Validating Requirementsfor Fault Tolerant Systems using Model Checkingt

Francis Schneider?, Steve M. Easterbrook, John R. Callahan and Gerard J. Holzmann3
NASA/WVU Software Research Lab
100 University Drive, Fairmont, West Virginia 26505
Contact: steve@research.ivv.nasa.gov

Abstract

Model checking is shown to be an effective tool in
validating the behavior of a fault tolerant embedded
spacecraft controller. The case study presented here
shows that by judiciously abstracting away extraneous
complexity, the state space of the model could be exhaus-
tively searched allowing critical functional requirements
to be validated down to the design level. Abstracting
away detail not germane to the problem of interest leaves
by definition a partial specification behind. The success
of this procedure shows that it is feasible to effectively
validate a partial specification with this technique. Three
anomalies were found in the system. One was an error in
the detailed requirements, and the other two were miss-
ing/ambiguous requirements. Because the method allows
validation of partial specifications, it is also an effective
approach for maintaining fidelity between a co-evolving
specification and an implementation.

1 Introduction

This paper describes a practical application of model
checking for validating the requirements for a complex
embedded system. The case study described here is of a
dualy redundant spacecraft controller, in which a check-
point and rollback scheme is used to provide fault toler-
ance during the execution of critical control seguences.

1 The research described in this paper was carried out in part by the
Jet Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration, and
in part by West Virginia University under NASA cooperative agree-
ment #NCC 2-979. Reference herein to any specific commercial prod-
uct, process, or service by trade, name, trademark, manufacturer, or
otherwise, does not constitute or imply its endorsement by the United
Sates Government, the Jet Propulsion Laboratory, California Institute
of Technology or West Virginia University

2 Jet Propulsion Laboratory / California Institute of Technology,
MS 125-233 Pasadena, CA 91109.

3 Computing Sciences Research, Bell Laboratories, Lucent Technolo-
gies, Murray Hill, NJ 07974

The software requirements specification for the spacecraft
specifies the required behavior for the checkpoint and
rollback scheme. However, the validity of these require-
ments could not be determined through inspection. In
other words, it was not possible to determine whether the
behavior described in these requirements would provide
the desired level of fault tolerance. More importantly,
testing of the eventual implementation would not neces-
sarily provide this validation either, due to the difficulty
of ensuring test case coverage for al possible fault occur-
rence scenarios.

The approach described here uses a formal automata-
based model derived from the specification. We used
various high-level safety properties to validate the gener-
alized system model. Key system functional requirements
were then validated by defining corresponding liveness
propertiesin linear temporal logic, which were required to
be satisfied when the system responds to errors. We used
the model checker Spin [1] to identify traces in the model
for which these properties were viol ated.

The work described in this paper forms part of an on-
going investigation into lightweight formal methods for
V&V of requirements specifications. We use the term
‘lightweight’ to indicate that the methods can be used to
perform partial analysis on partial specifications, without
a commitment to developing and baselining complete,
consistent formal specifications. The formal methods are
used to model critical chunks of an informal specification,
to check that key properties hold. The aim is to find er-
rors, rather than to prove correctness. Application of the
methods is driven by the needs of the project, and is used
as a modeling tool to answer questions that arise during
verification and validation.

The paper is organized as follows. Section 2 provides
a motivation for the case study by briefly surveying ex-
isting approaches to requirements validation and demon-
strating why these approaches do not provide the desired
level of assurance. We introduce the distinction between
verifying requirements through completeness and consis-
tency checking, and validating requirements against real

world properties (‘claims’) that should follow if the sition schemes are relational not functional. Systems with
statement of the requirements is correct. inherent non-determinism are not easily amenable to ana-

Section 3 introduces the dually redundant system, andlytic static evaluation methods. Systems that can be parti-
shows how it was expressed as a FSM. We show how thdioned into a deterministic and a non-deterministic part
system behaves as a communications system, making itan apply tools such as RSML or SCR to validate deter-
particularly amenable to analysis using the model checkerministic components. For example, Easterbrook [5] has
Spin. reported using the SCR tool in this way to validate the

Section 4 describes the steps that were taken to opti-Fault Detection, Isolation and Recovery (FDIR) require-
mize the model, in order to reduce the size of the statements for a spacecraft bus controller. The deterministic
space. We show how the model was partitioned into five part was modeled in SCR, and then extended to include
separate fault scenarios, and explain in detail how one ofnon-deterministic elements (i.e. fault occurrences) using
these scenarios was checked. We discuss the process dfie Spin model checker [1]. Such a procedure would be
checking the model against claims expressed as linearsuggested for example when an otherwise deterministic
temporal logic formulae. Section 5 presents the results ofsystem had to be shown to be resilient under (non-
the analysis. deterministic) fault injection.

Section 6 provides a discussion of the results, in- An analysis based methodology such as RSML or
cluding a reflection on the benefits seen in the case studySCR requires determinism in the underlying model to
The importance of partitioning the model in order to make prove requirements completeness and consistency. In
the analysis feasible is discussed, along with some reflec-contrast, state space exploration methods (‘model check-
tion on the resulting limitation of the analysis (‘partial ing’) are operational in nature rather than analytic. They
analysis of partial specifications’). allow functional requirements to be validated over non-

Section 7 presents conclusions and describes our fu-deterministic finite state machines using optimized reach-
ture work. A short overview of the theoretical basis for the ability schemes. By incorporating functional requirements
use of the LTL and Blchi automata is provided in appen- in a non-deterministic model, requirements properties can

dix A. be validated. Manna and Pneuli [6] have shown that virtu-
ally any expressible requirements property can be repre-
2 Background sented as a safety, precedence, or liveness property using

the Linear Temporal Logic (see appendix A).

Requirements validation is the process of determining ~ Three such model checkers have been widely used
that the specified requirements Capture the real world for verification of low-level designs of both hardware and
needs of the stakeholders. For real-time control systemssoftware, and communication protocols. The Murphi
this involves checking that the specified behavior will in model checker has a rich support for temporal logic and
fact provide safe and effective control, without introduc- allows invariants to be expressed in the model to be
ing any undesirable effects. For reasonab|y Comp|ex Sys-CheCked as the state space exploration evolves. It supports
tems, validity of the requirements is hard to establish. & single site model only, which is a disadvantage in the
Informal methods 0n|y provide a very basic level of as- validation of concurrent systems. The Symbollc Model
surance, by imposing a structure on the specification thatVerifier (SMV) has been applied successfully to commu-
facilitates inspection by domain experts. Formal methods hication protocols [7]. SMV can validate synchronous and
have the potential to provide a much greater level of as-asynchronous systems against a system specification
surance, through the construction of a precise model ofspecified in the temporal logic CTL [8]. It allows for non-
the requirements, which can be tested against domai

properties. Tool De_ter_mi- Counter Reqt_s Developed
A number of formal modeling tools are available that nistic? imp:e @(;Srll_ole for V&V of:

are applicable to software systems. Heitmeyer and Man- tion? Formulae?

drioli [2] provide an excellent overview of the current [RovL v N N TCAS W

state of the art. Here we concentrate on state machinescr Y Y N A7e Aircraft

models, which can be used to test safety and liveness SW

properties. Murphi N Y Y Single Proc-
RSML [3] and SCR [4] have both been very success ess S\W

ful at providing static analysis techniques for checking| SMV N Y Y ﬁ;’wms

completeness and consistency of specifications expressed—

as dpeterministic state machin):es. HF())WGVGI’, fault tgleran Spin N Y Y Comms SW

systems are inherently non-deterministic, that is, the tran-Table 1: System Validation Tools

determinism in the specifications and for concurrency in
the model within procedures. It supports rich temporal
logic specifications but does not support complex data
structures, making it difficult to build a complete low
level model. Both SMV and Murphi were designed for
validating hardware systems. The Spin model checker was
designed for verification of communication protocols, and
provides support for a basic set of software data struc-
tures.

Each of the three model checkers permits arich set of
temporal logic formulae to be incorporated into the mod-
eling system. We chose to use the Spin model checking
system for this study because it (a) was designed to vali-
date software communications protocols (@) is algorithmic
in nature (c) supports data structures allowing detail
where appropriate (d) incorporates linear temporal logic
primitives alowing functional requirements to be vali-
dated over the model (e) and, significantly, because the
modeling system can be used to validate functional re-
quirements over traces from the implementation.

3 DRSHigh Level Model Description

The case study described here is a Dually Redundant
System (DRS) for a spacecraft controller, consisting of
two hardware platforms running identical software to
maximize system reliability and availability. The systems
exchange information to synchronize software operation.
One of the systems has control of the system bus and is
called the prime string. The other, known as the online
string, provides a backup, executing in synchronization or
at most within one second of the prime string. Information
is exchanged between the two systems by the synchronous
(rendezvous) communication of a 32-word table, the State
Table Broadcast (STB), broadcast by the prime string
once per second. The online string uses this to keep itself
in synchronization with the prime string.

The system executes high priority programs called
critical sequences that must be tolerant of arbitrary faults.
To this end, the strings use a variant of the checkpoint and
rollback process found to work well in industrial applica-
tions [9]. Checkpoints correspond to completed transac-
tionsin the executable code. Such a completionis referred
to as a commit operation, meaning that if a system crash
occurs, system operations could be rolled back to the
point where the commit occurred and proceed from here.
The spacecraft controller works analogously except that
the checkpoints are referred to as markpoints, and are
hard coded into the executing program.

For example, consider the retrieval and return of a
soil sample by a remote robot. Successful retrieval of the
sample is an operation that need not be repeated. The
code ending in the completion of this process would be

delineated with a markpoint. The next group of instruc-
tions might be the storage of the sample that was just re-
trieved, at the end of which would be another markpoint.
If any operation were interrupted by the occurrence of a
fault, the system would repair the fault; roll back control
to the beginning of the last markpoint; and continue exe-
cution from there. It would not be necessary to waste bat-
tery power or time to retrieve another sample if that was
already achieved. This paper focuses on the validation of
the fault tolerance provided by this mark and rollback
process.

The fault containment requirements specify that fault
protection shall operate only in the prime string. While
the prime string is repairing a fault, the online string must
stop executing its copy of the critical sequence and wait
for the STB to tell it that the fault has been repaired,
thereby signaling it to proceed with the critical sequence.

The rollback requirements specify that three full sec-
onds of execution time shall be allowed to pass after a
new markpoint is encountered by the software before the
new markpoint is recognized as a legitimate rollback
point. This is because the system controls external ele-
ments that are mostly mechanical in nature. Accordingly,
the software is, in general, always ahead of the hardware.
The three-second delay gives any mechanica tasks a
chance to be completed, and for any faults that occurred
to be properly logged, before the previous section of the
critical sequence can be considered successfully complete.
To implement this requirement, each new markpoint is
aged each second by one second by moving it one level
deeper in a three-level buffer. Only markpoints that have
reached the bottom will be eligible for use in the rollback
process. Figure 1 shows a high level snapshot of normal
critical sequence operation in both strings.

4 Validation Procedure

41 Modding

The first step was to produce a state model of the
DRS system. To model the specified behavior, we treated
the mark and rollback process as a communications sys-
tem. Holzmann [10] has defined a communications proto-
col as a five component specification for how
communication is to be carried out in an error free way
among two or more separate elements. For the mark and
rollback process, these properties are:

1. The service provided by the protocol is to keep the
prime and the online systems in synchronization. This
is done so that the online string can take over quickly
should the prime system become inoperable.

Flag Value M eaning
SFP 1 fault
0 cleared
CS 1 CS executing
0 CS not executing
CM 1 CS active or suspended
0 CSinactive and not suspended

Table 2: Communication Flags

2. The environmental assumptions are that the prime
string interacts with an entity that provides informa-
tion about faults.

3. The major vocabulary consists of the variables SFP,
CS, and CM. SFP is the Spacecraft Fault Protection
flag. When thisflag is set, the system has experienced
afault that has not yet been repaired. The CS flag is
set in the prime string and in the backup string when
the critical sequence is activei.e. running in each re-
spective string. The CM flag is set to indicate that the
critical sequence is active or in standby pending the
repair of afault and accordingly to remind the strings
that when an interfering fault is fixed, the suspended
critical sequence needs to be restarted at the last valid
aged markpoint.

4. The three protocol flags each use single bit encoding,
asshown in Table 2.

5. The procedure rules are most complex to deal with,
the hardest to specify, the most difficult to validate.
Most of the validation work occurs here. Examples
from the mark and rollback support application are
that the protocol variables SFP, CM, and CS are to be
broadcast once each second to the online string and

actualy also back to the prime string by the prime

string to allow the prime string to check its own syn-

chronization.

The initiadl model was represented using statecharts
[11]. Figures 1 and 2 show portions of the statecharts for
the prime and online strings respectively.

In the case study presented here, certain types of
faults are of such a nature that they can be repaired by the
prime string. When a fault occurs, the three protocol flags
(CS, CM, SFP) change state from (1, 1, 0) to (O, 1, 1).
Thisinformation is broadcast to the online string once per
second. When the online string sees the SFP flag is set, it
suspends operation of the executing critical sequence and
waits for the prime string to repair the fault. Once the fault
is repaired, the prime string can roll back to the last valid
markpoint and resume processing. The online string will
see the new SFP flag isreset in the STB message, rollback
to the aged broadcast markpoint and restart its copy of the
critical sequence.

This example shows a small subset of the actual ele-
ments and their procedure rules that belong in each cate-
gory. The complete protocol specification is in excess of
80 pages.

4.2 Estimation of State Space Size
Once an initiadl model is obtained, the state space size

must be estimated, in order to assess the potential for
automated validation. This was done by estimating the

/

PRIME

Primeinit

.

A 4
QUENCE IDLE

Pov:/er-up Fault
Idle Idle

Resume
(Critical
Done Activate

(Critical [Sequence
ISequence

rom aged
Imarkpoint

A 4 A 4
‘ SEQUENCE CRITICAL

>
Figure 1: A partial statechart for the DRS prime
string

/ ONLINE\
Onlineinit

RAM

INIT a4 PRIME NOMINAL N
v
SEQUENCE IDLE

‘ Power-up 4 Fault

Idle P Idle
Resume SFP
} Critical Active
Done éc_ttl_\(/:glte ISequence in
i from aged Prime
Sequence markpoint String
v \ 4

LSEQUENCE CRITICAL

\\

Figure 2: A partial statechart for the DRS online
string

-,

number of substates needed in the Spin model to imple-
ment each state shown on the statecharts. For example, the
full statechart for the prime string has 16 states and each
could be implemented with, say, 4 substates giving a state
spaceof 4 x4 x ... x4=232

The full statechart for the online string has 14 states.
Assuming 4 substates for each gives 4 x 4 x ... x 4 = 228
states. The rendezvous communication contains 32 data
elements, 5 of which are unused leaving a total of 27 ele-
ments. Each of these remaining 27 is at least a binary flag.
Thisgives2 x 2 x 2 ... x 2 = 227 states as a minimum.
This contributes to the state space of the online string,
giving 228 x 227 = 255 gates total.

Both strings operating as one system will have a state
space of:

(232 states prime string) x (25° states online string) =

287 gates.

With a CPU that executes 1 state per microsecond,
the system will traverse its reachability graph in about
1012 years.

The problem of interest here is to discover the failure
modes of this system. To be able to do this we must re-
duce the state space down to an manageable size by ab-
stracting away states that are not germane to the operation
we are interested in, namely (@) the repair of faults (b) the
rollback process and (c) the synchronization between the
prime and the online (backup) systems. The result is a
partial specification, but which has enough detail left to
partially validate the properties of interest.

4.3 Reducingthe state space

There are a number of ways in which the state space
can be reduced to a size amenable to model checking.
Firstly, the functional requirements of the system may be
partitioned into equivalence classes, by exploiting natural
symmetries or subclasses that may be present in the do-
main. Secondly, the validation task can be partitioned by
separately validating requirements that are known to be
independent from one another. Validation of each re-
quirement in isolation should traverse less of the overal
state space than al of the requirements taken together. In
either case, detail that is not germane to each validation
task can be temporarily removed from the model. We will
illustrate each of these approaches bel ow.

For the DRS system, we partitioned the functional
behavior by separating out the classes of fault that can
occur. The requirements include a simplifying assumption
that facilitated this partitioning:

Fault protection shall be designed assuming only

one fault occurs at a time, and that a subsequent

fault will occur no earlier than the response

completion time for the first fault, and that mul-

tiple detections occurring within the response

time are symptoms of the original fault.

The requirements identify 5 classes of faults that can
occur on the spacecraft. Accordingly, the Mark and Roll-
back process can be partitioned into five equivalence
classes. Each can be treated independently of the others,
significantly reducing the size of the overall state space to
be checked by the validation process. We also exploited
the symmetry between the redundant processors running
the online and the prime strings, by recognizing that either
string could run on either processor.

The five fault classes are as follows:

SFP Execution Non-UV Trip

Online Fault

Peripheral Interfering Fault

Prime Fault

SFP Under-Voltage Trip

In the first three cases, the Prime String will handle
the fault, while both strings suspend execution of the criti-
cal sequence. In case 4, the fault isin the prime string, and
the online string will take over. The online string then
becomes prime. In the final case, the fault could be any-
where, so either processor may end up as prime. In all
cases, once the fault protection response is complete, the
critical sequence should be resumed from the last aged
markpoint, by whichever processor is now prime.

Equivalence class 1 contains the fundamental mark
and rollback scenario common to the other classes during
normal operation and it has less structure, in that it exe-
cutes the smallest subset of states in the 5 partitions con-
sidered above. We therefore used this as the first
validation exercise. We will concentrate only on this class
for the remainder of the paper. It will be seen that valida-
tion of this class has implications for the other require-
ments classes as well. We proceed first by removing al
states in the statecharts that do not contribute to the mark
and rollback process. The resulting states are, in fact,
those shown in figures 1 and 2.

The prime string now contains 7 states and the online
string 5 states. If we assume once again that as a minimum
again each state can be implemented with 4 substates,
then these two elements contribute

47 x 45 = 16,777,216 states.

The overall state space can be further reduced by ig-
noring the CM and CS flags. By abstracting these two
flags away we will be checking only the fundamental
mark and rollback process that depends upon the SFP flag
and the relative position of the markpoint with respect to
critical sequence execution time. If we want to learn about
any possible effects of the CS and the CM flags they will
have to be inserted back into the model at some point. If
the state space becomes too large, a non-exhaustive search
option would then have to be used.

agkrwhpE

A further strategy for reducing the state space is to
reduce the complexity of the input data. The model can be
validated on the simplest possible test runs, and then if no
errors are uncovered, the size of the dataset can be in-
creased gradualy. In this case, the length of the critical
sequence can be considered input data. A minimal critical
sequence would contain the smallest number of mark-
points possible. A critical sequence containing 3 mark-
points was chosen for the initial exercise, as it contained
sufficient complexity to determine all possible combina-
tions of fault occurrence and rollback.

Finaly, by removing the states that are not executed
in fault class 1, the state space was reduced to an esti-
mated:

(4 prime)4 x (3 x 2 rendezvous packet) x (4 online)3
= 98,304 states

Now adding an extra flag for the presence of a fault
doubles this to 196,608 states. This is still a manageable
state space for the Spin tool.

4.4 Validation of Case 1

A SFP Execution Non-UV Trip is a spacecraft fault
that is outside of the DRS system per se. These corre-
spond to the type covered by partition 1 in this case study.
In this case the prime string is given the task of repairing
the fault. The prime string would set the SFP flag to 1 to
indicate a fault operation is in progress, stop the running
critical sequence; and enter the SFP Active state to repair
the fault (see Figure 1). The STB would still be transmit-
ted to the online string once per second. That is, since the
fault is outside of the prime string, its ability to function
has not been impaired. Having received the STB, the on-
line string will cease running its copy of the critical se-
guence and transition to the Fault Idle state, waiting there
until it receives an STB message indicating that the fault
has been cleared. Once the prime string has repaired the
fault it sets its SFP flag to zero and enters the Fault Idle
state in preparation for resuming the critical sequence. At
this point it rolls back to the last valid (aged) markpoint;
and resumes executing its copy of the critical sequence at
this location. When the online string sees an STB message
indicating that the SFP flag is O, it enters the SEQUENCE
CRITICAL state resuming execution of its copy of the
critical sequence at the aged broadcast markpoint.

The first step in the validation is to develop Linear
Temporal Formulae representing the requirements to be
validated. Each LTL formulais then incorporated into the
resulting Spin model as a "never" clause. Details of the
validation method are described in Appendix A.

To check that the desired fault tolerance is achieved,
three separate functional requirements need to be vali-
dated in each string:

R1. If afault occurs when the last markpoint was at the
start of the program, the prime string shall roll back
to the start regardless of how much time has expired
since the program started running.

R2. If a fault occurs when the time t following the last
markpoint was less than 3 seconds and the last mark-
point was not at the start of the program, the prime
string shall roll back to the next previous markpoint.

That is, do not use the markpoint that has not yet

been properly aged, even though it has been encoun-

tered in the execution of the current critical sequence.

R3. If a fault occurs when the time t following the last
markpoint was greater than or equal to 3 seconds the
prime string shall roll back to the last valid aged
markpoint.

Requirements R4, R5, and R6 express the same three
requirements for the online string. These can all be ex-
pressed as liveness conditions; they specify an action that
must take place now or in the future. Symbolically, the
LTL formulae representing these conditions have the
form:

OpOT(p - 0q)

Where p is the occurrence of afault, and q is the cor-
rect response. ¢ and 7 are the temporal logic operators
‘eventually’ and ‘always’0x means at some future state x
will be true.[1x means the X is true in the current state and
in all future states. The formula expresses the condition
that eventually a fault (p) does occur, and that it is always
true that when it occurs, at some point in the future the
correct rollback operation (q) will occur.

Note that strictly speaking, our validation of the re-
quirements only involves the latter part of this formula,
i.e.[(p - ¢ Qq), as we are checking that the correct roll-
back eventually occurs in response to a fault. However,
this is trivially true if no faults ever occur (i.e. if p is never
true). Hence we add the conditiép to check that our
fault injection model does indeed inject this type of fault.
This removes the possibility of false positives during the
validation exercise.

The LTL equivalent of requirement R1 is as follows:

OpOti(p - 00) (R1)
where p = (SFP = I(markpoint = start)
and g = (pc = markpoinb(SFP = 0)

Where markpoint is the default markpoint address of
the beginning of the sequence; pc is the critical sequence
machine program counter; and start is the address of the
beginning of the critical sequence program. Note that re-
quirement R1 said nothing abchdw quickly the rollback
should occur, and neither does our formalization, as we
have not said anything about the intervening states be-
tween the fault, p, and the rollback, q. We could define
further temporal formulae to investigate such concerns at
a later stage in the analysis.

Requirement R2 becomes:

Or00(r - 09 (R2)
wherer = (t < 3)(SFP = 1)(mp_current # start)
and s = (pc = mp_next_previous)J(SFP = 0)
and R3 becomes:
oul C(u - 0v) (R3)

where u= (t=3)J(SFP=1) ((mp_current=mp_ge three_sec)
and v = (pc = mp_current) [(SFP = 0)

Wheret is time in seconds since the last encountered
markpoint; here mp_current represents the current mark-
point and mp_previous represents the markpoint preced-
ing mp_current; each of these represents the case where
less than three seconds have expired. mp_ge three sec
represents the markpoint for the case where three or more
seconds have expired since the last encounter of a mark-
point in the sequence.

Three analogous requirements are needed for the on-
line string, using its copies of SFP and Mark:

OhO(h - 0i) (R4)
0j00([- 0K) (R5)
olgod » om) (R6)

Each additional LTL formula that is added to the
model adds more complexity, making runtimes and mem-
ory consumption very large. The best way to circumvent
this problem is to validate each functional requirement
separately. For example, we can check that requirement
R1 is satisfied without looking at R2 and R3 because they
are independent requirements. However, requirement R1

the prime string never disagree with the aged broadcast
markpoint y in the online string. The corresponding safety
condition would be
x=y) (R8)
Additionally, assertions were used throughout the
model to confirm that the model had the desired behavior.

5 Realts

Five different fault categories were identified to test
the model. The results reported here cover the first of
these categories only (partition 1), but we do discuss im-
plications for the other five fault categories. Fault cate-
gory 1 refers to the behavior of the DRS prime string in
the face of a SFP Execution Non-UV Trip.

Six separate requirements on the rollback scheme
were validated, as described in section 4.4. Each of the six
requirements involved exhaustive examination of ap-
proximately 100,000 states in the model, and took about
30 seconds each. The response and recovery in each case
was to the injection of a non-UV trip fault in all possible
ways, based on the model. Three of the 6 runs for the 6
requirements failed in the verification.

Three anomalies were identified and are described
below. The first two are errors in the requirements that
might not occur in the DRS implementation. The third is a
discrepancy in the detailed requirements that could allow
for erroneous behavior of the implemented system.

is not independent of R4. This non-orthogonality requires

that both be validated in the same run. Semantically, this
means that when rollback takes place in the prime string
under the condition that we are at the start of the program,

then the same rollback must be aso shown to take place

in the online string. The derivation in Appendix A shows

that a jointly operational Blichi Automaton can be pro-
duced from separate LTL formula by writing down the
logical conjunction of the formulae and then converting
the result to an equivalent automaton. The conversion
itself is done with the Spin option -f and is automatic,
although the user may want to apply a certain amount of
optimization on the result to make the resulting automaton
more efficient. To keep the resulting system at a mini-
mum, the automaton for rollback to the beginning of the

program is derived from R1 and R4: 2.

OpOl(p - 0q)00hO(h - ¢)
where p, g, h and i are as defined above.
Analogous minimal LTL formulae were derived for

(R7)

1.

the other 3 cases and they were implemented in the model.

Additional validation can be performed by defining
further properties that should hold in the model. For ex-
ample, we could check that aged markpoints are always in
agreement with each other. This condition can be stated
by using the safety condition that the aged markpoint x in

Depending on how error detection and repair is han-
dled, it may be possible for the prime system to de-
tect and to repair an intermittent error within one
second, so that the fault occurrence is never broadcast
to the online system. If the online system does not re-
ceive notice of the fault, it would continue executing
its copy of the critical sequence. Repeated occurrence
of this scenario would cause the online string to get
way ahead of the prime string, possibly to the point
where the online string would complete execution of
its copy of the sequence. If the prime string subse-
guently fails, the online string may not have a mark-
point to roll back to. This anomaly is due entirely to
the ordering of processing described in the require-
ments specification.

This anomaly depends upon how faults are handled at
the end of a critical sequence. If a fault occurs in the
prime string within two secondsfter the end of the
critical sequence is reached, it is not clear how the
rollback, if any, would be handled. The requirements
specification did not designate the critical sequence
end instruction as a markpoint. Our validation run
failed because our model assumed that once the criti-
cal sequence completed, the online system returned to
the Power Up Idle state; accordingly there would be

no suspended critical sequence to return to once the
fault was corrected. If the fault were to bring the
prime system down, the online system may need to
roll back to the last aged markpoint. This anomaly is
due to a missing requirement.

3. This anomaly concerns the occurrence of a fault 2
seconds after a markpoint is encountered in the prime
string. The prime system freezes the aging function at
n+2 seconds. Since faults that occurred in the previ-
ous second are not broadcast to the online system un-
til the current second, the online system will continue
to execute, aging its markpoint by one further second.
At this point the online system receives the SFP = 1
value and now both agers are frozen. Once the fault is
repaired, the both strings will roll back, but the online
system will roll back to the newer markpoint. This
would not cause a problem if the prime system then
completes the critical sequence. However, if the on-
line system should subsequently have to take over
due to a prime failure - possibly associated with the
(symptomatic) fault that was just processed, it could
roll to an inappropriate block of code. This problem
would not go away if the aging buffers were made
deeper or shallower. It would just occur at a different
place since it is a consequence of the relative time
difference between the two aging schemes.

6 Discussion

The analysis technique used in this study is relatively
new, and was not sufficiently mature just a few years ago
to enable its use. The DRS operates as a communication
system that must be robust under the incidence of arbi-
trary faults. The validation of requirements for such fault
tolerant systems is particularly hard, because of the non-
determinacy introduced by the fault behavior. Holzmann
[10] points out that even for relatively simple communi-
cation protocols:

“It is almost impossible to manually verify cor-

rectness requirements such as the ones dis-

cussed, no matter how diligent or disciplined the

designer. The behavior of even simple protocol

systems can be of a complexity that no designer
can be expected to assess accurately.”

Worse till, the desired validation cannot be estab-
lished through rigorous testing of the implementation ei-

partial model can be extracted that is sufficient for the
validation exercise. The reduction in the size of the state
space was critical in this case study, and was achieved by
dividing the requirements into 5 partitions and abstracting
away extraneous detail. The origina (reduced) estimate of
the size of the model state space was over 100 million
states. Although the estimate after simplification was be-
tween about 62,000 and 800,000 states, the actual number
of states in the model was just over 100,000 states, al-
lowing the validation of each of the six requirements in
partition 1 to be completed in 30 seconds.

The complexity of the validation exercise was aso
reduced by validating requirements individually. It is pos-
sible to combine requirements (and domain properties), as
described in Appendix A, so that they can be checked in a
single validation run. However, doing so often increases
the complexity of the model beyond the limit of current
model checking technology. Hence, we only combine re-
quirements in this way when they are known or suspected
not to be independent.

It is important to note that with this approach, any
claims of completeness are sacrificed; we are only per-
forming partial validation of partial specifications. Hence,
the focus is not on proving correctness, but on revealing
errors [12]. We have shown in the case study that the ap-
proach is capable of finding subtle errors that are other-
wise almost impossible to detect. If we did not find any
errors, that would not establish correctness, but it does
provide a higher level of assurance than is otherwise pos-
sible.

7 Summary and Conclusions

We have demonstrated through a case study how fault
tolerance requirements can be validated through non-
deterministic model checking. The system described in
the case study used a mark and rollback scheme to im-
plement fault tolerance. The system has to complete high
priority tasks called critical sequences efficiently and at
the same time respond to and repair faults. To meet this
requirement, hard rollback points (markpoints) are em-
bedded in the critical sequence code so that completed
subtasks would not have to be repeated when fault condi-
tions force the executing critical sequence to suspend op-
eration to service the fault. Faults occurring within
subtasks are repaired and rollback is then done to the start

ther. The complexity of the communication system,
together with the non-deterministic occurrence of faults
makes exhaustive testing infeasible.

The use of model checkers opens up new possibilities
for validating such systems. In principle, exhaustive
checking of the requirements model is also infeasible.
However, by exploiting the structure of the state space, a

of the last uncompleted subtask. A hot backup (the ‘online
string’) is operational synchronously to increase reliability
and availability.

The validation scheme described in this paper was
implemented as a Spin model with three key components.
First, the model contains an underlying operating system
(executive) that contains a checkpointing scheme referred

to as the mark and rollback process, which was modeled
deterministically. Second, a generalized critical sequence
was chosen to be executed by the model operating system
to make it possible for requirements and design errors to
surface. Finaly, a fault injection process was used to non-
deterministically inject a single fault into the system
model. The validation system then attempted to execute
the critical sequence and to recover from all possible in-
jections of a single fault into the executing critical se-
guence. In this way three anomalies were discovered.

The model was reduced to a feasible size for valida-
tion by abstracting away unnecessary detail leaving be-
hind a partial specification. The functiona rollback
reguirement was elaborated into 6 separate but dependent
requirements. A Linear Tempora Logic scheme was de-
veloped to validate three pairs of coupled requirements
over the dually redundant system. This procedure allowed
the rollback requirement in the prime or control system to
be validated together with its coupled ancillary mirror
rollback requirement in the online (hot backup) system. In
this way, the study showed that a partial specification for a
complex spacecraft controller can be effectively validated
within the framework of the remaining requirements.

We plan to extend the application of the methodology
demonstrated here to developmental efforts over the soft-
ware lifecycle using partia specifications and their asso-
ciated co-evolving prototype implementations. We are
exploring two different approaches. The first approach
works by instrumenting a partia or complete implemen-
tation in order to detect the presence of paths through the
state space that correspond to the satisfaction of func-
tional requirements. The resulting log files are then trans-
formed into a set of traces to be executed by a model
checker to validate that the implementation preserves the
key properties. The functiona reguirements in the system
are validated by expressing them as Linear Temporal
Logic propositions that are trandated into an appropriate
automata type supported by the particular model checker
in use. Then, by traversing the annotated log files encap-
sulated as processes over the model, the functiona re-
quirements are validated in the usual way by the model
checker as discussed by Holzmann [1].

The second approach is to use the model checker to
generate runtime monitors that may be embedded in the
implementation. In this approach, we express correctness
properties as LTL formulae, and use Spin to generate a C-
encoded procedure from the formula, which is then in-
cluded as a run-time monitor inside the growing imple-
mentation. The implementation is then instrumented, by
hand, to inform the monitor at the occurrence of the
events that the monitor is interested in, namely those
events that can cause a change in the truth-value of the
correctness property. The monitor would complain if it

ever saw an execution that violated a stated correctness
property.

This first of these approaches has been successfully
used on a pilot project to validate a complex communica-
tions protocol called RMP [13]. Two teams consisting of
an Independent Verification and Validation (IV&V) team
and a software development team were used. Both the
development team and the IV&V teams worked from an
evolving partial specification. While the development
team was responsible for the implementation, it was the
responsibility of the IV&V team to apply a modeling
scheme to check that the evolving specification and the
implementation were consistent with each other. The
IV&V team then used the model checker to validate the
requirements. In this way when errors in the implementa-
tion surfaced they could be brought up to date with the
specification; and if the specification were in error the
implementation could be used to update the specification.
Each derived or added requirement would, of course, then
be incrementally validated and used to assist in driving
the specification forward and so on. By working in tan-
dem in this way, costly backtracking errors are prevented.
The result was a saving in operational efficiency and
lower maintenance costs due to good underlying design.

8 References

[1] G. J. Holzmann, “The Model Checker SpilEEE
Transactions on Software Engineering, vol. 23, pp.
279-295, 1997.

[2] C. Heitmeyer and D. Mandrioli, “Formal Methods for
Real-time Computing: An overview,” iRormal
Methods for Real-time Computing, C. Heitmeyer and
D. Mandrioli, Eds. Chichester, UK: J. Wiley, 1996,
pp. 1-32.

[3] N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J.
D. Reese, “Requirements Specification for Process
Control Systems,'EEE Transactions on Software
Engineering, vol. 20, 1984.

[4] K. L. Heninger, “Specifying Software Requirements
for Complex Systems: New Techniques and Their
Application,” IEEE Transactions on Software Engi-
neering, vol. 6, pp. 2-13, 1980.

[5] S. Easterbrook and J. Callahan, “Formal Methods for
V&V of partial specifications: An experience report,”
Proceedings, Third IEEE Symposium on Require-
ments Engineering (RE’9,7Annapolis, Maryland, 5-8
January 1997.

[6] Z. Manna and A. Pnueli, “Tools and rules for the
practicing verifier,” Department of Computer Science,
Stanford University, Technical Report CS-TR-90-
1321, 1990.

[7] K. L. McMillan, “Symbolic model checking - an ap-
proach to the state explosion problem,Samool of
Computer Science. Pittsburgh, PA: Carnegie Mellon
University, 1992.

[8] J. R. Burch, E. M. Clarke, and D. E. Long, “Symbolic
Model Checking for Sequential Circuit Verification,”
|EEE Transactions on Computer Aided Design of In-
tegrated Circuits and Systems, vol. 13, pp. 401-424,
1994.

P. Ramanathan and K. G. Shin, “Use of Common
Time Base for Checkpointing and Rollback Recovery
in a Distributed SystemJEEE Transactions on Soft-
ware Engineering, vol. 19, pp. 571-583, 1993.

G. J. HolzmannDesign and Validation of Computer
Protocols: Prentice Hall, 1991.

D. Harel, “Statecharts: A Visual Formalism for Com-
plex Systems,Science of Computer Programming,

vol. 8, pp. 231-74, 1987

D. Jackson and C. A. Damon, “Elements of Style:
Analysing a software design with a counter-example
detector,”International Symposium on Software
Testing and Analysis (ISSTA'9&gn Diego, CA, 8-

10 January 1996.

J. R. Callahan and T. L. Montgomery, “An Approach
to Verification and Validation of a Reliable Multi-
casting Protocol,Tnternational Symposium on Soft-
ware Testing and Analysis (ISSTA’983n Diego,

CA, 8-10 January 1996, pp. 187-194.

J. R. Biichi, “On a Decision method in restricted sec-
ond-order arithmetic,Proceedings of the Interna-

tional Conference on Logic Methodology and
Philosophy of Sciences, 1960, Stanford University
Press, pp. 1-11.

9]

(10]

(11]

(12]

[13]

[14]

9 Appendix A: Linear Temporal Logic
Background

The Spin/PROMELA modeling scheme derives much
of its power from its ability to incorporate formal theorem
proving elements into its search schemes. Bichi [14] dis-
covered the fundamental relationship between finite

automata and the second-order monadic calculi. This in-

novation made it possible to incorporate Linear Temporal
Logic (LTL) assertions as components of computer mod-
eling schemes.

A Bichi automaton is a non-deterministic Finite State
Machine (FSM) A =%, S, Ir, S, /P). = is the input al-
phabet,S is the set of states, Bie set of initial states, and
Fis the set ofaccepting states.7r 0 S x I x S is the
transition relation. If (sg, s') 0 It then A can move from
s to s' upon reading. An input word is an infinite se-
quenceo= 0,, 0,, T3, ... ,0; 2, while arun, r, overc is
an infinite sequencg $1%_ s, of?_ ..., where §0 S,

(S, 0y, So) 01,1 =0, 1,.... Arun, r, is said to be ac-
cepting iff there exists a statel] F such thaig appears

infinitely often in r. Thelanguage L(A) is the set of all

input words g, such that A has an accepting run ower

-10-

Let f, be an LTL assertion corresponding to a system
requirement to be validated that generates automaton A
Given n Biichi automata of the form A (%, S, Ir, S,

), they are closed under the operation of intersection.
Their intersection (1.,A. accordingly is a Bichi
automaton, and it accepts the language®). The
LTL formula that generates this automaton has the form

=01 o)

Equation (1) allows multiple LTL formulae to be
concatenated such that the resulting automaton will pre-
serve the characteristics of the language accepted by each
automaton were it to be implemented in isolation. This
means that the set of all input words,that were recog-
nized by each automaton # isolation will also be rec-
ognized by the composite automafon.£®) .

By incorporating the Finite State Machine (FSM)
representation of the formal properties to be validated by
the model, the model can be routinely checked for the
presence or the absence of the desired characteristics.

The Spin/PROMELA system has an LTL translator
that can produce the corresponding Biichi automaton from
an input requirement expressed as an LTL formula. The
Spin modeling system checks to see that finite state pro-
gram P satisfies the temporal logic formufaFirst, the
global state graph of’ is computed. Second, the Blchi
automaton is constructed ferf: A-; . Third, the synchro-
nous productP x A_; is computed. Finally, the validation
run is performed or x A.;. For each state transition in
P, Spin checks to see if a corresponding transition_in A
is possible. Once one of the accepting states-phas
been entered, it must be shown that that state is reachable
from itself. When this happens,.Awill have been shown
to have recognized a strimgfrom the language generated
from the original LTL formula~f. For efficiency, Spin
executes the 3 steps in 1 pass. At this point a trail file can
be written showing the sequence of state transitiori in
that gave rise to the accepting state i Ahis file can
then be annotated and run as a test case against the im-
plementation.

