters for out-of-
tolerance conditions, the next seven deal with safing,
the next eight check for functional failure, and so on.
Each step was labeled as one of three procedural
categories: performing automated procedures,
checking for anomalous conditions, and record-
ing/reporting results. Finally, six classes of condition
under which control is passed to higher level FDIR
domains were identified. The result of this initial
analysis was a more structured (informal) model of
the FDIR processes. This model was informally
checked for reasonableness and for traceability to the
original FCD. All the objects and attributes referenced
in the FCD were then translated to PVS. Fig. 1 shows
two fragments of PVS generated at this stage.

The baseline requirements were then translated di-
rectly into PVS, using the definitions and types from
the formalized FCD. This translation concentrated
only on the FDIR system itself; we did not model the
primary system that the FDIR monitors. Translation
of these requirements into PVS proved to be relatively
straightforward. Fig. 2 gives an example.

2) The resulting definitions were typechecked using the
PVS tool. Typechecking helped to eliminate several
types of errors in the specification, including typos,
syntax errors and type consistency errors.

3) The PVS specification was validated by using the PVS
proof assistant to prove claims based on the specifi-
cation. An example of such a claim is “at any domain
level, if a failure occurs then it will always be recov-

1. Independent assessment is an oversight activity, covering all aspects of
the system, including hardware, software, and operational procedures.

J:\PRODUCTION\TSE\2-INPROD\JANUARY\1059831105983_2.00C

| reguiarpaperg8.dot | SL | 19,968 | 01/16/98 2:04 PM | 3/11

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 1, JANUARY 1998

message: type =

{ parameter_OK,
parameter_verified,
safing_not_allowed,
safing_executed,

o

parameter is ok when its tolerance
check has just ran and the parameter
is OK (i.e., within tolerance)
rr_parameter ok: axiom
forall (t: tolerance check):
(on(just ran(t, time) and
OK? (t (time)))
iff
record check (time) (parameter OK, t)

)

o

o

Fig. 1. Fragments of PVS specification, showing type definitions and
axioms used to express FDIR concepts.

tolerance condition orfunctional performance parameter
that exhibits a time to catastrophic or critical effect of
than 24 hours.

automatic_hazard condition detection: axiom
forall (p:parameter)
param_out of tol?(p) AND
time to_effect (p)<24 =>
exists(d:fdir domain):
detection(p,d) = automatic

Fig. 2. An example FDIR requirement and its PVS translation.

ered at some domain level.” Although this claim was
not very profound, several missing assumptions were
detected in the process of proving it. For example,
several sequencing constraints needed to be defined
explicitly, even though the FDIR documentation
states that no such constraints should be inferred
from the requirements. A total of 14 claims were de-
fined and proved.

4) A total of 15 issues were documented and discussed
with the requirements’ authors. We had planned to
explore traceability between the FDIR concept dia-
gram and the baseline requirements. However, an
initial analysis indicated that there was little trace-
ability. The requirements’ authors confirmed that the
two documents expressed different kinds of require-
ments. The FCD describes the processing that is per-
formed within an FDIR domain, while the baseline
requirements describe a higher level view of the kinds
of FDIR that must be provided.

3.1.2 Findings

In general, the FDIR requirements were well thought out.
However, there was some question over whether the
documentation was sufficient so that system developers
and other stakeholders would understand them. Most of
the 15 issues were minor ambiguities, inconsistent use of
terms, and missing assumptions, discovered during the
process of formalization. These reduce the ability of devel-
opers to understand the requirements. For example, the

Requirement: automatic hazard and hazardous condition
detection: ISSA shall automatically detect any ouf-of-

eSS

distinction between the primary system and the FDIR sys-
tem was not clear in the original requirements. Other ambi-
guities surrounded the use of terms such as “anomaly,”
“out-of-tolerance” and “functional failure.” Three of the
issues were classed as “high-major”:

1) There were inconsistencies in the FCD over reporting
the status of safing, recovery and retry procedures.
The intention was that the FDIR processes should re-
port their status before, during and after execution of
each procedure. However, some of the procedures
were missing requirements for some of the reporting
activities, so that most of them did not have require-
ments to report status at all three points. This problem
was detected during the initial reformulation of the
FCD diagram.

2) The proper sequencing of FDIR processing is not clear
from the FCD. Although the FCD looks like a flow-
chart, the accompanying text stipulates that it should
not be interpreted as a sequential process. However,
some important requirements can only be inferred by
treating the flowchart as a sequential process. For ex-
ample, it is not clear whether safing should be per-
formed before isolation, although the diagram seems
to imply it should be. This problem was detected
during the proof process: some of the sequencing re-
quirements had to be stated explicitly in order to
prove necessary properties of the FDIR model.

3) No requirements are given for checking inconsisten-
cies between parameters. The requirements only
mention limit checking of individual parameters. The
requirements team clearly intended that inconsistency
checking should be included. This problem was dis-
covered during the process of formalizing the base-
line requirements.

3.2 Study 2. Detailed Bus FDIR Requirements for
Space Station

The purpose of this study was to analyze the detailed FDIR
requirements associated with the bus controller for the
main communications bus on the space station. These re-
quirements represent a concrete implementation of the high
level FDIR concepts addressed in the first study. The study
was initiated by an Independent Verification and Valida-
tion (IV&V)2 team. The IV&V team was having difficulty
validating the bus FDIR requirements, as some of the prop-
erties that the IV&V team wished to test could not be estab-
lished using existing informal methods.

The requirements for Bus FDIR are expressed in natural
language, with a supporting flowchart showing the proc-
essing steps involved. The flowchart does not have the
status of a requirement, but was merely provided for guid-
ance; the intention was that the prose completely expressed
the requirements (e.g., Fig. 3). The IV&V team had recom-
mended that to improve clarity, the requirements should be
rewritten in a tabular form (e.g., Table 1). This recommen-
dation had been rejected because of the cost involved in

2. IV&V is a practice in which a separate contractor is hired to analyze the
products and process of the software development contractor [22]. The
IV&V team reports to the Independent Assessment panel.

J:\PRODUCTION\TSE\2-INPROD\JANUARY\1059831105983_2.D0C

| regulampaper98.dot | SL | 19,968 | 01/16/98 2:04 PM | 4111

EASTERBROOK ET AL.: EXPERIENCES USING LIGHTWEIGHT FORMAL METHODS FOR REQUIREMENTS MODELING 5

2.16.3.1)

transaction error if;
last 20 sec,
reset in the last 10 major (10 sec)
set within the last major frame, or

ity is inhibited,
major frame.

While acting as the bus controller,
w, indicator identified in Table 3.2.16-II for the corresponding RT to “failed”
and set the failure status to “failed” for all RT’s on the bus upon detection of
transaction errors of selected messages to RTs whose 1553 FDIR is not inhibited in
two consecutive processing frames within 100 msec of detection of the second

a backup BC is available,
the SPD card reset capability is inhibited,
frames,
1. the transaction errors are from multiple RTs,

2. the transaction errors are from multiple RT’s,
and the current channel has not been reset within the last

the C&C MDM CSCI shall set the e, c,

the BC has been switched in the
or the SPD card has been
and either:

the current channel has been re-

the bus channel’s reset capabil-

Fig. 3. An example of a level 3 requirement for Bus FDIR. This requirement specifies the circumstances under which all remote

terminals (RTs) on the bus should be switched to their backups.

TABLE 1
THE TABULAR VERSION OF THE REQUIREMENT SHOWN IN FIG. 3, SHOWING THE FOUR CONDITIONS
(THE FOUR COLUMNS) UNDER WHICH THE ACTION SHOULD BE CARRIED OUT. A DOT INDICATES “DON'T CARE.”

Pz

OR
C&C MDM acting as the bus controller T T T T
Detection of transaction errors in two consecutive processing frames T T T T
Errors are on selected messages T T T T
The RT’'s 1553 FDIR is not inhibited T T T T
A backup BC is available T T T T
A The BC has been switched in the last 20 sec T T T T
The SPD card reset capability is inhibited T T . .
D The SPD card has been reset in the last 10 major (10 sec) frames . . T T
The transaction errors are from multiple RTs T T T T
The current channel has been reset within the last major frame T F T F
The bus channel’s reset capability is inhibited . T . T

rewriting them all. Hence, the IV&V team generated their
own tabular versions, in order to facilitate the kinds of
analysis they wished to perform.

The study analyzed 15 pages of level 3 requirements,
and was conducted over a period of four months, by one
person working part time. The total effort was approxi-
mately 1.5-person months.

3.2.1 Approach
The four-step approach was used as follows:

1) Each individual requirement was restated as an
AND/OR table, to clarify the logic (see Table 1). The
generation of a tabular interpretation of each individ-
ual requirement proved to be hard, as there are a
number of ambiguities concerning the associativity of
‘and’ and ‘or’ in English, and the correct binding of
subclauses of long sentences. For example, in Fig. 3, it
is not clear what the phrase “in two consecutive proc-
essing frames” refers to. When the requirement
shown in Fig. 3 was given to four different people to
translate, we obtained four semantically different ta-
bles. By comparing these different interpretations, an
extensive list of ambiguities was compiled. The ambi-
guities were resolved through detailed reading of the
documentation, and questioning the original authors.
This process also revealed some inconsistencies in the
way in which terminology was used. The individual
tables were then combined into a single SCR state-
machine model (see Table 2).

2) The SCR model was type-checked using the SCR tool-
set.

3) Properties of the SCR model were tested in two ways.
Static properties of the state model, such as disjoint-
ness and coverage, were tested using the built-in
checker in the SCR tool. Example properties are “for
each combination of failure conditions, there is an
FDIR response specified” and “for each combination
of failure conditions there is at most one FDIR re-
sponse specified.” Dynamic properties of the model
were tested by translating the SCR state machine
model into PROMELA [23], and applying the SPIN
model checker to explore its behavior. For example,
some of the requirements express conditions to test
whether various recovery actions have already been
tried. These conditions were validated by exploring
the dynamic behavior of the model in the face of
multiple failures, and recurring failures. An example
property is “if an error persists after all recovery ac-
tions have been tried, the bus FDIR will eventually
report failure of itself to a higher level FDIR domain.”
The findings were discussed with the IV&V team, and
fed back to the development team through the normal
IV&YV reporting process.

4

~

3.2.2 Findings

In addition to a number of minor problems with inconsis-
tent use of terminology, the following major problems were
reported:

J:\PRODUCTION\TSE\2-INPROD\JANUARY\1059831105983_2.00C

| reguiarpaperg8.dot | SL 19,968 | 01/16/98 2:04 PM | 5/11

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 1, JANUARY 1998

TABLE 2
AN SCR MODE TRANSITION TABLE
Current Conditions Next
Mode errors bus bus bus backup BC card card errors | channel | channel | Mode
in two swch'd switch swch'd BC swch'd reset reset from reset reset
cons. last inhibit this avalil. in last inhibit last 10 mult. last inhibit
frames frame frame 20 sec frames RTs frame
Normal @T - - F - - - - - - - switch
buses
@T - T F - - - - - - F reset the
@T T - F - - - - - - F channel
@T - - - - - F F T T - reset the
@T - - - - - F F T F T card
@T T - - - - - - F T switch RT
@T F T - - - - F T - to backup
@T T - - - - - - F F T
@T F T - - - - - F F T
@T - - - T F T - T T - switch BC
@T - - - T F T - T F T to backup
@T - - - T F - T T T -
@T - - - T F - T T F T
@T - - - T T T - T T - switch
@T - - - T T T - T F T all RTs
@T - - - T T - T T T -
@T - - - T T - T T F T

Each of the central columns represents a condition, showing whether it should be true or false; ‘- means “don’t care;” ‘@T’ indicates a trigger condition
for the mode transition. The four columns of Table 1 correspond to the last four rows of this table. The semantics of SCR require this table to represent
a function, so that the disjunction of all the rows covers all possible conditions (coverage), and the conjunction of any two rows is false (disjointness).

There were significant ambiguities in the prose re-
quirements, as a result of the complex sentence
structure. Some of these ambiguities could be re-
solved by studying the higher level FDIR require-
ments, and the specifications for the bus architecture.
Some of the ambiguities that arose from the sentence
structure could not be resolved in this way, and could
lead to mistakes in the design. These ambiguities
were detected in the initial reformulation of the re-
quirements as AND/OR tables.

There was one missing requirement to test the value
of the Bus Switch Inhibit Flag before attempting to
switch to the backup bus. This was detected during
the test for disjointness in the SCR specification.

The requirements were missing a number of precon-
ditions that enforce the ordering of the inference
rules. The accompanying flowchart for these require-
ments implied a sequence for these rules. An attempt
had been made in the prose requirements to express
this sequence as a set of preconditions for each rule, to
ensure that all the earlier rules have been tested and
have failed. The preconditions did not completely
capture the precedences implied by flowchart. This
problem was found during the test for disjointness in
the SCR specification.

The timing constraints expressed in the requirements
were incorrect. Several of the failure isolation tests re-
ferred to testing whether certain FDIR actions had al-
ready been tried “in the previous processing frame.”
However, as each FDIR recovery action is followed by
a time-out while the action takes effect, and as further

FDIR intervention is only initiated on occurrence of
errors in two consecutive processing frames, these
conditions can never be true. This was discovered
during model checking of the PROMELA model.

3.3 Study 3. Fault Protection on Cassini

The third study concerns the system level fault protection
software for the Cassini deep space probe. System reliabil-
ity is a major concern for Cassini, due to the duration of its
mission to Saturn. Fault protection is a major factor in pro-
viding the required levels of reliability. The study examined
the requirements for the software executive that manages
fault protection and requirements for putting the spacecraft
into a safe state. The Cassini project was interested in the
potential of formal methods to provide an assurance that
the fault protection requirements were correct.

This study analyzed 85 pages of documented require-
ments. Fifteen pages of OMT diagrams [21] were produced,
followed by 25 pages of PVS specifications. Twenty-four
lemmas were proven. The study was conducted over the
period of a year by two people working part-time, with a
total effort of approximately 12-person-months.

3.3.1 Approach
The four-step model was applied as follows:

1) The first step was the production of OMT diagrams
representing the prose requirements (see Fig. 4). The
production of object diagrams, state diagrams and
dataflow diagrams, according to the OMT method,
helped to define the boundaries and interfaces of the
fault protection requirements, and helped to crystal-
ize some of the issues that arose in the initial close

J:\PRODUCTION\TSE\2-INPROD\JANUARY\1059831105983_2.D0C

| regulampaper98.dot | SL | 19,968 | 01/16/98 2:04 PM | 6/11

EASTERBROOK ET AL.: EXPERIENCES USING LIGHTWEIGHT FORMAL METHODS FOR REQUIREMENTS MODELING 7

Response disabled
enable disable disable
e “(// N
request
inactive »f
clear request
activate
done
enabled
_ vy

Fig. 4. An example OMT state diagram for fault protection.

Cassini Requirement: If Spacecraft Safing is requested via a CDS (Command and Data Subsystem) internal request while the
spacecraft is in a critical attitude, then no change is commanded to the AACS (Attitude and Articulation Control Subsystem) atti-
tude. Otherwise, the AACS is commanded to the homebase attitude.

saf: THEORY
% Example is excerpted from saf theory.

o°

% stopping delta-v’s and desat’s.

BEGIN

aacs _mode: TYPE = {homebase, detumble}
attitude: TYPE

cds_internal_request: VAR bool
critical_attitude: VAR bool

prev_aacs_mode: VAR aacs_mode

aacs_stop_fnc (critical_attitude,
aacs_mode =
IF critical_attitude
THEN IF cds_internal_request
THEN prev_aacs_mode
ELSE homebase
ENDIF
ELSE homebases
ENDIF

Spacecraft safing commands the AACS to homebase mode,

cds_internal_request,

thereby

prev_aacs_mode) :

aacs_safing_req met_1: LEMMA

OR (aacs_stop_ fnc

prev_aacs_mode) = homebase)

END saf

(critical_attitude AND cds_internal_request)
(critical_attitude,

cds_internal_request,

Fig. 5. An example Cassini fault protection requirement, a fragment of PVS representing this requirement, and an associated

‘requirements met’ lemma.

reading of the requirements. A PVS model was then
produced directly from the OMT models—the ele-
ments of the OMT model often mapped onto elements
of the formal model in a relatively straightforward
way. For example, object classes mapped onto type
definitions in PVS, while state transitions mapped
onto functions and axioms.

The PVS model was checked for internal consistency
and traceability to the original requirements. Lemmas
were defined to ensure that the model accurately
captured the documented requirements. Fig. 5 shows
an example. The function expressed in this require-
ment is represented as part of the PVS theory for saf-
ing procedures. The requirement is also defined de-
claratively as a lemma, as a consistency check. Seven
such lemmas were proved, and three disproved.

The PVS model was then checked for safety and live-
ness conditions. Safety lemmas represent conditions

2)

3)

that should not arise. For example, “A fault protection
response shall not change the instrument’s status
during a critical sequence of commands.” Seven such
lemmas were proved. Liveness lemmas ensure that
required functions will eventually be performed. An
example is “If a response has the highest priority
among the candidates and does not finish in the cur-
rent cycle, it will be active in the next cycle.” Seven
such lemmas were proved.

4) The results were discussed with Cassini project per-
sonnel. In some cases where requirements issues were
still being worked by the project, the formal methods
effort was able to assist by formalizing undocu-
mented concerns (e.g., whether starvation of tasks
would be possible) clearly and unambiguously. This
facilitated rapid response to proposed changes or al-
ternatives by the Cassini Project.

J:\PRODUCTION\TSE\2-INPROD\JANUARY\1059831105983_2.00C

| reguiarpaperg8.dot | SL 19,968 | 01/16/98 2:04 PM | 7/11

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 1, JANUARY 1998

3.3.2 Findings

A total of 37 issues were identified during the study. These
were classified as follows:

11 undocumented assumptions. None resulted in errors, but
some significant ones needed documentation, to pre-
vent future errors, especially at interfaces. These as-
sumptions were identified during the process of for-
malizing the requirements.

10 cases of inadequate requirements for off-nominal or boundary
cases. Such cases usually involved unlikely scenarios,
and the spacecraft engineers had to help decide which
were credible. An example case is when several
monitors with the same priority level detect faults in
the same cycle. Documentation of such cases is useful,
as it helps to verify the robustness of the system.

9 traceability/inconsistency problems. The study uncovered a
number of traceability problems between different
levels of requirements, and inconsistencies between
requirements and subsystem designs. Many of the
latter were significant, as the correct functioning of
the system depends on choosing the correct interpre-
tation. For example, in the high-level requirements,
the assumption is made that if multiple faults are de-
tected within the response time of the first fault, they
are all symptoms of the original fault. In the low-level
requirements, a fault response will be cancelled if a
fault of higher priority is detected, in order to handle
the higher-priority fault.

6 cases of imprecise terminology. These were largely docu-
mentation problems, including synonyms and related
terms. They were revealed during the process of de-
fining the PVS model.

1 logical error. This was a problem of starvation when a re-
quest for service is pre-empted by a higher priority
request. The issue was first spotted during initial
close reading, and confirmed by disproving a lemma.

4 DISCUSSION

The majority of published case studies of the use of formal
methods are post hoc applications to on-going or finished
projects. Such studies demonstrate what formal methods
can do, and help to refine the methods, but they do not help
to answer questions of how such methods can be integrated
with existing practices on large projects. A few notable ex-
ceptions have used formal methods ‘live’ during the devel-
opment of real systems [20], [24], [25], [26]. However, in all
these cases, the emphasis was on the adoption of formal
notations as baseline specifications, from which varying
degrees of formal verification of the resulting design and
implementation are possible.

In contrast, we applied formal methods only in the early
stages of requirements engineering, during which the re-
quirements were still volatile. Rather than treating formal
specification as an end product of the requirements phase,
we used it to answer questions and improve the quality of
the existing specifications.

Our approach does not fit with any of the three process
models suggested by Kemmerer [26] as ways of applying
formal methods. Kemmerer offers three alternatives: 1) af-

ter-the-fact, in which a formal specification is produced at
the end of the development process to assist with testing
and certification, 2) parallel, in which formal specifications
are developed alongside a conventional development proc-
ess, and used to perform verification of code, design and
requirements; and 3) integrated, in which formal specifica-
tion is used in place of conventional approaches. Our stud-
ies suggest a fourth model, in which formal modeling is used
to increase quality during the requirements and high level
design phases, without necessarily producing a baseline for-
mal specification, or verifying low level design and code.

Our studies also demonstrate that questions of tool sup-
port need not be a barrier to the adoption of formal methods.
We conducted sophisticated validation of our models, via
theorem proving and model checking, using tools that are
essentially still research prototypes. In the 12 case studies
surveyed by Gerhart et al. [25], tool support was generally
only used for syntax checking of specifications, and Gerhart
suggests tool impoverishment is a barrier to wider use of
formal methods. This may be true for the more complete
process models used in case studies of the kinds described by
Kemmerer [26], Hall [24], and Gerhart [25], but is not true of
the ‘lightweight’ application of the kind we adopted.

Although we have not attempted any detailed quantita-
tive analysis of the costs and benefits of the application of
formal methods in these studies, in each case the study
added value to the project by clarifying the requirements
and identifying important errors very early in the lifecycle.
The costs, in terms of time and effort, were consistent with
existing V&YV tasks on these projects. Formalization of the
requirements was the most time consuming part of the
process, and in each case it revealed a large number of mi-
nor problems. Formalization also helps to focus attention
on areas that are more susceptible to errors [27]. Consis-
tency checking of the models was inexpensive, as it is
largely done through automated typechecking. Formally
challenging the models required a great deal of expertise,
and it was often difficult to find suitable properties to test.
This step uncovered a smaller number of more subtle er-
rors, of the kind that are very hard to detect informally.

A number of observations arising from these studies are
worth further discussion.

4.1 Who Should Apply the Methods?

In each of the studies, the formal analysis was conducted by
experts in formal methods, who were external to the devel-
opment project. There was a simple reason for this: it is
easier to bring in a small team of formal methods experts
than it is to train members of the development team.

There are some interesting consequences of our use of
external experts. Developing formal models of informal
specifications involves a great deal of effort in understand-
ing the domain, and figuring out how to interpret the
documentation. As our external experts were unfamiliar
with the projects prior to the studies, they did not share the
assumptions that the requirements’ authors had made. Our
experts questioned everything, spurred on by the explicit-
ness needed to build the formal models. They also needed
to present parts of their models back to the developers, in
order to check the accuracy of their interpretations. The

J:\PRODUCTION\TSE\2-INPROD\JANUARY\1059831105983_2.D0C

| regulampaper98.dot | SL 19,968 | 01/16/98 2:04 PM | 8/11

EASTERBROOK ET AL.: EXPERIENCES USING LIGHTWEIGHT FORMAL METHODS FOR REQUIREMENTS MODELING 9

result was a healthy dialogue between the developers and
our formal methods experts. This dialogue exposed many
minor problems, especially unstated assumptions and in-
consistent use of terminology. This dialogue was clearly an
important benefit.

Another aspect of this dialogue was that some of the is-
sues that were raised were the result of misunderstandings
by our experts, rather than genuine errors. The require-
ments’ authors therefore had to filter the issues, to pick out
those for which the benefits of changing the requirements
out-weighed the cost. This was especially true when the
analysis revealed “interesting” off-nominal cases. A great
deal of domain knowledge was needed to judge whether
such cases were reasonable. The need for such filtering
would be greatly reduced if the analysis were conducted by
domain experts; however, the risk of analysis bias would
then increase.

4.2 Is Formal Modeling of Volatile Requirements
Worthwhile?

During early stages of the requirements process, there may
be a great deal of volatility. In each case study, some effort
was needed to keep the formal model up to date with evolv-
ing requirements. For example, in the second study new
drafts of the requirements document were being released
approximately every two months. In at least one case (study
2, finding 3), the error had already been fixed by the time we
discovered it. We mitigated the problem of fluctuating re-
quirements by only doing the minimum amount of modeling
necessary to test the properties that were of interest.

Our results indicate that there is no need to wait for the
requirements to stabilize before applying formal methods.
Early formalization allowed us to crystallize some of the
outstanding issues, and explore different options. Most im-
portantly, during this early phase the development team is
more receptive to the issues raised from the formal model-
ing. This again emphasizes the importance of lightweight
formal methods: the formal model itself can be discarded if
the requirements change significantly, while the experience
and lessons learned from it are retained.

4.3 Were Intermediate Representations Useful?

Like Hall [24], we found that the use of intermediate,
structured representations facilitated the process of for-
malizing the requirements. The type of intermediate repre-
sentation varied across the studies: the first study used an
annotated version of the original FCD flowchart, the second
study made use of AND/OR tables to clarify complex
predicates, while the final study made extensive use of
OMT diagrams. A large part of the effort in the formaliza-
tion process lies in understanding the existing require-
ments. These intermediate representations helped to refine
this understanding, and therefore reduced the effort needed
to generate and debug the formal models.

The intermediate representations also helped to create
some initial structure for the formal models. Since the ele-
ments of the intermediate representations often mapped di-
rectly onto elements of the formal specifications, the subse-
quent effort of formalization was reduced. This also facili-
tated traceability between the formal and informal specifica-

tions, making it simpler to keep the formal model current.
For example, in the third study, the OMT diagrams offered
multiple perspectives on the requirements, and were easy for
project personnel to review for accuracy. In effect the OMT
model provided a higher level structural view of the re-
quirements, while the PVS models filled in the processing
details, and allowed detailed behavioral analysis.

From our experience, it seems that this benefit more than
outweighs the extra cost of maintaining several representa-
tions, at least for high levels of abstraction, even when re-
quirements are still unstable.

5 CONCLUSIONS

The three studies described here were conducted as pilot
studies to demonstrate the utility of formal methods and to
help us understand how to promote their use across NASA.
An important characteristic of these studies is that in each
case the formal modeling was carried out by a small team
of experts who were not part of the development team. Re-
sults from the formal modeling were fed back into the re-
quirements analysis phase, but formal specification lan-
guages were not adopted for baseline specifications.

We have shown that lightweight formal methods com-
plemented existing development and assurance practices in
these projects. If formal methods is seen as an additional
tool in the V&V toolbox, then selected application to exist-
ing large projects becomes feasible.

As a follow-up to the studies described here, we have
begun to investigate the role of formal methods in the de-
velopment of new spacecraft technology. As part of
NASA’s New Millennium program, new architectures are
being developed using knowledge-based systems to reduce
the reliance of the spacecraft on ground support. Rather
than produce a detailed statement of requirements, the
project is using a rapid prototyping approach to explore the
capabilities of the technology. The prototypes are tested
against high level objectives, using a set of scenarios for
guidance. We are exploring how to use lightweight formal
analysis on rapidly changing information, in such a way as
to provide useful and timely feedback. In particular, we are
exploring the use of model checking to verify the fidelity
between a formal model and the prototype. The model
checker tests whether the formal model behaves in the
same way as the prototype for a given scenario, while the
formal model can be used to find interesting new scenarios
on which to exercise the prototype.

ACKNOWLEDGMENTS

The authors would like to thank Chris Jones, Sarah Gauvit,
Jan Berkeley, John Day, Jack Callahan, Chuck Neppach,
Dan McCaugherty, John Hinkle, Larry Roberts, Alice Lee,
Ernie Fridge, Kathryn Kemp, George Sabolish, Rick Butler,
and Alice Robinson for assistance in setting up these case
studies and for helpful discussions as the work proceeded.
We are also grateful to Ben Di Vito, Martin Feather, Frank
Schneider, Judith Crow, Laurie K. Dillon, and the anony-
mous reviewers for their comments on earlier drafts of this
paper. This research was partially a product of the National

J:\PRODUCTION\TSE\2-INPROD\JANUARY\1059831105983_2.00C

| reguiarpaperg8.dot | SL 19,968 | 01/16/98 2:04 PM | 9/11

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24, NO. 1, JANUARY 1998

Aeronautics and Space Administration’s Software Program,
an agency-wide program that promotes continual im-
provement in software engineering and assurance within
NASA. The funding for this program was provided by
NASA'’s Office of Safety and Mission Assurance.

The research described in this paper was carried out in
part by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the NASA, and, in part,
by West Virginia University under NASA cooperative
agreement No. NCC 2-979. Reference herein to any specific
commercial product, process, or service by trade, name,
trademark, manufacturer, or otherwise, does not constitute
or imply its endorsement by the United States Government,
the Jet Propulsion Laboratory, California Institute of Tech-
nology, or West Virginia University.

REFERENCES

[1] N.G. Leveson, Safeware: System Safety and Computers. Reading,
Mass: Addison-Wesley, 1995.

[2] B.W. Boehm, Software Eng. Economics. Englewood Cliffs, N.J.:
Prentice Hall, 1981.

[3] R.R. Lutz, “Analyzing Software Requirements Errors in Safety-
Critical, Embedded Systems,” Proc. IEEE Int’l Symp. Requirements
Eng., San Diego, Calif., Jan. 1993.

[4] J.C. Kelly, J.S. Sherif, and J. Hops, “An Analysis of Defect Densi-
ties Found During Software Inspections,” J. Systems and Software,
vol. 17, pp. 111-117, 1992.

[5] J. Crow, “Finite-State Analysis of Space Shuttle Contingency
Guidance Requirements,” Technical Report SRI-CSL-95-17, Com-
puter Science Laboratory, SRI International, Menlo Park, Calif.,
1995.

[6] J. Crow and B.L. Di Vito, “Formalizing Space Shuttle Software
Requirements,” Workshop Formal Methods in Software Practice
(FMSP *96), San Diego, Calif., Jan. 1996.

[7] B.L. Di Vito, “Formalizing New Navigation Requirements for
NASA'’s Space Shuttle,” Proc. Formal Methods Europe (FME ‘96),
Oxford, England, Mar. 1996.

[8] J.L.Lions, “ARIANE 5 Flight 501 Failure: Report by the Enquiry
Board,” European Space Agency, Paris 1996.

[9] J. Rushby, “Formal Methods and Their Role in the Certification of

Critical Systems,” Technical Report CSL-95-1, Computer Science

Laboratory, SRI International, Menlo Park, Calif., 1995.

A.C.W. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B.

Nuseibeh, “Inconsistency Handling in Multi-Perspective Specifi-

cations,” IEEE Trans Software Eng., vol. 20, pp. 569-578, 1994.

D. Hamilton, R. Covington, and J.C. Kelly, “Experiences in Ap-

plying Formal Methods to the Analysis of Software and System

Requirements,” Proc. IEEE Workshop Industrial-Strength Formal

Specification Techniques (WIFT ‘95), Boca Raton, Fla., Apr. 1995.

R.W. Butler, J.L. Caldwell, V.A. Carreno, C.M. Holloway, P.S.

Miner, and B.L. Di Vito, “NASA Langley’s Research and Technol-

ogy Transfer Program in Formal Methods,” Proc. 10th Ann. Conf.

Computer Assurance (COMPASS 95), Gaithersburg, Md., June 1995.

D. Hamilton, R. Covington, and A. Lee, “An Experience Report

on Requirements Reliability Engineering Using Formal Methods,”

IEEE Int’l Conf. Software Reliability Eng., France, Oct. 1995.

S. Easterbrook and J. Callahan, “Formal Methods for V&V of

Partial Specifications: An Experience Report,” Proc., Third IEEE

Symp. Requirements Eng. (RE’97), Annapolis, Md., Jan. 1997.

Y. Ampo and R.R. Lutz, “Evaluation of Software Safety Analysis

using Formal Methods,” Proc. Foundation of Software Eng. ‘95, Ha-

mana-ko, Japan, Dec. 1995.

NASA, “Formal Methods Specification and Verification Guide-

book for Software and Computer Systems. Vol. 1: Planning and

Technology Insertion,” Report NASA-GB-002-95, NASA Office of

Safety and Mission Assurance, Washington D.C., 1995.

NASA, “Formal Methods Specification and Analysis Guidebook

for the Verification of Software and Computer Systems. Vol. 2: A

Practitioner’s Companion,” Report NASA-GB-001-97, NASA Of-

fice of Safety and Mission Assurance, Washington D.C., 1997.

(10]

[11]

[12]

(13]

[14]

[15]

[16]

[17]

[18] S. Owre, J. Rushby, N. Shankar, and F. von Henke, “Formal Veri-
fication for Fault Tolerant Architectures: Prolegomena to the De-
sign of PVS,” IEEE Trans. Software Eng., vol. 21, pp. 107-125, 1995.
C.L. Heitmeyer, B. Labaw, and D. Kiskis, “Consistency Checking
of SCR-Style Requirements Specifications,” Proc. Second IEEE
Symp. Requirements Eng., York, U.K., Mar. 1995.

M. Heimdahl and N. Leveson, “Completeness and Consistency
Analysis of State-Based Requirements,” IEEE Trans. Software Eng.,
vol. 22, pp. 363-377, 1996.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lo-
rensen, Object-Oriented Modeling and Design. Prentice Hall, 1991.

S. Easterbrook and J. Callahan, “Independent Validation of Speci-
fications: A Coordination Headache,” Proc., IEEE Fifth Workshops
on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE’96), Stanford, Calif., June 1996.

G.J. Holtzmann, Design and Validation of Computer Protocols. Pren-
tice Hall, 1991.

A. Hall, “Using Formal Methods to Develop an ATC Information
System,” IEEE Software, vol. 13, pp. 66-76, 1996.

D. Craigen, S.L. Gerhart, and T. Ralston, “Formal Methods Reality
Check: Industrial Usage,” IEEE Trans. Software Eng., vol. 21, pp.
90-98, 1995.

R.A. Kemmerer, “Integrating Formal Methods into the Develop-
ment Process,” IEEE Software, vol. 7, pp. 37-50, 1990.

P.G. Larsen, J. Fitzgerald, and T. Brookes, “Applying Formal
Specification in Industry,” IEEE Software, vol. 13, pp. 48-56, 1996.

[29]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

Steve Easterbrook received the PhD degree in
software engineering in 1991 from Imperial Col-
lege, London. He is a senior research associate
at the NASA Independent Verification and Vali-
dation (IV&V) facility in Fairmont, West Virginia.
Dr. Easterbrook was previously a lecturer in
computer science and artificial intelligence in the
School of Cognitive and Computing Sciences at
the University of Sussex. His research interests
include the management of inconsistency in
requirements specifications, and the use of for-
mal methods for requirements modeling and validation. He is a mem-
ber of the ACM and the IEEE Computer Society.

Robyn Lutz received her PhD degree in spanish
literature from the University of Kansas, and the
MS degree in computer science from lowa State
University, Ames. She is a member of the tech-
nical staff at the Jet Propulsion Laboratory,
California Institute of Technology, Pasadena.
Since 1983, she has worked on several space-
craft projects. She is also an affiliate assistant
professor in the Department of Computer Sci-
ence at lowa State University, Ames. Her re-
search interests include requirements and de-
sign analysis of critical systems, software safety, and fault recovery
strategies for spacecraft. She is a member of ACM and the IEEE Com-
puter Society.

Richard Covington received the BA degree in
physics in 1980 from Harvard University, and a
PhD degree in electrical and computer engi-

- o neering in 1989 from Rice University. Dr. Cov-
ington is a member of technical staff in the Mis-
e sion and Systems Architecture Section at the Jet

Propulsion Laboratory, California Institute of
Technology, Pasadena. His current interests
include the simulation and performance evalua-
tion of computer systems, formal methods, proc-
ess engineering and workflow, and spacecraft
telemetry systems architecture.

J:\PRODUCTION\TSE\2-INPROD\JANUARY\1059831105983_2.D0C

| regulampaper98.dot | SL 19,968 | 01/16/98 2:04 PM | 10/11

EASTERBROOK ET AL.. EXPERIENCES USING LIGHTWEIGHT FORMAL METHODS FOR REQUIREMENTS MODELING

John Kelly received his MS and PhD degrees in
mathematics education from Florida State Uni-
versity, Tallahessee. He is a principal engineer
at the Jet Propulsion Laboratory (JPL) in Pasa-
dena, California. His roles within the Quality
Assurance and Assurance Technology Program
Offices at JPL include: manager of the Software
Applications Program, task lead for the Formal
Methods/Analytical Verification project, manager
of the Software Product Assurance Resource
Center, and representative to NASA's Software
Working Group. Prior to joining JPL 10 years ago, Dr. Kelly was a pro-
fessor of computer science at Furman University in Greenville, South
Carolina, and a mathematics professor at Darton College in Albany,
Georgia. In 1990 he also became a Certified Quality Analyst (CQA).
His areas of interest include formal methods/analytical verification,
Fagan inspections, and object-oriented software development.

Yoko Ampo received her BS degree in pharma-
cology from Tohoku University, Japan. She is
working for the NEC Corporation, Japan. She
has been engaged in software product assur-
ance for the Japanese Experiment Module of the
Space Station project since 1990. She partici-
pated in the Formal Method research project
while at the Jet Propulsion Laboratory, California
Institute of Technology, as a visiting researcher
from 1993-1994.

David Hamilton received a BS degree from
Southern Methodist University in 1982, and an
MS degree from the University of Houston, Clear
Lake, Texas, in 1985. His interest is in the tech-
nology transfer of software engineering methods,
especially formal methods into practical industrial
use. He is currently a software quality engineer
at Hewlett Packard, where he is working on the
application of formal methods concepts in the
.' form of model-based testing to the analysis and
testing of complex, multifunction PC peripherals.

11

J:\PRODUCTION\TSE\2-INPROD\JANUARY\1059831105983_2.00C

| regularpaper88.dot |

SL

19,968

01/16/98 2:04 PM

/1

