
In: Proceedings of the Fifth Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE’96), Stanford,
California, June 19-21, 1996. IEEE Computer Society Press. Pp232-237.

Independent Validation of Specifications: A coordination headache

Steve Easterbrook John Callahan
steve@atlantis.ivv.nasa.gov callahan@cerc.wvu.edu

Software Research Lab
NASA/WVU IV&V Facility

Fairmont, WV 26554

Abstract
Large, complex projects face significant barriers to

coordination and communication due to continuous, rapid
changes during a project's lifecycle. Such changes must be
tracked, analyzed, and reconciled to ensure high-quality
in the end-product, otherwise problems may be get lost or
ignored in the overall complexity. We report on “work-in-
progress” in the study of coordination problems between
two independent, separate groups: software development
and software analysis. We have begun to construct a
taxonomy of coordination problem, which we illustrate
with two scenarios. We briefly describe current attempts to
introduce incremental improvements to coordination
problems in such projects via World-Wide-Web tools.
Based on actual project experiences, we plan to deploy
such tools in a non-intrusive fashion to improve
coordination and communication between software
development groups.

1. Introduction

This paper describes some of the coordination
problems faced in the verification and validation (V&V)
of large software systems. In particular, we examine the
process of Independent V&V (or IV&V), a practice used
on large, safety-critical software systems in the defense
and aerospace industries. IV&V faces many of the same
coordination problems as any large development project,
and introduces many problems of its own. In particular,
IV&V requires two organizations with conflicting goals to
cooperate to satisfy a single customer. Not only is there a
lack of suitable tools to support the coordination needed,
but often even the infrastructure in which such tools
would be used is missing. We will illustrate some of the
problems faced by IV&V through two scenarios, and
describe our initial work on the development of web-based
tools that address the problems.

Although we focus on IV&V, many of the coordination
problems are found in any large project. In many projects,
coordination problems surface merely as tensions and
frustrations, perhaps leading to schedule and budget
problems. In an IV&V process, the coordination crosses
organizational boundaries. This makes it harder for the
people involved to find ways to work around any lack of
cooperation. Hence, the problems are more visible, and
easier to study.

Within the IV&V process, we concentrate on the
analysis of requirements specifications. This is a deliberate
choice: independent analysis of requirements specific-
ations has the potential for the biggest impact of any
IV&V activity. The quality of the analysis of design and
implementation and the rigor of testing depend to some
extent on the availability of good quality specifications.

In this paper, we identify the interdependence of large
volumes of documentation as a key problem in software
specification. Any change to one part of a specification
may have many small impacts (“ripples of influence” [6])
throughout the documentation, which may be hard to track
down. Certainly this kind of problem was an important
factor in the fatal decision to launch Challenger [1]. The
mechanical problem that caused the blast was well known
before the accident; however, failures in tracking the
problem and in keeping all documentation consistent led
to faulty decision making by NASA managers.

In this paper, we outline the IV&V process and identify
a number of coordination problems that we have observed
in actual IV&V processes. Specifically, we draw on our
informal observations of and interactions with IV&V
personnel working on the Space Station and the Earth
Sciences Data and Information System (ESDIS) projects.
We present two scenarios, which reveal the extent to
which coordination problems can reduce the effectiveness
of IV&V. We then describe our initial work with the
World Wide Web to provide infrastructure and tools to
overcome some of these problems.

2. Coordination Problems in IV&V

Independent Verification and Validation (IV&V) is a
process in which the products of the software development
life cycle phases are independently reviewed, verified, and
validated by an organization that is neither the developer
nor the acquirer of the software [2]. As the IV&V agent
has no stake in the success or failure of the software, it can
provide an unbiased assessment of the status of a project's
schedule, cost, and the viability of its product during
development. IV&V provides an early warning of
problems, and helps to identify and manage both technical
and programmatic risks.

An example of an IV&V activity is the analysis of
specifications on the Space Station project. An SRS is
written by a development contractor for each Software
Configuration Item (CSCI). These are in natural language,
and follow the format of DOD-STD-2167A. The IV&V
contractor periodically receives copies of the SRS
documents, in various stages of completion, and analyses
them for technical integrity, to identify requirements
problems or risks. The kind of analysis performed will
vary according to the level and the type of specification,
and will cover issues such as clarity, testability,
traceability, consistency and completeness. If problems
are identified, the IV&V contractor may recommend
either that the requirements be rewritten, or that the
problem be tracked through subsequent phases.

There are a number of tensions that interfere with the
smooth running of an IV&V contract. The development
contractor and IV&V contractor have conflicting goals:
the development contractor's goal is to produce the
required system within cost and schedule constraints; the
IV&V contractor's goal is to identify errors and risks.
These goals are in conflict whenever problems identified
by IV&V have cost or schedule implications. The extent
to which this conflict causes problems depends very much
on the attitude of the project managers within the
development contractor. If they regard the IV&V agent as
an ally in the effort to produce high-quality software, then
the conflict can be avoided. If they regard the IV&V agent
as an enemy put there to find fault with their work, the
conflict becomes central to the relationship between
developer and IV&V.
Within this context, there are a number of factors that
affect the relationship:
• Timing - IV&V needs to report problems as early as

possible. In general, the earlier a problem is detected,
the less it costs to fix. Also, by the time IV&V
produces its reports, the reports might be irrelevant:
the product may have changed, or errors may have
already been fixed. Delayed reporting by the IV&V
agent can sour the relationship with the developer.

• Access - In order to do its job, IV&V needs timely
access to a large amount of project data and
documentation. Preferably, it needs to receive early
drafts of documents, as well as regular updates.
Developers are naturally unhappy about releasing
drafts to an IV&V agent: draft documents are full of
known problems. The development contractor needs
to be able to trust the IV&V contractor to handle draft
documents sensitively.

• Evolution - IV&V analysis and development effort
proceed in parallel, so that effectively IV&V is
dealing with a moving target. Even if the IV&V agent
can obtain regular updates of a product, these updates
only represent snapshots, and do not capture the
evolution of the product. Hence, problems may recur
or disappear, without any explanation.

• Appropriateness - When reporting problems to the
customer, the IV&V contractor needs to be careful to
match the report with the status of the product it
applies to. For instance, if a document is an early
draft, then it should not be treated as a finished
product: the IV&V agent need not report problems
that can be reasonably expected to be fixed by the
developer in due course.

Central to the work of IV&V is the problem of issue
tracking. Problems that are important enough to be
reported to the customer need to be tracked so that
responses can be assessed. Minor problems need to be
tracked in case they become major. While formal issue
tracking processes (and tools that support these processes)
help, they do not address the need to trace dependencies
and decision rationale.

Many of these problems are common to all large
projects: in an IV&V project the problems are more
obvious because they cross an organizational boundary.

3. Scenarios

This section presents two scenarios, drawn from our
observations of IV&V processes. In each case, we present
a normal process, and then discuss potential commun-
ication and coordination problems. Our aim is to use these
scenarios to understand how better to support the process.

3.1. Scenario 1

An IV&V analyst (let us call her Alice) is reading a
specification, and notices a requirement that begins
"Within 110ms of ...". The figure of 110ms seems wrong,
but she cannot check it immediately as it will require a
calculation using data available elsewhere.

A typical, informal process is illustrated in figure 1.
Briefly, Alice makes a note to herself to come back and

check the figure, which reaches the top of her to-do list
after a couple of weeks. She then makes the calculation,
and confirms that the figure is indeed wrong. She phones
the author (let us call him Bob) of the section of the
document in which this requirement occurs, and leaves
him a voice mail message explaining the problem.

Bob gets the message, checks the relevant section, and
concludes that Alice's assessment is correct. He phones
Alice to say he will fix it before the next draft of the
document. Alice makes a note to remind herself to check
that the fix has been made when she gets the next release.
Two months later, she receives the new release, runs
through her list of things to check, and finds that the
figure has been corrected.

Now look at what could have gone wrong. First, any of
the communications in figure 1 could have failed to occur.
For example, Alice might have failed to make a note to
herself, she might not be able to trace the author of the
document, Bob might never return her call, and so on.
Communication might also fail because either Alice or
Bob leave the company, or move to a different project, at
any point during the scenario. Figure 1 is annotated with
these possible communication failures.

Second, there are a number of places where
coordination problems may occur. For example, Bob may
disagree with Alice’s assessment of the problem. This
might be because either he or Alice made a mistake in
their calculations, because Bob misunderstands Alice’s
message, or because he looks at the wrong section. A
decision must be made over whether the issue is important
enough to pursue further: Alice may decide to write a

formal discrepancy report.
Other changes to the specification may also cause

problems. For example, someone else might make
conflicting changes to the same section of the
specification, they may delete the whole section, they
might change the figures on which Alice’s calculation was
based, or they may undo Bob’s change. This is especially
a problem if other people have no visibility into the
process that Alice and Bob went through.

Finally, if everything else goes well, the figure might
still be wrong in the new draft. This could be because Bob
changed it but still got it wrong, because he changed the
wrong figure, because he never got round to it, or because
the same problem recurs throughout the specification and
Bob did not track down all of them.

Some of the problems illustrated in this scenario could
be addressed with an issue tracking system, and our next
scenario shows the use of such a system. However, for this
first scenario, an issue tracking system might be too
formal. If Alice can resolve the problem by picking up the
phone, she may be reluctant to incur the overhead of
entering the problem into an issue tracking system.

The scenario also illustrates the inter-relatedness of
different parts of the specification. When Alice checks the
figure, she uses data from elsewhere in the documentation.
She knows what data to use from her familiarity with the
specifications: nowhere is it recorded that the data she
uses is related to the figure she is checking. Alice may or
may not be the first person to notice the relationship. In
either case, once the relationship is noticed, it ought to be
recorded for future reference. With a little intelligence

AliceNotes Phone BobSpec library

draft specification

"check figure"

"to do" list

wrong
figure is

phones Bob
voicemail

Bob calls Alice
note: check
Bob's fix

New
draft

to do list

agrees

figure looks
wrong

figure is
correct

doesn'tmake a note

forgets tocome backto it

cant locate
author

doesn'tmake a note

never calls
back

doesn't leave
a message

Alice leaves
the company

forgets tocome backto it

Figure 1. The first scenario, annotated with potential communication problems

built into support tools, it should be possible to detect that
Alice uses some parts of a spec to check others, and hence
record a dependency relationship. Section 4 discusses our
current project to introduce such support tools
incrementally into ongoing projects.

3.2. Scenario 2

The second scenario (Figure 2) illustrates a more
formal process, in which fewer communication problems
can occur. An IV&V analyst (let us call him Carl) is
analyzing a section of the requirements document by
generating a tabular version of the section, and then
running the resulting tables through an automated
consistency checking tool. The tool reports an
inconsistency, which Carl traces back to a mistake in the
original document. He writes a Discrepancy Report (DR).
Let us call this DR#101.

Three months later, a new draft of the specification is
released. Carl checks the DR database, to see which of his
DRs have been addressed in this new draft. DR#101 is
marked as having been worked on (by Diane), and is
awaiting approval for closure. As originator of the DR,
Carl's signature is required before the issue can be closed.
He updates his tabular representation to reflect the new
draft, runs the new version of the table through the tool
again, and confirms that the problem is now fixed. He
therefore signs off the DR as closed.

The DR tracking tool removes many potential
communication problems, and ensures that closure is

achieved for each reported problem. However,
coordination problems can still occur.

For example, Carl could have made mistakes in the
translation from the text to the table - it is hard to confirm
that the table is a faithful representation of the textual
requirements. Similarly, Carl might not be able to trace the
inconsistency back to the original requirements. He would
then have great difficulty reporting the problem in a DR,
unless he includes his tables, a description of the checking
process, and some evidence that the tables are faithful to
the original. This will make the DR rather cumbersome for
a review panel to process.

Diane might not understand the problem: she might not
be familiar with the tool that Carl uses. She might fail to
correct the inconsistency, or might introduce more
inconsistencies in this section. Carl may have problems
updating his tables, perhaps because Diane (or someone
else) has reorganized the section. Carl might not have the
time to update the tables and so just performs a visual
check, in which case he might not notice if the correction
introduced any new errors.

Finally, the process might need to be repeated
indefinitely. Diane’s changes might not have corrected the
problem, or other people might make further changes after
the DR is signed off. Does this mean Carl has to update
the table and re-run his checks again every time a changed
draft is released? The problem here is to do with the
relationship between alternative representations of the
same information. Currently, such a relationship exists
only in Carl's head - there is no representation of the

draft specification

errors in table

Spec library

New
draft

Carl Analysis tool DR tracker Diane

creates table

writes DR#101
disposition

closes issue

List of closed issues

updates table

no errors

signs off DR #101

runs tool

runs tool

fixes errors

traces
errors

make
s

mista
kes

✬✬

can
t tra

ce

erro
rs

doe
sn't

und
ers

tan
d

the
pro

blem

no
tim

e

ava
ilab

le

erro
r

stil
l th

ere

new
dra

fts

kee
p com

ing

intr
odu

ces

oth
er erro

rs

make
s

mista
kes

sec
tion

has

bee
n re-

wri
tten

✬✬

✬✬

✬✬

✬✬

✬✬ ✬✬

✬✬

✬✬

Figure 2. The second scenario, annotated with potential coordination problems

relationship anywhere else. Either of the two chunks of
specification may evolve, but there is no way to trace the
“ripples of influence” of any changes. Hence, there is no
opportunity for tool support to reason about how changes
to one side affect the other.

The scenario illustrates how expensive it can be to
develop and maintain an alternative representation of an
evolving specification. This may mean that this type of
analysis gets delayed until the specification is relatively
stable. This is undesirable.

Notice that the relationship is bi-directional. Although
the table is generated and updated from the text, Carl
needs to be able to trace problems from the table back into
the text. It is also highly likely that Carl may want to alter
the table to see what possible fixes there are, and then see
what effect this has on the text.

4. The Web as an enabling technology

The problems identified in the scenarios show how
time-consuming and costly it can be to track changes,
especially where there are many dependencies throughout
the specifications. A full solution to these problems would
require all dependencies between different parts of a
specification to be explicitly represented. Such a solution
requires significant advances in the capture and
representation of dependencies between specification
elements. Partial solutions exist for individual methods
(e.g. the consistency checking for SCR [3]). A general
solution for multiple methods is still a long way off.

To explore such a general solution, we have adopted an
incremental, empirical approach. We need to put into
place the infrastructure for recording data about each
chunk of specification, including annotations and
relationships with other chunks. However, we also need to
integrate this infrastructure with the existing project
support systems on the projects we wish to study, to
minimize the disruption caused. We will not be able to
proceed with our empirical study unless each step is
relatively painless for the project.

The infrastructure we need to put in place must satisfy
two major criteria. It must be adaptable enough to fit in
with a wide range of existing project support tools on
different platforms, using heterogeneous networks, and
accessing existing project data in a variety of different
formats. Second, it must provide the ability to record and
track arbitrary relationships between chunks of
specifications [4].

Initial experiments indicate that the World-Wide-Web
will satisfy most of the first criteria. In particular:
• It removes dependence upon any one platform, and

allows us to design tools that can immediately run on
any platform without reconfiguration

• It hides networking details, so that remote access to
documents is as straightforward as local access.

• It is extensible via Java, so that tool development is
feasible.

• It provides a basic hypertext functionality.
• Most project documentation on the projects we wish

to study is already available in electronic format, and
can easily be converted to HTML.

Despite these benefits, a number of problems remain.
Firstly, the hypertext model provided by HTML is far too
simplistic. Links are unidirectional, and encode no
semantic information. In general, links are hardwired into
documents, although Javascript makes dynamic links
feasible. Navigational aids are still relatively primitive,
limited to path tracing and keyword searching; no tools
yet exist for integrating graphical views of hypertext
structure. Documents themselves are static: the web is a
passive browsing mechanism - browsers cannot edit or
annotate documents. Editing of documents normally takes
place offline.

Another serious shortcoming of the Web is the inability
to represent the structure of non-textual documents (e.g.
diagrams). Hence manipulation of structured documents
can only be achieved by using extensions to web
browsers.

5. The WHERE project

The Web-based Hypertext Environment for
Requirements Engineering (WHERE) project is an
experiment in extending the capabilities of the Web, using
viewpoints [7] instead of web pages as the basic building
block. viewpoints combine the idea of an actor, role or
agent in the development process, and the idea of a view
or perspective that an actor maintains. In software terms,
viewpoints are loosely coupled, locally managed, coarse-
grained objects which encapsulate a partial specification in
a suitable representation scheme, and partial knowledge of
the process of development.

The Viewpoints framework divides a specification into
manageable chunks ('viewpoints'), each of which has the
following attributes:
• a representation style, the scheme and notation by

which the viewpoint expresses what it can see;
• a domain, which defines the area of concern

addressed by the viewpoint;
• a work plan, which comprises the set of actions by

which the specification can be built, and a process
model to guide application of these actions;

• a work record, which contains an annotated history of
actions performed on the viewpoint.

Each viewpoint has a defined owner. The owner is
responsible for developing a viewpoint specification using

the notation defined in the style slot, following the
strategy defined by the work plan, for a particular problem
domain. A development history is maintained in the work
record. This framework encourages multiple
representations, and is a deliberate move away from
attempts to develop monolithic specification languages. It
is also independent from any particular software
development method.

The WHERE project will implement this framework
using the Web. The core functionality will be provided by
three Java applets:
The Viewpoint Editor is a configurable specification
editor. The editor is configured from one of three
templates: depending on whether the notation to be edited
is graphical, tabular, or textual. Each template takes a
syntax description as a parameter, to provide a syntax-
directed editor for the given notation. Note that the editor
will not need to be able to generate large specifications, as
a specification is broken down into individual viewpoints.
For example, if a specification method calls for three
different types of table, each table will be represented as a
different viewpoint, and three different configurations of
the tabular viewpoint editor will be needed, one for each
table type.
The Viewpoint Reviewer allows a user to browse and
annotate viewpoints created by other people. If the
viewpoint to be loaded was developed outside the
WHERE environment, the Reviewer will provide a
rudimentary parsing of the viewpoint, so that annotations
can be attached to different parts of its structure. The
reviewer will not allow a user to edit the viewpoint, and
will store annotations and meta-viewpoint data as a
separate 'view' of the viewpoint.
The consistency checker allows the user to define and
check relationships between viewpoints. Each viewpoint
can have three types of relationships with other
viewpoints: method-defined, user-defined, and emergent.
Method-defined relationships describe relationships that
should hold between two viewpoints of a particular type.
User-defined relationships are entered by users to record
and track non-standard relationships between particular
viewpoints. Emergent relationships are recorded as the
result of certain actions on viewpoints, where the action
reveals that a relationship must exist.

The tools can be used to provide support for the entire
requirements specification process, or as a partial aid to
some aspects of it. The partial mode allows a gradual
introduction of the tool into existing projects. For
example, existing specification documents can be loaded
into the viewpoint reviewer and annotated. New
viewpoints can be created using the viewpoint editor, with
defined relationships to the existing documentation. A
typical use would be to model a portion of an existing

specification in a new notation, while explicitly recording
relationships with the existing specification.

6. Conclusions

Our approach to empirical investigation and
incremental tool deployment is based largely on the
Experience Factory model [5] that has been successfully
employed on other NASA software efforts. Based on the
experiences with IV&V analysts using our tools, we will
continue to refine and add features.

Technologies like the World-Wide-Web and Java are
essential enablers that will allow software developers to
manage the volume of change of large, complex software
projects. We have demonstrated briefly how failures in
coordination and communication can wreak havoc on such
projects even in situations where potential problems are
identified early in the project's lifecycle. The use of an
independent analysis team, such as an IV&V group, is
highly effective, but requires additional coordination
mechanisms to reap the benefits of such analysis.

7. Acknowledgments

We acknowledge the assistance of Chuck Neppach and Dan
McCaugherty (Intermetrics) for discussions regarding IV&V
pragmatics and Darryl Lakins and George Sabolish (NASA) for
insight into IV&V effectiveness issues. We thank our students,
Amer Al-Rawas, Swarn Dhaliwal, Zhong Zhang and Gevony
Laughlin for their inputs to this work.

8. References

[1] N. G. Leveson “Safeware: System Safety and Computers”,
Reading MA: Addison Wesley, 1995

[2] NASA NASA Software Assurance Guidebook, NASA-GB-
A201, prepared by the Software Assurance Technology
Center, Goddard Space Flight Center, 1989

[3] C. Heitemeyer, B. Labaw and D. Kiskis, “Consistency
Checking of SCR-Style Requirements Specifications”,
Second IEEE Int. Symp. on Requirements Engineering,,
York, UK, March 1995, pp56-63.

[4] S. M. Easterbrook and B. A. Nuseibeh, “Using ViewPoints
for Inconsistency Management”, BCS/IEE Software
Engineering J., 11(1), Jan 1996.

[5] V. Basili, “The Experience Factory and its Relationship to
Other Improvement Paradigms”, Proc, 4th European
Software Engineering Conference, Garmish-Partenkirchen,
Germany, September 1993.

[6] M. Klein, “Core Service for Coordination in Concurrent
Engineering”, Proc. 4th IEEE Workshop on Enabling
Technologies: Infrastructure for Collaboration
Enterprises, Coolfront, West Virginia, April 1995.

[7] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein and
M. Goedicke, “ViewPoints: A Framework for Multiple
Perspectives in System Development”, Int. J. of Software
Eng. and Knowledge Eng. 2(1) Jan 1996, pp31-5.

