
- 1 -

Elicitation of Requirements from
Multiple Perspectives

Steve Easterbrook

June 1991

Department of Computing,
Imperial College of Science, Technology and Medicine,

University of London,
London SW7 2BZ.

A thesis submitted for the degree of
Doctor of Philosophy of the University of London

- 2 -

Abstract

The success of large software engineering projects depends critically on the specification, which
must represent the requirements of a large number of people with widely differing perspectives.
Conventional approaches to software engineering do not address the process of identifying and
integrating these perspectives, but instead concentrate on the maintenance of a single consistent
description. This results in a specification which represents only one point of view, often the
analyst’s, excluding suggestions which do not fit with this view. The processes which led to the
adoption of this point of view will go unrecorded, making any rationale attached to such a
specification incomplete. Other participants will not be able to validate it properly, as it does not
relate to their requirements.

This thesis integrates ideas drawn from the study of knowledge acquisition, computer-supported
co-operative work and negotiation into a model of the specification activity which allows the
capture of multiple perspectives, and resolution of conflicts between them. Perspectives are elicited
separately, and each develops as an independent description of the requirements. If a description
becomes inconsistent, it is split into separate perspectives which represent each side of the
argument. Comparisons between perspectives can be made, and when conflicts are discovered, a
process of computer-supported negotiation is invoked. This allows participants to teach each other
about their perspectives, and elicit the issues on which those perspectives are based. Where
resolution is required, new suggestions are evaluated using these issues. A set of tools has been
developed to support the model, and the thesis illustrates how they might be used. Example
analyses of case studies drawn from the software engineering literature are used to show how the
tools can reconcile differing requirements descriptions.

The model and associated tools form an environment in which a collection of perspectives can be
maintained, and relationships between them explored. This environment facilitates the
communication needed to resolve conflicts. Validation is supported by allowing items to be traced
back, through the resolution process, to their originators.

- 3 -

Statement of Contribution

This thesis describes a model for requirements elicitation from many sources. The model itself is
the major research contribution of the thesis: it represents a novel approach to requirements
engineering. There are two important innovations. The first of these is the idea of separately
describing different perspectives. The second is the resolution of conflicts via a process of
computer-supported negotiation. Parts of the model are drawn from other fields, including
knowledge acquisition, computer-supported co-operative Work, organisational psychology,
management science and decision theory. The way in which these fields are drawn together is
novel, as is their application in the area of requirements engineering.

Various aspects of the model have been described in papers published elsewhere. The model was
first outlined at the third European workshop on knowledge acquisition [Easterbrook 1989].
Chapter 6 will appear in a forthcoming issue of the journal Knowledge Acquisition [Easterbrook
1991]. This thesis should be regarded as the definitive treatment of the model.

- 4 -

Acknowledgements

This thesis wouldn’t have happened if various people hadn’t kept me going. First and foremost,
Anthony Finkelstein supervised the whole thing, providing inspiration and guidance whenever it
was needed. I owe a great deal to him. Various colleagues helped out along the way with feedback,
discussion and/or distraction. Jeff Kramer, Jeff Magee, Tom Maibaum, Martin Sadler, and Manny
Lehman all gave me good advice. Bharat Patel, Sati Sian, Stuart Kent, and many others at Imperial
shared their ideas with me. Bill Robinson at Oregon helped me shape up my thoughts on conflict
resolution. Mike Sharples and others at Sussex read and commented on various drafts.

I am very grateful to Brian Gaines for making a stay at the University of Calgary possible. I also
owe many thanks to Maurice and Lois Sharp, Debbie and Richard Leishman, Dan Freedman,
Rosanna Heise, Mildred Shaw, Ian Witten, Brian Woodward, Bruce MacDonald, John Boose,
and all the others at KSI who looked after me and entertained me.

I was funded throughout by the SERC, under studentship number 87311891. The department at
Imperial and the AISB provided me with various travel funds. Most importantly, my mum loaned
me the money to buy a Macintosh, which proved vital (thanks mum!).

Finally, there is one person who was there all the time, to understand and support me. This thesis
is dedicated to my wife, Sarah.

- 5 -

Contents
Abstract 2
Statement of Contribution 3
Acknowledgements 4
1 Introduction 8

1.1 Requirements Engineering.. 8
1.2 Multiple Perspectives.. 9
1.3 Conflict and Negotiation.. 9
1.4 Preview ... 10

2 Requirements Engineering 1 2
2.1 The Role of Requirements Engineering.. 12

2.1.1 Specifications... 12
2.1.2 Constructing Specifications... 13
2.1.3 Validating Specifications.. 14
2.1.4 Design Capture and Rationale .. 14
2.1.5 Exploration and Replay .. 15

2.2 Difficulties.. 15
2.2.1 Requirements Formulation.. 16
2.2.2 Nature of the Knowledge Sources.. 16
2.2.3 Nature of the Knowledge Involved.. 17
2.2.4 Negotiation .. 18
2.2.5 Conflict..... 19
2.2.6 Uncertainty .. 19

2.3 Objectives.. 20
2.3.1 Framework .. 20
2.3.2 Support Environment.. 21
2.3.3 Tools .. 22

2.4 Summary .. 22
3 Analytical Review 2 4

3.1 Requirements Engineering... 24
3.1.1 Software Life-Cycle .. 24
3.1.2 Specification Languages .. 25
3.1.3 Specification Processes .. 26

3.2 Knowledge Acquisition.. 31
3.2.1 Building Knowledge-Based Systems .. 31
3.2.2 Machine Learning.. 32
3.2.3 Eliciting Conceptual Models.. 32
3.2.4 Specification as Knowledge Acquisition.. 33

3.3 Critical Analysis . 34
3.3.1 The Single Viewpoint Bias .. 34
3.3.2 Conflict between Experts . 35
3.3.3 Many viewpoints... 36

3.4 Conflict Resolution.. 38
3.4.1 Terminology.. 38
3.4.2 Mathematical and Economic Models... 39
3.4.3 Behavioural Models .. 44
3.4.4 Computational Models .. 48

- 6 -

3.5 Summary .. 51
4 Specification from Multiple Perspectives 5 3

4.1 Key Concepts .. 53
4.1.1 Perspectives and Viewpoints . 53
4.1.2 Conversation .. 55
4.1.3 Representations .. 56
4.1.4 Evolution.. 56

4.2 Rationale.. 58
4.2.1 Separating Perspectives .. 58
4.2.2 Combining Knowledge Sources .. 59
4.2.3 Delaying Decisions .. 59
4.2.4 Constructing Specifications... 60
4.2.5 An Example Problem... 61
4.2.6 An Example Solution.. 63

4.3 Outline of the Model.. 64
4.3.1 Identifying Perspectives... 65
4.3.2 Developing Perspectives .. 65
4.3.3 Comparing Perspectives .. 66
4.3.4 Resolving Differences.. 66

4.4 Method.. 67
4.4.1 Tools .. 67
4.4.2 Case Studies.. 68

4.5 Summary .. 69
5 Modelling Separate Perspectives 7 0

5.1 Identifying Perspectives .. 70
5.1.1 Evolving Perspectives.. 70
5.1.2 Viewpoint Hierarchies... 73
5.1.3 Placing Statements.. 75
5.1.4 Functionality of Viewpoint Creation Tools . 78

5.2 Reasoning Within Viewpoints . 78
5.2.1 Viewpoints and Commitments .. 78
5.2.2 Inference Rules and Conflict Detection.. 79
5.2.3 Commitment Reasoning Scheme... 79
5.2.4 Functionality of Viewpoint Manipulation Tools.................................... 81

5.3 Deriving Viewpoint Descriptions .. 81
5.3.1 Interpreting Interview Transcripts . 82
5.3.2 Functionality of Annotation Tools .. 83

5.4 Integrating Viewpoints. 84
5.4.1 Blackboard.. 84
5.4.2 Exploration .. 85
5.4.3 Agenda .. 86
5.4.4 Functionality of Integration Tools .. 86

5.5 Conclusions .. 87
5.5.1 Implementation.. 87
5.5.2 Advantages .. 87
5.5.3 Problems.. 88

5.6 Summary .. 89
6 Computer-Supported Negotiation 9 0

6.1 Conflict Resolution.. 90
6.1.1 Sources of Conflict . 90
6.1.2 Consequences of Suppressing Conflict . 91
6.1.3 Role of Communication.. 92

6.2 Conflict Resolution Model... 92
6.2.1 Resolution Context . 93
6.2.2 Detection of Conflicts . 94

- 7 -

6.2.3 Example Conflicts . 94
6.3 Exploration Phase .. 95

6.3.1 Establishing Correspondences .. 96
6.3.2 Identifying Conflict Issues.. 98
6.3.3 Agreeing Resolution Criteria .. 99
6.3.4 Functionality of the Exploration Tools .. 100

6.4 Generative Phase .. 102
6.4.1 Types of Conflict . 102
6.4.2 Generating Resolution Options... 103
6.4.3 Support for the Generative Phase.. 104

6.5 Evaluation Phase.. 105
6.5.1 Relating Options to Issues .. 105
6.5.2 Relating Options to One Another... 106
6.5.3 Choosing a Resolution .. 106
6.5.4 Support for the Evaluation Phase .. 106

6.6 Summary .. 107
7 Conclusions and Further Work 109

7.1 Summary .. 109
7.1.1 Problem Domain .. 109
7.1.2 Objectives.. 110
7.1.3 Solution .. 110

7.2 Critical Review.. 111
7.2.1 Rationale .. 111
7.2.2 Advantages .. 111
7.2.3 Remaining Problems .. 112

7.3 Future Work... 113
7.4 Summary .. 114

8 References 115
9 Appendix 125

1 Algorithm for splitting agents.. 125
2 Rules for creating new sub-viewpoints... 125

- 8 -

1 Introduction

Matching software to needs is a problem. Describing the needs as a set of precise requirements is
one step towards solving that problem. This thesis describes a framework for the elicitation of
differing requirements from many sources, and the subsequent process of accounting for and
resolving discrepancies in the gathered knowledge.

1.1 Requirements Engineering

The success of the design process depends critically on the designers’ understanding of the
problem. In software engineering, this understanding is encapsulated in the requirements
specification, which describes, precisely and unambiguously, both requirements for the delivered
system and any restrictions on the development process. Any formal verification of the software is
based on this specification, and so is tied to the quality of the specification. In effect, the
specification acts as an anchor and a communication channel throughout the software development
process. The elicitation and formulation of requirements to produce a specification can be termed
requirements engineering.

For large software development projects, the requirements must be communicated to all members
of the development team. The difficulties involved in communication and co-ordination distinguish
programming-in-the-large from programming-in-the-small, where the former involves teams rather
than individuals. The field of software engineering has produced various methodologies in an
attempt to facilitate management of large software projects, and to encourage more rigourous
approaches.

A fundamental goal of research in this area is automation: it is widely accepted that development of
software will become easier and cheaper if more of it can be formalised and automated. In effect,
this has meant that the boundary of automation has crept steadily upstream, to the earlier stages of
the development process [Balzer 1985]. Complimenting this trend is the introduction of formal
methods which ensure that each step in the development process is formally justified, allowing the
products of the process to be formally verified.

Precise definition is vital for the requirements specification. There is always a degree of uncertainty
and informality in original needs, and these needs will themselves be changed by the development
and introduction of a software system. However, large software projects cannot be co-ordinated if
the requirements are woolly or ambiguous. Hence, requirements engineering involves the
translation of informal and incomplete needs into a precise description of what a software system
will be expected to do. This inevitably involves deciding exactly which needs will be met, and
resolving conflicts between competing needs. All later stages of the project rely on this precise
description as the prime source of knowledge about the requirements.

As requirements engineering is concerned with the interpretation and translation of the initial
informal needs, it can never be completely formalised. Rather, the major goal of requirements
engineering is to provide better support for the construction and validation of specifications. This
support should include guidance for the elicitation and formulation of requirements and the
subsequent validation process. This thesis concentrates on how these activities might be supported.

- 9 -

1.2 Multiple Perspectives

A specification must be representative of the various needs of different people. For example, users
will have different needs from maintainers or administrators, and even from other users. Their
individual needs will form the basis of their view of what is required. The validation of a
specification tests that all these views have been addressed and are adequately represented. Ideally,
all the people concerned should be able to identify with the specification and agree it as
representative. The need to ensure that the specification reflects different views suggests that these
views need to be identified and represented.

The model of requirements engineering developed in this thesis allows the diverse perspectives to
be elicited separately. We use the term perspective, to emphasise the fact that there is no simple
relationship between requirements and people, or even between requirements and rôles. A
perspective is simply an area of knowledge which is internally consistent. Each perspective will
normally have an identifiable focus of attention, being the motivating concern of the requirements it
represents.

The model allows the analyst to maintain a set of separate descriptions to represent perspectives.
These perspective descriptions are developed independently, so that disagreements between them
are ignored while the perspectives are elicited, even where the disagreements are terminological.
Because the analysis does not rely on fitting elicited knowledge into a single consistent model, all
elicited information is represented, even that which might otherwise have been discarded as
inconsistent. This forestalls competition between perspectives in the early stages of elicitation,
allowing analyst to concentrate on information gathering.

The elicited perspectives are regarded as knowledge bases which together represent the current
state of the evolving requirements. Taken together, the perspectives may be inconsistent and
incomplete. However, individually each perspective is consistent, and so can be interrogated and
manipulated by the analyst. The processes by which perspectives are identified and developed are
recorded so that the development history can be traced.

The combination of perspectives to form a specification inevitably involves negotiation. In order to
record the course of this negotiation, and allow it to be controlled properly, it needs to be made an
explicit process. If the negotiation were carried out as the perspectives are elicited, with only a
single resulting description maintained, there would be no way of checking that the result is
representative, or that the negotiation was acceptable. On the other hand, the negotiation process
involves a degree of elicitation, as additional supporting information may be needed. Hence, while
perspectives are elicited separately, comparisons between them will need to be made, which will in
turn assist with the elicitation process. Both the perspectives and the comparison process need to
be recorded for validation purposes.

1.3 Conflict and Negotiation

In seeking to represent the perspectives of the many participants in the specification, the problem of
conflict inevitably arises. In the computing literature, mention of the need to handle conflict is rare,
which is perhaps surprising given the importance attached to it in the social sciences. For example,
management studies and sociology recognise that conflict plays an important role in group
interaction [Robbins 1989]. Some recent software engineering research has identified conflict as an
issue (e.g. [Curtis, Krasner & Iscoe 1988]), although as yet little progress has been made towards
understanding how conflict might be handled.

Examples of many different types of conflict abound in the literature on organisational psychology.
For example, Robbins [1974] describes a newly elected city manager who has promised an
immediate improvement in rubbish collection. After several months the citizens complained that

- 10 -

there was no improvement. On investigation it turned out that the citizens regarded “improved
service” to mean more frequent collection, whereas the city manager had meant earlier, quieter and
more economical collection. Thomas [1976] illustrates a different type of conflict, in an example of
a manager who wanted his staff to adopt a new form for their weekly reports, whilst they preferred
the old form. Again, investigation revealed the underlying cause: the staff did not feel they had the
time required to complete the new form, while the manger needed the extra information which was
not on the old form. Both these examples are typical of organisational conflict, and it is not difficult
to see how similar conflicts arise during the introduction of a new software system. Similarly, the
group developing the software may be subject to such conflicts during the development process.

In this thesis, the term conflict is used in its widest sense, to cover any interference in one party’s
activities, needs or goals, caused by the activities of another party. Conflict can be characterised as
disagreement among the originators of the requirements and this disagreement may lead to
inconsistencies in the specification. However, disagreements do not always lead to inconsistency,
and inconsistencies do not always indicate the presence of conflict.

Typical software engineering methodologies do not explicitly address the resolution of conflict.
Such methodologies are geared towards maintaining consistency and so do not allow conflicts to
be expressed, let alone constructively resolved. Indeed, we could characterise existing software
methodologies as conflict avoidance, in that they prescribe particular approaches, which assist
software practitioners in breaking problems down and resolving design decisions in particular
ways. In this way uncertainty is reduced by the provision of the collective wisdom embodied in the
methodology [Lehman 1990].

While this approach helps to avoid conflicts during development, it does not help to deal with
conflicting requirements. Most methodologies require a single consistent specification as a basis
for a coherent design, which means that conflicts are suppressed when the specification is written.
Formal methods do not necessarily help, even though formal languages are intended to prevent
ambiguity and inconsistency [Finkelstein, Finkelstein & Maibaum 1990]. The ability to formally
reason with specifications is a huge step towards detecting the presence of conflict, but carries the
implication that inconsistencies are errors which must be eliminated. Methods developed to support
formal specification reflect this philosophy, and miss the chance to explore conflict.

If much of software engineering is geared towards conflict avoidance, this in itself may not be a
problem, for two reasons. Firstly, conflict may not be as extensive in requirements engineering as
has been suggested, so that studying it might only help in exceptional cases. Secondly, avoidance
is a valid way of tackling conflict, especially where it prevents energy being wasted on fruitless
confrontation.

In this thesis, we argue that conflict is extensive in most real domains, and that avoidance is not a
satisfactory approach to handling conflicting requirements. Examples are given which show that
conflict is important enough not be be suppressed, and that a specification can be enhanced by
handling conflict in more direct ways.

1.4 Preview

The central argument of this thesis is that modelling multiple perspectives separately and then
examining and explicitly resolving conflicts between them will result in a more precise and more
representative specification. Participants can identify more easily with a specification in which their
contribution can be traced. Furthermore, the process of comparison of perspectives elicits issues
and assumptions that might otherwise remain hidden.

The thesis presents a model of the requirements process which provides guidance for identifying
and developing descriptions of the perspectives, and resolution of conflicts between them. A

- 11 -

perspective can be thought of as a consistent view of the world arising from the context of a
particular role. Perspectives do not necessarily correspond to people, as one person may use
several perspectives, and a perspective might be shared by several people. Perspectives are
represented using viewpoints, which are formatted descriptions in some appropriate representation
scheme.

No restriction is placed on the form of these descriptions, nor on the degree of formality. Hence
the model may be used in conjunction with existing specification languages and knowledge
representation schemes. The novelty of this work lies in the explicit support for alternative and
competing descriptions, and in the provision of a framework in which conflicts can be explored
fully.

The next chapter introduces requirements engineering more fully, describing some of the
difficulties of the task. Objectives for a framework for requirements engineering are set out.
Chapter 3 reviews existing work in software engineering, and in knowledge elicitation, concluding
that most existing techniques produce descriptions which represent a single perspective. This
observation is used as a pretext for an analytical review of fields from the social sciences which
cover aspects of multiple perspectives and conflict resolution.

The remaining chapters describe the model. Chapter 4 explains the ideas underlying the model and
discusses the rationale. Four main problem areas within the model are discussed. Elicitation, based
on the capture of perspectives, introduces two of these problems: how to identify perspectives and
how to construct the viewpoint descriptions. The other two problems arise when integrating
(possibly conflicting) perspectives: how can viewpoints be compared and how can differences be
resolved.

The processes of identifying and recording the perspectives is described in chapter 5, together with
a system called Analyser, which was developed to support those activities. The model approaches
the problem of identifying perspectives by splitting viewpoints when distinctions between
perspectives are discovered. The split viewpoints form an inheritance hierarchy, with shared
knowledge inherited from a common ancestor. Descendant viewpoints represent specific areas over
which perspectives disagree. The viewpoints represent only that which their originators have
explicitly stated, ensuring that they remain accurate models of elicited knowledge.

Chapter 6 presents a model for resolving conflicts between perspectives through a process of
computer-supported negotiation. As conflicting viewpoints may co-exist in the model, there is no
compulsion to resolve conflicts until a resolution becomes necessary or desirable. The resolution
process itself involves three phases, of which the initial, exploratory phase is the most important.
In this phase, participants compare the conflicting viewpoints, and identify points of
correspondence and disparity between them. Issues underlying these correspondences and
conflicts are elicited, in order to come to a better understanding of the conflict. In the second phase,
a number of resolution options are generated, according to the types of conflict involved. The final
phase involves comparing these options to one another and to the underlying issues, in order to
choose the combination which best satisfies the participants.

Chapter 7 presents conclusions. It discusses the applicability of the multiple perspective model,
and the advantages it offers. Remaining problem areas are discussed, along with plans for future
research.

- 12 -

2 Requirements Engineering

The term requirements engineering describes the processes leading to the production of a
requirements specification. Much of software engineering research takes the existence of this
document for granted, concentrating instead on the downstream areas of software development. In
this chapter, we argue that the problems of requirements engineering deserve greater study. To
understand why this is so, we consider the role of the specification in the software engineering
process, and describe the issues which must be addressed during specification construction. The
difficulties of requirements engineering come from many directions, including the sheer quantity of
knowledge involved, the inherent uncertainty, and the need for negotiation between conflicting
requirements. We conclude that a prescriptive framework for requirements engineering is highly
desirable, and describe a number of objectives for such a framework.

2.1 The Role of Requirements Engineering

The phase of the software engineering process that begins with an informal statement of need and
produces a requirements specification is generally referred to as requirements analysis. Ideally, the
resulting document should contain all the information about the requirements that might be needed
during the design stage, although in practice, the clients’ perceived needs will change during the
lifecycle of the system. If the requirements aren't clearly defined, the result is uncertainty
throughout the software life-cycle.

The importance of the requirements specification implies that a great deal of effort should be
invested in the creation of such a document [Boehm 1981]. Creating the specification is far more
than just analysis: it involves eliciting relevant knowledge; understanding the task and its social and
organisational context; negotiating with the client over the scope, contents and language; resolving
conflicting requirements; and synthesizing appropriate structures for describing the result. Use of
the term Requirements Engineering has been proposed to indicate the complexity of this process,
and to convey the message that specifications need to be carefully constructed.

This section examines the importance of requirements engineering in the software process,
concentrating particularly on the demands made of the specification. We examine the roles the
specification must play, pointing out that it is both a contract and a communication channel. We
also consider how specifications are constructed and validated. Finally, sections 2.1.4 and 2.1.5
look at the exploratory nature of requirements engineering, and the importance of recording the
development history of the specification, and its underlying rationale.

2.1.1 Specifications

Specifications have a vital role to play in the software engineering process, as the only precise
description of needs. The specification provides a way to verify the correctness of the eventual
design and implementation. If the specification is inappropriate, verification will be pointless.
Information omitted from the specification will not be taken into account in the design process.
Ambiguities in the specification lead to uncertainty throughout the process. Misunderstandings and
errors in the specification will lead to designs which, while complying with the specification, do
not properly satisfy the needs of the users.

Typically, the specification acts as a contract between the clients and the software developers, and
as such is the main channel of communication between them. Balzer & Goldman [1979] describe

- 13 -

three criteria by which a specification should be judged, namely: it must be clearly and
unambiguously understandable by both parties; it must be testable that any implementation satisfies
the specification, and that the specification meets the needs it is designed for; and it must be easy to
modify, as the requirements will change over time. These criteria reflect the contractual nature of
specifications.

The specification also acts as a channel of communication amongst the software team. As the main
source of information about the clients’ needs, it defines what will be common knowledge among
the developers. Too often, the specification does not adequately fill this role, and a recent field
study of behavioural aspects of software developers [Curtis, Krasner & Iscoe 1988] concluded that
many software teams depend upon a single exceptional designer. Such designers are characterised
as having a deep understanding of both the application domain and the design process. In such
cases, this designer is a better source of information than the specification. However, the
development team will not all have equal access to such person, and so will be working with
different amounts of knowledge. Clearly, it is preferable to express as much of this knowledge as
possible in the specification, in order to ensure dissemination.

Because of its accessibility, the specification ought to facilitate co-operation between the various
parties. However, there is evidence that it frequently fails to do this. The study described above
suggested that exceptional designers are able “to integrate different, sometimes competing
perspectives on the development process”. In other words, the specification is only providing one
perspective, and there are other important points of view which it has excluded. This leads to two
major problems, namely: whole sets of knowledge and ideas are ignored by the specification; and
the people concerned will lose faith in the specification. The software team can become fractured,
as such people attempt to exert influence in other ways, and will become dependent on the
existence of a team member with the background knowledge and communication skills required to
resolve the problem.

We have identified two major roles of the specification, as a communication medium, and as a
yardstick by which design and implementation are judged. In order to fulfil these roles, the
specification must be unambiguously understandable, testable, and modifiable. The trend towards
formal specification languages is an attempt to satisfy at least the first two of these criteria.

In addition to these criteria, it has been suggested that the specification should be representative of
the many people that contribute to it [Zave 1982], as each contributor may have some unique
insight or perspective that might otherwise be ignored. More importantly, potential users are
unlikely to co-operate in the development, nor accept the final system, if they feel their views have
not been taken into account. In the worst case, participants would have to circumvent the
specification in order to get an issue raised.

We have referred throughout this discussion to specifications as though they are of a uniform type.
In fact, several types of specification can be distinguished, which are derived in different ways and
have different uses. For example, it is common to distinguish between requirements specifications
and design specifications, where the former describes needs, and the latter describes how those
needs are to be met. While this discussion is directed at requirements specifications, other types of
specification also have a communicative role within the portion of the lifecycle in which they are
used.

2.1.2 Constructing Specifications

As the specification has several important roles to play, it needs to be carefully constructed. It will
be read by a number of different people, with widely differing backgrounds, and so must be
accessible to them. Presentation is therefore important. It is essential that the specification should
answer the types of question that various groups of people are likely to ask of it. In other words, it

- 14 -

should be easy to interrogate. Above all the specification should be regarded as a designed artefact,
itself created to fill certain needs.

Throughout the life of a project, pressures will arise for changes to the specification. These have
many causes, from understanding gained in attempting to satisfy the current specification, to
changes in the environment of the system. Where such changes are incorporated, the specification
should be modified accordingly, in order that it remain up-to-date. If the specification is not up-to-
date it will fail in its communicative role. Specifications, therefore, must be easy to annotate and
modify. Although some would argue that the contractual nature of specifications implies that they
should not change, it is clearly preferable to negotiate a change in the specification than to deliver
software which does not meet the specification.

The specification’s role as a source of information suggests it should include some form of
database or knowledge base. Work on knowledge-based systems have provided some useful ideas
both for modelling requirements (e.g. Borgida, Greenspan & Mylopoulos [1985] – see §3.1.2)
and for reasoning with the specification (e.g. Reubenstein [1990] – see §3.1.3.3). A knowledge
based component can also facilitate access to and management of the body of information gathered
during requirements engineering. Such a component can be used to interrogate the specification
throughout the lifecycle.

2.1.3 Validating Specifications

The specification must be sufficiently precise to determine whether subsequent designs and
implementations meet it, a process known as verification. If the specification is in a formal
language, the verification process can be mathematically rigourous [Bjorner 1987], and to a certain
degree, automated.

However, verification does not ensure that the specification is correct. The specification must be
validated with regard to the original needs of the client. This process is particularly difficult, as
there is no definitive statement of those needs: the requirements specification is the first precise
description of those needs. Because of this, validation cannot be formalised, and must remain a
subjective human activity, requiring input and discussion by the originators of the needs [Blum
1985].

Validation can only proceed if the participants can relate the specification to their needs, and is only
successful if the specification is relevant to those needs. An important facility for validation is
traceability [Alford 1977]. If components of the specification can be traced back to the original
statements that inspired them, then the participants can assess the relevance more readily. Also, if a
statement has been misinterpreted, the parts of the specification which are based on it can be
identified.

Validation is an important part of requirements engineering. As it requires the originators’
participation, it is likely to be considerably smoother if those people have participated throughout
the requirements process. Such an involvement means that the requirements can be validated as
they evolve, rather than when they have been refined into a specification.

2.1.4 Design Capture and Rationale

Often the ability to trace a component of the specification back to an originating statement is not
enough to understand its purpose. For this, the process that led to the current specification needs to
be recorded. Given that specifications are designed artefacts, then recording the derivation is a
form of design capture. The design history must record the decisions made and their rationales in
order to be of use.

- 15 -

Decision capture can be problematic, as rationales tend to be idiosyncratic [Kaplan 1989]. Analysts
are experts in their jobs, and may have difficulty explaining their actions to others who need to
understand the specification. Furthermore, explanations are usually tailored to a particular
audience. If the analyst is recording a rationale, it is not clear who it should be aimed at. Also,
understanding decisions involves making the goal of the participants clear, which is difficult as
these goals are often unconscious, and involve many implicit assumptions. There needs to be a
way to prompt for these goals, and to encourage all participants to think about the decisions
involved.

While it is unlikely that requirements engineering can be automated, some degree of automation
might be introduced for recording the process. Where interactive tools are used, the operations
used can be recorded, automatically, as a basis for the attachment of rationales, using a machine-in-
the-loop [Green et. al. 1983]. To a certain extent, such tools can elicit the rationales used for the
operations being carried out, and automatically record these. The entire process history represents a
documentation of the requirements engineering process, and should be stored with the specification
as a supplementary source of information. However, storing and manipulating this documentation
is a huge knowledge management task, from which the analyst should be freed.

2.1.5 Exploration and Replay

While software engineering aims to produce higher quality software, it is not always possible to
get it right first time [Brooks 1975]. All models of the software lifecycle allow for a degree of
feedback and revision (see §3.1.1). The causes are well known: no-one has perfect foresight to
predict what they will want in the future; clients are not even certain about what they want now;
and the consequences of particular requirements cannot be foreseen [Swartout & Balzer 1982].
Furthermore, the introduction of a new system may itself generate new requirements.

All these problems suggest that some form of exploration is desirable. For the later stages of
software engineering, exploratory programming has been proposed. The specification process, on
the other hand is naturally an exploratory process, in which the participants explore the
requirements. Such an exploration is essential, as analysts will be unsure of the clients needs, and
the clients will be unsure of what is possible. Once an initial specification is produced, clients will
want to explore how it relates to their needs before accepting it.

A particularly useful tool for exploration is the ability to re-trace steps, undoing previous actions.
This allows the participants to explore the consequences of a particular development without
having to commit themselves to it. In a large project, however, this can be problematic as the action
to be undone may have been originated by someone else, on a previous date. The facility therefore
depends on the accurate recording of rationales and the ability to trace dependencies.

A related facility to the undo is the ability to replay parts of the process. This can allow re-use of
previous, similar systems, by replaying their development, making changes where necessary. It
can also simplify program evolution, as alterations can be made to the specification, and the
development process replayed to generate a new implementation. Again, this depends on the
capture of rationales and tracing of dependencies.

2.2 Difficulties

Specification construction is a difficult task. It is of a type of problem that has been termed wicked:
it is ill-structured and open-ended, and the knowledge available is incomplete [Partridge 1978].
Most importantly, there is no notion of a finished specification, and the only criteria for stopping is
some form of satisfaction.

- 16 -

Five major areas of difficulty can be identified as contributing to the problems associated with the
formulation of requirements. The knowledge sources are diverse and vary greatly in the quality of
information and exposition; the actual knowledge takes many different forms; the contents of the
specification need to be negotiated; conflicts need to be resolved; and the knowledge itself is
uncertain and unstable. This section examines each of these problems in turn. The problems are
compounded by the nature of the software engineering process itself, in that the sheer size of the
process makes effective communication vital, for which a solid common understanding of the
problem is needed. Furthermore, the resulting specification must be (to some degree) consistent
and complete.

2.2.1 Requirements Formulation

Before the specification can be constructed, the necessary groundwork must be laid, which
involves knowledge elicitation and the formulation of the requirements. Both of these are difficult
tasks. Elicitation of knowledge forms a major part of the process, whether or not it will eventually
form a knowledge base. There are a number of well known problems in elicitation [Gaines 1987],
caused by the tenuous nature of knowledge, the difficulties people have in articulating it, and the
element of irrelevant or misleading statements. Like knowledge engineering, requirements
engineering involves the extraction and representation of information through some form of
interaction with the experts, in this case the clients. Both have the same set of techniques available
for extracting the information, including various types of interview, observing people in action
(and subsequent debriefing), tutoring, and case analysis. Most of the information gathered in this
way is needed throughout the lifecycle of the software.

Finkelstein & Finkelstein [1983] describe the processes involved in requirements formulation.
There are three basic systematic methods: the use of check lists; lateral (or divergent) idea
generation; and formal specification languages. Decomposition and abstraction are important parts
of the process, removing barriers to innovation. The primitive concepts used in design come from
a number of sources, including: existing designs, analogy, convergent deduction, and divergent
thinking. (See also Carter et. al. [1984] for a particularly graphic and entertaining account of
requirements formulation).

Specification construction can be seen as an evolutionary process. The incremental steps either add
more detail, or clarify existing parts by introducing exceptional case behaviour or retracting
incorrect or over-simplified statements [Feather 1987]. We have also noted that specifications are
designed artefacts, and hence the specification process involves design. Dubois & Hagelstein
[1987] point out that requirements engineering differs from typical software design tasks in that the
latter involve artefacts such as programs, and are done exclusively by specialists, while
requirements engineering involves real world concepts, and requires extensive communication with
non-experts.

2.2.2 Nature of the Knowledge Sources

There are many people involved with the development of a large software system, both in its
design and use. Whilst these people can be broadly classed into groups, such as users (often of
several types), management and software developers, these groupings will not enforce conformity
of the individual members. Each person is a potential source of knowledge, and might contribute a
unique insight. Additionally, people are not the only sources of knowledge, and valuable
information may be found in manuals, memos, and other documents.

Much of the knowledge is difficult to elicit as the subjects need to untangle it, and the analyst needs
to know how to organise it. For example, it is hard to disentangle the requirements from the goals
and perspectives (and associated opinions and biases) of the people involved. It is usual for
example to restrict the specification to what is desired rather than how it is to be achieved, to
distinguish between functional and non-functional requirements, and to distinguish the system

- 17 -

model from its environment. People who are not conversant with analysis techniques will be
unable to make such distinctions, and so cannot untangle the various contributions they are
making. They will certainly be unlikely to offer information in a form that neatly fits with the
organisation the analyst is developing.

Each person has a specific idea about what they want from the resulting system and how it will
help (or hinder) them, and so are most concerned to influence its design. These individual goals
colour their perspective of the requirements, and cause them to introduce systematic bias into their
responses. Furthermore, organizations have goals and policies which may inhibit its members,
again biasing their responses. This contrasts with knowledge elicitation for expert systems, where
the expert is unlikely to have any particular requirements concerning the resulting system, and so
can provide more objective responses. Unfortunately, knowledge acquisition research has shown
that even disinterested experts are not free from bias [Meyer & Booker 1989], and it is likely that
most of these forms of bias also crop up in requirements elicitation.

The analysts themselves are also sources of knowledge, providing a great deal of experience about
requirements for similar systems, and knowledge about the likely effects of particular decisions.
There is inevitably a temptation for the analyst to impose his or her own preferences in the
specification, and studies have shown that convincing the clients that a chosen solution is suitable
is the largest part of the analyst’s job [Fickas Collins & Olivier 1987]. Even where the analyst has
experience of the domain in question, his knowledge will be of a subtly different flavour to that of
the client, and there will be subtle differences in the detailed requirements of the particular
situation. The analyst must be careful, therefore, to blend his or her knowledge with others’
contributions.

It is often difficult to compare the knowledge offered by different subjects, as their experience
varies, both in type and level. Kolodner [1984] points out that experience changes the way a
person reasons, and that the key difference between experts and novices lies not so much in the
level of knowledge, but the ability to apply knowledge more effectively. Dreyfus & Dreyfus
[1986] describe the process of evolution from novice to expert, and suggest that novices use
simple heuristic rules, while experts internalise their knowledge. This implies that experts are less
able to explain their behaviour than novices. Also, people have a tendency to tailor their
explanations to the hearer, so for example a layman would receive a superficial answer, while an
expert would receive a detailed response [Compton & Jansen 1989]. All these factors combine to
make it very difficult to compare knowledge elicited from people with different levels of
experience.

Another reason knowledge is difficult to compare is that subjects use different assumptions, and
these assumptions are not always obvious. While some sources will articulate what others have left
as assumptions, it is not always clear when this has happened, nor is it always obvious when
people have made incorrect assumptions about areas of knowledge they are not expert in. As there
are a large number of assumptions accompanying any communication act, ranging from
assumptions that the hearer understands the language, to very specific assumptions about the
domain, it is impossible identify all of them.

2.2.3 Nature of the Knowledge Involved

Many areas of knowledge need to be taken into account. In a large-scale project, the information
needed includes knowledge about software engineering methodologies and the target machine’s
architecture, as well as application domain knowledge. Furthermore, for maintenance purposes,
knowledge about the target software and the design history are also needed. Much of this
knowledge is specific to a particular project; for example, knowledge about the needs which gave
rise to the current study, knowledge about typical user behaviour, knowledge about performance
requirements of the various components of the system, and knowledge about the software
development process (its goals, its progress, its restrictions, etc). In his excellent survey of the use

- 18 -

of AI in software engineering, Barstow [1987] describes the roles played by these types of
knowledge and argues that AI techniques could greatly assist with the handling of this knowledge.

The analyst will use many representations to capture the variety of information as a matter of
course [Burton & Shadbolt 1987], as no one representation has sufficient expressive power for the
many different types of knowledge [Sloman 1985]. Even natural language is frequently
supplemented with diagrams and other devices. When a single specification language is to be used
ultimately, during elicitation the analysts will still have to handle other representation schemes, as
people attempt to explain their contributions in idiosyncratic ways. Indexing and cross-referencing
multiple representations is a difficult knowledge management task in itself, for which extensive
support is desirable.

As well as facts about the domain, relevant policies and preferences need to be considered, and
these are problematic to represent. They cannot be represented as specific facts, nor as verifiable
goals. Rather they are heuristic-like guidelines that restrict and channel the design process
[Anderson & Fickas 1989]. The need to choose between the diversity of methodologies available
for software engineering strengthens the role of institutional policy and individual preference in the
decision process.

Finally, the sheer volume of knowledge compounds these problems, and makes the management
of the knowledge difficult. Whilst consistency checking can be handled in a small knowledge base,
as the size increases such checking rapidly succumbs to the combinatorial explosion. When a huge
amount of information is involved any consistency checking is prohibitively difficult. In
requirements elicitation, inconsistencies occur frequently, usually indicating a conflict between the
interested parties. In such cases, the conflict represents the need for an explicit decision by the
analyst, which should not be taken until all the appropriate information has been gathered. Hence
all alternatives must be captured and accommodated to allow the analyst to delay these decisions as
necessary.

There is currently a paucity of computer support available to the analyst to manage this knowledge.
Most existing software tools are geared to producing manual representations for the information.
This means that most of the knowledge needed is held in the software practitioners' heads: only a
small proportion is explicitly stored in the documentation. This increases problems of
communication across the software team. If the analyst never explicitly states such knowledge, it
can only be passed on by word of mouth to others involved with the software life-cycle.

2.2.4 Negotiation

Because of the diversity of sources and types of knowledge, there will be many differences of
opinion. Requirements engineering can be seen as the resolution of the various constraints and
goals of the people involved, and their integration into a single consistent specification.
Conventional analysis techniques do not address the resolution process directly, and so it usually
begins in the analyst’s head. Part of the analyst’s skill involves the juggling of competing
requirements and negotiating with the client.

Each participant brings a number of preconceptions or biases into the specification process, which
are adapted as the process proceeds. One of the reasons for this adaptability is that clients are not
always sure of what they want or what is feasible. The analyst’s expertise can be used to guide
them into understanding their needs better, as part of the analysis process.

However, too often the analyst takes this as an opportunity to impose his or her own solution. This
arises from the view of analysis as a process of translating user intent into formal or semi-formal
documents. The usual approach is to learn about the client, analyse the data, and then make
suggestions. Presenting these suggestions to the client takes most of the time, as the client needs to
be convinced that the analyst’s interpretation is right [Fickas, Collins & Olivier, 1987]. As analysts

- 19 -

naturally have preconceptions of the requirements, these will be used as a basis of their
understanding of the problem. Information gathered during elicitation is used to construct a
description which reflects these preconceptions. Unfortunately, there is a danger that this will
commit the specification to one particular understanding of the requirements, and information
which conflicts with the current description will be discarded.

A better approach would be for the resolution to take the form of negotiation amongst clients and
analysts, where the analyst and clients share their knowledge, and enter into a mutual process of
making suggestions, and critiquing each other's suggestions. Unfortunately little computer support
is available for synthesizing a solution from the various suggestions, nor for resolving the conflict
inherent in the process.

2.2.5 Conflict

Even if negotiation is used as a basis for requirements engineering, there will be points at which
explicit resolution of conflict becomes necessary. Such conflicts arise for a number of reasons,
varying from misunderstandings to differences of values. In many cases it is not obvious what the
cause of the conflict is, nor how to resolve it.

Traditional software engineering methods do not address the resolution of conflict, but try to avoid
it. There are a number of problems with any model which avoids conflict. As there is no means of
expressing conflict within the model, where it does exist it is suppressed. This can cause problems:
the resolution must be carried out outside the framework of the model and consequently is likely to
be carried out at an inappropriate time, using an undesirable method. In addition, resolution thus
achieved is untraceable, making rationales invalid, and the process irreproducible.

Failure to recognise conflict between the perspectives of the participants will lead to confusion
during the analysis phase, which will continue throughout the lifecycle. Often, they will lead to a
single perspective being adopted as the basis for specification at the cost of any alternative
perspectives. In this process useful ideas associated with the rejected perspectives will be
discarded, along with the goodwill of their originators. Communication between participants will
suffer, and will often breakdown altogether if there is an “injured” party.

To handle conflict properly, the specification needs to model the perspectives separately, so that
their interaction can be studied. We can draw on many fields which have addressed some or other
aspect of conflict resolution, in order to understand the processes involved. The next chapter
surveys research on conflict in relevant fields, discussing in each case how the work might apply
to software engineering.

2.2.6 Uncertainty

One of the main aims of software engineering has been to formalise as much of the development
process as possible, in order to reduce the arbitrary nature of the software process, and to
introduce automation. This formalization facilitates verification, which has been advocated as a
means of improving reliability. However, a formal verification can only be used to demonstrate
that an implementation fulfils the formal requirements specification; in other words that no errors
creep in during the design process.

Because of the informal nature of the business environment in which the eventual system must
operate, there will always be a degree of uncertainty in the requirements [Balzer, Goldman & Wile
1978], [Lehman 1990]. In particular, the initial step of requirements engineering begins with an
informal statement of need, and so there can never be a guarantee that a formal specification
describes exactly what is required.

- 20 -

One symptom of this uncertainty is that the specification gets altered once implementation is
underway. The fact that the process of specification cannot be fully separated from the
implementation has already been noted. Swartout & Balzer [1982] identify two main reasons for
alterations to the specification once the implementation is underway. The first of these involves
physical limitations arising from implementation decisions. The second reason is the most
interesting, and is put down to lack of foresight in the specification. The implementation may yield
new insights into the requirements of a task, and as such the entire software engineering process
can be seen as one of prototype refinement [Giddings 1984].

Another barrier to formalisation of requirements engineering is the need for negotiation. Studies of
conflict resolution show that the most successful methods require a degree of creative input [Fisher
& Ury 1981]. Formal approaches to conflict resolution have a tendency to produce compromise
solutions which do not properly satisfy any participant’s needs [Luce & Raiffa 1957].

The uncertainty and the need for creativity means that requirements engineering can never be fully
formalised. However, there is plenty of scope for prescriptive methods and tools to support the
process. Cunningham et. al. [1985] give a number of dangers that proposed specification models
have suffered from, which can be translated into recommendations. These include: lack of a
method; difficulty of grafting methods onto existing procedures; stultification of creativity; and
univocality, as few methods support elicitation from many sources and their consolidation into a
consistent specification. Formal methods which do address these problems could provide a
powerful framework for requirements engineering.

2.3 Objectives

We have discussed the importance of requirements engineering, and the particular problems
relating to the process. Clearly, a model of requirements engineering is needed, which allows the
analyst to overcome the difficulties. In this section we present a set of objectives for such a model,
and for tools to support it. Note that we are not proposing automation. Case studies of analysts at
work (e.g. Fickas, Collins & Olivier [1987], Adelson & Soloway [1985]) have revealed that a
broad range of skills are employed by analysts. It is unlikely that the full range of these skills can
be automated.

2.3.1 Framework

Rather than a rigid formal process, the analyst needs a framework which can guide his or her
expertise. This framework must support the creative input and interpretive skills of the analyst.
Finkelstein & Fuks [1989] suggest that such a framework be: flexible; empirical (in that the model
maps onto the results of observational studies); enactable; co-operative; and that it should be able to
handle conflict.

However, in order to facilitate some automation, a degree of structuring must be introduced. An
approach which supports an incremental, evolutionary process is needed. The individual steps
which build the descriptions arise out of the dialogues between participants, and a model that is
overly-prescriptive will severely limit the scope of these dialogues, possibly causing vital steps to
be missed. Therefore, any automated support or formalization must account for, and indeed
encourage dialogue as exploration of the current state of the specification. One of the results of this
requirement is that specification comes to be seen as a conversational activity.

In order to allow the participants to control the process, the model must allow any order of
discussion. In other words, it cannot be guaranteed that needed information will be provided
immediately. Rich, Waters & Reubenstein [1987] discuss the inevitable informality of human
communication, listing abbreviation, ambiguity, poor ordering, incompleteness, and contradiction
as key features. These features represent an essential part of the human thought process, as a

- 21 -

means of dealing with complexity. People present ideas in the order they occur, not in an order
which is convenient to the hearer. In particular, the human mind is adept at ignoring inconvenient
consequences of particular statements with the intention of clarifying them later. Studies of human
designers have shown that they frequently make notes to themselves to return later to a particular
item [Littman 1987]

Finally, the model must allow the participants to delay the resolution of conflicts and the making of
decisions. Requirements engineering is primarily an exploratory process, involving the gathering
and formulation of knowledge. It is vital therefore, that it does not become overly-restricted by
premature decisions. A framework for the process should encourage participants to gather all the
relevant knowledge and explore all the issues before making a decision.

2.3.2 Support Environment

In addition to a model for the specification process, we need to consider what kind of support is
needed. The automated tools should form an environment in which the knowledge collected can be
organised, manipulated and interrogated. We have characterised the specification as a knowledge
base, which implies techniques from knowledge-based systems research can be applied [Barstow
1987]. If all the knowledge is collected into an on-line knowledge base, it can remain accessible for
the remainder of the lifecycle [Harrison 1987]. This includes not just the knowledge about the
domain, but the documentation of the process itself.

We therefore envisage an environment which comprises a knowledge base containing all the
gathered information, an inference engine which defines the operations which might be carried out
on the knowledge base, and a set of tools which assist in the formulation, refinement and
presentation of the knowledge. This organisation is based on the typical architecture of a
knowledge based system [Boose 1986], and has been applied to requirements engineering
elsewhere (e.g. Reubenstein & Waters [1989]). The form of the inference engine will depend on
the representation(s) used within the knowledge base. As the knowledge base represents at any
point the current state of the specification, reasoning within the knowledge base allows participants
to test the specification.

The knowledge base will be continually added to, and hence any reasoning is non-monotonic in
that new knowledge may invalidate previous conclusions. The incremental refinement of
descriptions inevitably involves adding details such as exceptional case behaviour, to fix problems
which occur when descriptions are tested. Detailed tracing and recording of dependencies
throughout the knowledge base is therefore desirable.

As a specification evolves, it will frequently become inconsistent, and at all times will be (to some
degree) incomplete [Yue 1987]. At times there will be temporary inconsistencies, over-
generalisations, and over-simplifications. However, participants will need to manipulate the
specification as it evolves, as part of the exploratory process, and so the reasoning mechanisms
must cope with inconsistency and incompleteness. Areas of conflict, and places where more details
are needed can often be detected automatically, but the need to allow commitments to be delayed
means that participants might choose not to resolve these immediately.

Finally, the entire process should be documented automatically. We have stressed the importance
of capturing the design history, together with rationales. However, to do so requires a lot of extra
effort from the participants. They are unlikely to be persuaded to make this effort unless a great
deal of the recording process is automatic. If the series of actions made using automatic tools is
recorded, this can form a framework to which rationales can be attached.

- 22 -

2.3.3 Tools

The last section described the general nature of a support environment needed to support
requirements engineering. There are a number of areas in which tool support can be of particular
help.

One major task in which tool support can help is in guiding participants to areas which need more
discussion. We noted above that automatic detection of conflicts and missing information should
be possible. Given enough background knowledge about the domain, it should also be possible to
provide a degree of knowledge based critiquing [Fickas & Nagarajan 1988], to supplement the
manual critiquing process. Maarek & Berry [1989] note that automating the clerical work of
detailed checking of specifications is an ideal way to supplement the human activity.

The critiquing process will lead to more knowledge being gathered. Tools can assist with the
incremental integration of this new information with the existing knowledge base. The translation
of natural language utterances into the appropriate representations is unlikely to be automated, but
again, clerical assistance can be given. Feedback can be given regarding the effect of the new
knowledge, for example by tracing the effects of new cases. Where the new information was
prompted by problems in the existing knowledge base, the system can keep track of which parts
have been resolved, how they were resolved, and what problems still remain.

One advantage of automatically tracing the process is that the context of statements can be more
readily accessed. Contextual information provides important clues for interpretation and again for
validation. If the dialogues are recorded and held as a part of the knowledge base, then tools to
access these transcripts can be provided.

Conflict is an important part of the specification process, and tools to help identify and resolve
conflicts are needed. Whilst resolving conflict is essentially a human activity, a range of options
needs to be created and explored. Assistance with developing and reasoning with the options can
be provided. The system should also ensure that all relevant views are represented in the resolution
process.

Finally, tools are needed for organising the knowledge for presentation back to the participants.
This includes assistance with building initial descriptions from the participant’s comments, and
assistance with demonstrating to the participants the current state of the specification. Several
techniques are useful for this, including animation of the specification [Kramer et. al. 1987] and
summarization [Fickas 1987a].

2.4 Summary

This chapter has examined the importance of requirements engineering, and the difficulties,
concluding that a model is needed to support the process. Requirements engineering is important
because it is concerned with the production of specifications, which play a pivotal role in a
software engineering project. The specification acts as a communication medium amongst the
software team, and as a yardstick by which results of the later stages of development will be
judged. The specification should contain all the information about the requirements needed during
the remainder of the software lifecycle. It must be unambiguous, testable, and modifiable. It must
be representative of the many people whose needs it refers to. Above all, it should be a precise
description of the requirements.

Specifications need to be carefully constructed so that they are useful and usable. In particular, we
have suggested that they be treated as designed artefacts, and careful consideration given to the role
they must fill. The design process that creates specifications needs to be recorded for validation, to

- 23 -

allow traceability, and this design history must include rationale. As there is an inevitable amount
of uncertainty in requirements, exploratory approaches must be supported.

There are a number of difficulties in requirements engineering. A very large amount of knowledge
needs to be captured, covering a range of areas. A range of sources need to be consulted to elicit
this knowledge, including people with different backgrounds and different perspectives, together
with various texts and similar media. The knowledge might be represented in a number of different
ways, and may be entangled with personal preferences and biases. Specification involves
negotiation between the many participants, and conflict resolution, where there are competing
needs and constraints.

All these issues point toward the need for a model of the requirements engineering process. Section
2.3 presented a number of objectives for such a model. The model should provide support for the
interactions between analyst and client, and encourage them as explorations of the current state of
the specification. It is vital that during this process the participants should be in control: the method
must only guide, rather than force, the order of discussion.

Computerized support can assist this process in two main ways: documenting the information
already gained, and guiding the discussions to areas which need more exploration. The support
should form a knowledge management environment capable of accommodating knowledge from
many conflicting sources, which is able to reason when inconsistencies aren’t resolved
immediately, and which can guide and document the process throughout.

The remainder of this thesis describes a model which meets these objectives. The next chapter
explores the literature describing areas from which the elements of this model are drawn, and the
following chapter introduces the model itself.

- 24 -

3 Analytical Review

This chapter analyses the literature in a number of fields. We begin by surveying existing work in
requirements engineering (§3.1) and knowledge acquisition (§3.2). Section 3.3 reviews these two
fields and concludes that most existing techniques concentrate on representing a single perspective.
Some recent work that recognises this shortcoming is presented. Part of the problem is that
techniques are needed to compare perspectives and resolve conflicts between them. The remainder
of the chapter surveys work from related fields that study aspects of conflict resolution.

3.1 Requirements Engineering

In general, software engineering has two main focuses: representation schemes and development
frameworks [Finkelstein et. al. 1987]. Research in requirements engineering has also fallen into
one or other of these areas. The former generally involves developing specification languages,
together with some investigation into the desirable features of such languages. Research on
development frameworks has been more varied, and a number of paradigms have been proposed
for modelling the requirements process. This section discusses the lifecycle models used in
software engineering, and then surveys research on specification languages and on modelling the
requirements process.

3.1.1 Software Life-Cycle

Several paradigms for the development of software have been proposed, of which the most
commonly used for large systems is the waterfall model, which breaks the process up into a series
of phases. This aids management of the project as each phase can be “signed off” as complete with
the production of one or more artefacts, such as specification, design, code, etc.

The influence of the waterfall model has encouraged practicioners to think of the requirements
phase as a separable part of the process, which can be treated in isolation from the remainder of the
software development process. The interface between this and the later phases is the requirements
specification, which should be a complete and precise description of the requirements. The
requirements phase is then restricted to a consideration of what the system should do, while the
later, design stage considers how it should be done.

In fact, this division is not realistic, and even the waterfall model recognises there is a process of
feedback from the later phases. It has been pointed out that without perfect foresight, the
specification itself is unlikely to remain unchanged by the design process [Swartout & Balzer
1982]. Such foresight is unlikely as the introduction of a software system actually changes both the
domain and human perception of it.

Lehman [1990] suggests that uncertainty is a direct consequence of nature, and that software
engineering is really an attempt to manage that uncertainty. To illustrate the point, he introduces a
classification of three types of program: S-type (specifiable) in which the specification is the sole,
definitive determinant of correctness; P-type, which are created to solve some stated problem, and
success is judged according to the problem statement; and E-type (embedded) which solve a
problem or implement an application in some real world domain, and are judged according to
acceptability, value and level of satisfaction. Large scale systems are nearly always E-type, and
therefore the notion of correctness does not apply [Lehman 1980].

- 25 -

The waterfall model is inadequate for real world applications as it doesn’t make allowance for
program evolution. Giddings [1984] proposes an alternative lifecycle modelled on a cycle of
experimentation. He introduces a distinction similar to Lehman’s, between software which is
independent of its domain and so does not need to be validated, and software which is dependant
on the domain, and which may change that domain. He introduces a lifecycle which is really a loop
of observation, abstraction, design, implementation and experimentation. The results of the
experimentation feed back into the next iteration. Products would be treated as spin-offs from this
cycle, rather than an end in themselves, allowing a distinction between error correction (for a
product) and evolution (for the continuing cycle).

A number of other paradigms for software development have been investigated, including
exploratory programming, rapid prototyping, and formal transformation. However, in all these
models, an understanding of the requirements is an essential initial step, whether or not these are
eventually expressed in a specification. An examination of the various attempts to support the
requirements process is therefore of value no matter which lifecycle paradigm is adopted.

3.1.2 Specification Languages

Research on specification languages has emphasised the distinction between requirements (what is
to be done) and design (how it is to be done). Typically, specification languages are designed to
assist with modelling the requirements without prejudicing future design decisions. Balzer &
Goldman [1979] describe a number of principles for specifications, and require that a specification
be unambiguous, testable and modifiable. Their principles include: that the functionality should be
separated from the implementation; that a specification language should be process-oriented rather
than mathematical; that a specification should encompass not only the system of which the software
is a component, but the environment of that system too; and that specifications should be
operational. Their requirement for modifiability leads them to suggest that specifications should be
loosely structured, and localised.

Borgida, Greenspan & Mylopoulos [1985] also give a number of principles for specification
languages. A specification language should be able to: model entities and events in the domain,
together with constraints and assumptions; handle real world concepts (natural kinds) without
causing vagueness or contradiction; and represent the passing of time. Furthermore, it should
support the process of abstraction, and provide the facility to detect inconsistency, preferably by
allowing redundancy. Finally specification languages ought to be easy to learn and read, and
convenient to use.

Whilst there is broad agreement on the general thrust of these principles, there is disagreement over
how they might be met. For example, there is a conflict between the desirability of localization and
the suggestion that redundancy should be encouraged to assist with consistency testing. Some
authors recommend that repetition of information be eliminated as it inevitably leads to
inconsistency, while others maintain that it helps to detect errors and reduce univocality.

Specification languages have to provide both formality and expressive power, which tend to be
complimentary features [Dubois 1989]. The expressive power supports the modelling of
requirements, while the formality provides guidance for the process of this modelling. Current
research is dedicated to developing specification languages that can maximise both these properties,
and there is some disagreement between those that advocate purely formal specification (e.g.
Cunningham et. al. [1985]), and those that argue for a degree of informality in specifications (e.g.
Balzer, Goldman & Wile [1978]).

Plenty of reasons have been suggested for adopting formal specification languages, of which the
most important is the level of precision they offer. Finkelstein, Finkelstein & Maibaum [1990]
discuss the advantages, suggesting that with a formal specification it should be possible: to
eliminate ambiguity using the formal semantics; to test the specification for incompleteness and

- 26 -

inconsistency; to formally verify a subsequent design or implementation; to trace back components
of the specification to originating needs for validation purposes; and to evolve and modify the
specification systematically in later stages of development.

On the other hand there are a number of drawbacks with formal specification languages, not least
in the unnatural notations they employ. Cunningham et. al. [1985] give some reasons why the
current generation of formal specification languages have not been adopted in industry. These
include unnaturalness, unreadability, fluidity (the languages are still being developed), lack of
structure, and contentious semantics. Above all, formal specification languages need to be
supported with formal methods for guiding and organising the specification activity.

Early specification languages were intended primarily for program specifications, and were
designed to model the things programmers are concerned with. Of these, the algebraic language
CLEAR is a typical example [Burstall & Goguen 1981]. Such languages permit the specification of
data structures and operations upon them, in terms of functionality, rather than implementation.
This allows the designers to reason about the properties of various programming concepts, and
provides a basis for proving that particular implementations satisfy the specified behaviour.

Addis [1985] notes that although representation schemes are a first step towards symbol
manipulation, the representation must not be tied too closely to the physical features of the symbol
manipulation system, or the descriptions will assume properties that have nothing to do with the
knowledge domain. The initial analysis should use representations that closely match the mental
models used by the participants. Recent specification languages aimed at modeling the
requirements recognise this. A number of such languages have been developed, based on a number
of different paradigms.

The object-oriented language called RML draws heavily on AI work on knowledge representation
[Borgida, Greenspan & Mylopoulos 1985]. All concepts in the world are represented as objects,
which are grouped together in class hierarchies, and related to one another by their properties. The
class hierarchies provide inheritance, and are the key mechanism for handling abstraction.
Activities and assertions are also treated as objects, allowing a uniform treatment of all concepts.
The language also represents units of time as objects, and evaluation of an object’s properties is
always with reference to a particular point in time.

The relational database model provides a different paradigm for requirements modeling, as
demonstrated by the language GIST [London & Feather 1982]. GIST is based on the description
of data objects and their relations to one another, allowing associative reference to objects,
including historical reference. One of the motivations for GIST was to provide a formal semantics
for the features normally found in natural language specifications, such as constraints, inference,
and demons (which model a system’s environment). It is also a wide spectrum language, designed
to support incremental transformation from requirements specification to detailed design.

A third paradigm which has been used for specification languages is logic. Maibaum [1986]
describes a modal action logic (MAL) for formal specification. MAL is based on a typed first order
logic, with the addition of: a modal logic with agents and actions; deontic operators such as
permitted and obliged; and an interval logic for reasoning about time. Hence it provides a
framework for modeling real-world concepts using a formal logic.

3.1.3 Specification Processes

Rich specification languages alone are not enough to support the specification process [Kramer,
Ng & Potts 1987]. Specifications of large scale systems are themselves large and unwieldy, and
constructing and comprehending such specifications is difficult [Feather 1987]. Furthermore,
many specification languages, particularly the more formal, require a great deal of expertise. The
process of specification must be supported, with guidance given for the elicitation and formulation

- 27 -

of requirements. Where possible this guidance should be formalised, to allow a degree of
automation.

Osterweil [1987] argues that software development should be treated in the same rigourous way
that software itself is handled, and that software processes could be encoded in the same way as
programs. The advantages of this are that the process becomes a material entity, allowing closer
examination of it, and possible re-use. Certainly such a formalisation is superior to the provision of
procedures manuals.

However, Lehman [1987] cautions that representing software development as a program has its
limitations, particularly as any programming language severely limits how a problem can be
solved. As many parts of software development involve some form of creativity, they are not
amenable to being modelled algorithmically. However, this does not preclude a form of heuristic
guidance, and an accurate record of the decision-making process is certainly of vital importance.

Empirical investigations of analysts at work reveal the range of behaviours which need to be
supported. For example, Fickas, Collins & Olivier [1987] studied analysts interviewing clients,
and observed a number of techniques including tutoring, concern mitigation, example generation,
exploration of automation impacts, and summarization. The customers needs must be questioned in
detail rather than accepted at face value, and an important part of this process is the construction of
preliminary models for demonstration back to the client.

There are a number of paradigms currently being investigated as models for the specification
process. Some of these concentrate on the creation of specifications, while others concentrate on
the manipulation of specifications and their subsequent development. However, no clear distinction
can be drawn between these two focuses, as there is no clear distinction between creation and
development of specifications. Often, paradigms chosen for their applicability to one area of the
specification process can be usefully extended to other areas. In the remainder of this section, we
survey some of these paradigms, beginning with a discussion of the use of formal methods, and
ending with some comments on the difficulty of capturing and recording the process.

3.1.3.1 Formal Methods

Formal specification languages provide a way to remove ambiguity, by defining a precise
semantics. However, the full potential of formal specification languages can only be exploited with
formal methods. Bjorner [1987] defines a method as a set of guidelines for selecting and
sequencing the use of techniques and tools, in order to construct an artefact. A formal method is a
method in which all the tools and techniques are formal, and in which the use of all the techniques
and tools can be formally justified. The second part of this definition provides the chief
characteristic of formal methods: the process of development is treated as a formal object which can
be reasoned about in the same way as the artefacts produced by that process. As yet no existing
methods satisfy this definition, although Bjorner discusses how some existing methods such as
VDM might be formalised.

Cunningham et. al. [1985] argue for the use of formal methods, pointing out that formal languages
require prescriptive guidance (methods), if they are to be applied by anyone other than highly
skilled experts to significantly large problems. They also point out that while formal specification
methods may be very different from existing, informal methods, they should at least be compatible
with current practices for procurement and quality assurance, and should not stultify creativity.
Finally, formal methods should support requirements elicitation from many sources and the
consolidation of these perspectives into a consistent specification, something that few existing
methods do.

Finkelstein & Potts [1987] describe a method designed to support the construction of formal
specifications in the language MAL (See §3.1.2). The method consists of a set of steps, each of

- 28 -

which consists of a strategy and a set of heuristics to cover specific situations. While not strictly
formal according to Bjorner’s definition, the name, Structured Common Sense (SCS) was chosen
to convey its nature as a formal framework with which to guide the analyst’s skills. SCS draws on
the experience of established methods such as CORE [Systems Designers, 1985] in attempting to
provide a prescriptive framework.

There is some controversy over the extent to which formal methods can contribute to software
engineering. Most of the objections centre on the use of program proofs (e.g. [DeMillo, Lipton &
Perlis 1977], [Fetzer 1988]), as these are probably the most widely advertised benefit of formal
methods. The objections centre around the use of rigourous proofs to assure software reliability,
and whether real-world software is actually amenable to proof of correctness. However, there is
little doubt that formal methods have a lot to offer for the practice of software engineering, even if
they are only ever used to supplement traditional informal methods [Gehani 1982].

3.1.3.2 Specification as Planning

Anderson & Fickas [1989] suggest that requirements can be regarded as goals, and the
specification describes plans for achieving them. Work on planning from AI can then be applied as
a model to guide the design of specifications. Using this paradigm, the expert knowledge used in
the specification process is encoded as operators, and the objects and relations used by those
operators, and a planning system is used to support the specification process. The planner
produces plans using the given operators to show how the users’ goals might be achieved. Plans
can also be constructed to prove that prohibited states can be achieved, in order to debug and
elaborate a partially developed specification.

The need to model and reason about the users’ goals has been studied in a number of projects.
Mostow & Voigt [1987] explore the use of planning in design, and although they studied algorithm
design, some of their comments reflect a wider concern, especially of the specification process.
They distinguish three types of goal: domain goals, which describe the task; performance goals,
which roughly equate to non-functional requirements; and design process goals, which concern the
resources available for design. All these forms of goals must be accounted for in the requirements
specification.

Wile has developed a language called Paddle in which strategies and goal structures can be
expressed [Wile 1982]. Although it is intended for transformations on programming languages,
Wile points out that Paddle would be useful for such domains as theorem proving and specification
design. The language encompasses individual transformations (operators), editors (which apply
sequences of transformations), and strategies (which represent the intent, or plan, behind such
sequences). In other words, it describes both goals and ways of achieving them.

One of the interesting features of Paddle is that it explicitly expresses relationships between goals,
among which Wile includes: sequential dependency, where some goal must be achieved before
another; goal independence, where goals can be achieved in parallel; choice, where one of a set of
goals should be selected, all of which support the same overall goal; conditional goals, where some
goal need only be achieved if another goal fails; and repetition. Paddle includes all these goal
structures, together with variations, as built-in primitives. It allows the user to define commands,
which might be single operations or entire strategies, using a mixture of primitive keywords and
English phrases. The English phrases are not understood by the system, but rather act as stubs,
which must be refined later by further definitions. A set of operators which describe particular
ways of achieving goals is provided as a parameter to Paddle. Typically these would form an
editing language, as when Paddle is used to structure sets of transformations on programs.

Treating specification as a planning process has certain advantages. It makes the goals (or
purposes) of a specification explicit [Mostow 1985], and so aids the validation process. Yue
[1987] points out that information about goals is vital to demonstrate completeness, and suggests

- 29 -

that sufficiency and pertinence can be used as formal measures of completeness with regard to a
particular goal. However, while planning based approaches allow the analyst to model the goals of
the users, it is not clear how easily these goals can be elicited.

3.1.3.3 Analogy and Reuse

It has long been recognised that one way of solving problems is by analogy with old ones
[Leishman 1988]. In some cases an identical problem will have already been solved, and the
solution can be re-used without alteration. Some effort in software engineering has been directed at
re-using chunks of programs, and at building and indexing libraries of reusable software
components (e.g. Neighbors [1984]). However, at anything other than the lowest level there is
unlikely to be an identical past solution, and the best that can be hoped for is to find a similar
solution which can be adapted.

Three problems need to be addressed for analogical problem solving to proceed: how experiences
can be stored and indexed; how the closest past solution can be selected from a potentially huge
list; and how the old solution can be transformed for the new problem. Finkelstein [1987] explores
the possibility of re-using parts of specifications through a process of analogical mapping, and
gives a number of strategies for selecting analogous solutions. Pattern matching on attributes can
be used at both a high and low level of abstraction, and can be enhanced with the use of importance
measures. Causal chain matching attempts to find similar causal links between objects. Where
concepts can be generalised and so organised into classes, this provides another source of
analogies. Finally the purposes of objects can also be used to provide information on possible
analogies.

Carbonell [1985] criticises attempts to take a solution to an old problem and transform it into a
solution to the new problem as being too simplistic, because it ignores information about strategy
and decision-making. He proposes derivational analogy, which walks through the decisions used
in an old problem and considers whether they are still valid for the new one. The derivation must
capture the goal-structure of the problem, all the decisions made, pointers to knowledge used in the
solution and the solution itself. Each decision must include all the alternatives that were considered,
the reasons used for the decision, whether any false paths were followed and why (and if so, what
the eventual cause of failure was), and any dependencies of later decisions on earlier ones.

A derivation can be re-used when the initial stages of problem analysis for a new problem are
similar. At each step, the reasoning for the decision recorded in the derivation is examined to
ensure it is still valid. Storing derivations is memory intensive, although several factors mitigate the
problem. Firstly, all the dependency links used in a derivation are internal and so each derivation is
self-contained. The size of a derivation is proportional to the search depth, rather than the number
of decisions made, as only the final (successful) path need be recorded. Furthermore, problems
can share portions of derivation, which also aids indexing.

Replay of design derivations has not yet been particularly successful. Mostow [1986] lists the
problems that can arise. Missing preconditions can cause a step to be replayed when it shouldn't
be: it doesn't work, it produces the wrong result, it doesn't achieve what it was originally
supposed to, or an alternative step would be more appropriate. The rationale for the step must be
re-examined, and the goal tested to see if it has been achieved correctly. There are also problems
with references, as a reference to an object in the original derivation may not be correctly resolved
in the new problem. Clearly, higher-level descriptions of the objects in question must be used to
understand what the reference was intended to match.

Problems can arise in patching a derivation to meet a new problem. Although adding, deleting and
modifying steps can allow the derivation to be used on a much larger set of problems, there is a
problem in identifying exactly which steps need to be altered. Furthermore, altering steps may
cause problems elsewhere in the derivation, as steps make implicit assumptions about the context

- 30 -

in which they are used. They rely on their predecessors to set up this context, and their successors
to complete the process successfully.

 Ultimately, the intention to allow reuse must be built in to the method, and extra information
stored with previous cases to facilitate identification of analogical cases [Finkelstein 1987]. Some
methods have been deliberately designed with this in mind. For example, the incentive for the
strategy language Paddle was the observation that developments expressed formally could be
automatically re-applied to a changed specification to produce an appropriate re-implementation.
Analogy with existing specifications can provide an important resource in the construction of new
specifications, while replay of developments can simplify the design process.

3.1.3.4 Transformation and Elaboration

A typical use of formal specifications is to enable transformation into an implementation. In order
to reason about program development, it can be regarded as a series of correctness-preserving
transformations. Transformational systems generally employ a wide spectrum language in which
implementation becomes a process of optimization [Wile 1982]. Typically, the human designer
selects appropriate transformations which can then be carried out automatically. As the
implementation is derived directly from the specification, its compliance with the specification can
be proved. However, the transformational approach usually assumes that libraries of valid
transformations can be developed, which may not be possible, particularly as many of the
transformations will be domain dependant.

The process of specification itself can also be regarded as a series of transformations, from an
initial abstraction to a detailed specification. The individual transformations either add more detail,
or clarify existing parts. In this model, however, the transformations are not correctness-
preserving, and so cannot be verified. Rather, the emphasis is on consideration of the rationale that
led to particular parts of the specification, and hence the validation of those parts with the original
needs. Feather [1987] demonstrates this approach to specification development, showing how
reconsideration of an over-simplification leads to a more detailed specification. There is evidence
that this is how human designers work, beginning with a simplified model which ignores
inaccuracies and over-simplifications, and then gradually elaborating the details [Adelson &
Soloway 1986].

Goguen [1981] points out that there are a number of limitations on the use of transformational
approaches. Firstly, if transformation is the only mechanism used to develop the specification,
there must be a simple starting point which can be written down directly. There are a large class of
problems for which there is no simple formulation. Also, transformations apply to parts of a
specification, and so in a large complex specification many checks are needed for side-effects in
other parts.

3.1.3.5 Capturing Rationale

One of the problems in software engineering is how to capture the development structure. A record
of the development process would facilitate maintenance. More importantly, if programs are to be
allowed to evolve, the rationale that led to the current design must be accessible. One way of
managing program evolution without causing specification and design to diverge is to make the
necessary alterations to the specification, and then replay the design process to derive the next
version [Green et. al. 1983]. Like derivational analogy, replay depends critically on the ability to
record and represent the development history in all its detail. This includes capturing the structure
of any decisions and the goals which motivated them, together with the inter-relationships of those
goals.

Conklin & Richter [1985] argue that current methodologies are artifact-oriented, while critical
maintenance information, which once existed as process information is discarded. This includes

- 31 -

understanding, problem formulation, and rationales. For example, the waterfall model concentrates
on distinct documents produced at each stage, while the processes are not described. Most
specifications describe what must be done, but not why.

In order to represent rationales, a model is needed to structure them. Kaplan [1989] points out that
what may be considered an important decision by one person might be a trivial assumption to
another. Hence rationales tend to be idiosyncratic, which complicates the problem further.
Kaplan’s approach is to attempt to record decisions indirectly, by recording and labelling
utterances. He points out that alternative approaches, such as the use of formalisms, or the attempt
to model the design process with an expert system are unlikely to capture all the decisions.

By contrast, Conklin [1989] describes a more direct attempt at modelling decisions, as part of the
Design Journal project (See §3.3.3). The early exploratory stage of the design process can be
supported with an Issue-Based Information System (IBIS), in which participants suggest issues
which need to be addressed. Other participants can then attach positions which describe ways of
tackling an issue, and arguments, which support or refute a position. The result is a hypertext
network recording the rationales being used by the participants.

3.2 Knowledge Acquisition

Knowledge acquisition and requirements engineering share many similarities. Both represent the
initial stage of an engineering process, and both are concerned with the elicitation and formulation
of knowledge which will be used to design and build a software system. This section reviews
work in knowledge acquisition which is relevant to the requirements process.

3.2.1 Building Knowledge-Based Systems

The field of knowledge acquisition grew out of recognition that the hardest part of building
knowledge-based systems is gathering and representing the knowledge. Boose [1986] defines a
knowledge-based system as a system which solves problems using explicit symbolic knowledge
which is kept separate from the reasoning mechanisms. Typically, such systems are build using a
rapid prototyping paradigm, using an expert in the domain to help refine them iteratively.

Some interactive systems have been built to help with this refinement process. For example,
TEIRESIAS [Davis 1979] engages the expert in a dialogue, accepting knowledge to add to a
knowledge base and guiding the process by indicating how new rules affect the state of the system.
The tool makes extensive use of meta-knowledge to reason about the knowledge contained in the
system. However, because it is geared to a rule based system, and does not attempt to derive or
refine its own rules, it requires immense co-operation from the expert. The ADVISE system
[Michalski & Baskin 1983] performs a similar role, but makes use of multiple representations
(three are implemented: a rule-base; a conceptual network; and a relational database). It also
includes tools for inductive inference on sets of examples.

Rychener describes a number of projects which attempt to build what he terms an instructable
production system, to acquire knowledge from a number of sources [Rychener, 1980]. Several
functional components were coupled together to form a kernel capable of adding new production
rules to the rule-base. The key feature of these experiments was interaction with experts via mixed
initiative dialogue. In other words the system has to form a strong idea of what it needs to know,
and plan how to obtain the information. This contrasts with the passive expert system tools which
require more work from the expert. A number of ideas were used to guide the acquisition process,
including simple means-ends analysis, analogy, search spaces, schemas and semantic nets,
although no attempt was made to integrate these in a single system.

- 32 -

More recent interactive tools provide more structure to assist the expert. These are either based on a
theory of the nature of the knowledge being acquired, (e.g. KSS0, which is based on repertory
grids [Shaw & Gaines 1987]), or are domain dependant and designed to elicit particular types of
knowledge, (e.g. SALT [Marcus 1987]). Boose [1989] gives a comprehensive overview of such
tools.

3.2.2 Machine Learning

Knowledge acquisition is also generally taken to include learning systems, which derive their own
knowledge, through a process of abstraction from cases or sets of examples. Shalin et. al. [1988]
survey learning systems, pointing out that there are four ways in which learning systems can
facilitate knowledge acquisition: deriving an initial set of rules for a system; refining existing
knowledge bases; adapting an existing system to fit the user’s expertise or style; and finally, the
study of learning systems might lead to a principled method for constructing knowledge bases.

Research on machine learning generally falls into three types: task oriented, based on a particular
application; cognitive simulation, which attempts to model human learning processes; and
theoretical analysis which looks at the foundations of learning methods. A number of useful
learning strategies have been shown to work well in limited areas [Dietterich & Michalski, 1983].
These include rote learning, instruction, deduction, genetic algorithms, analogy, induction, and
observational discovery. Most effort in machine learning has been devoted to learning from
examples, as this represents the most tractable area for empirical study. However, analogical
learning is also producing some interesting results [Leishman 1989].

The importance of machine learning to knowledge acquisition has been emphasized in a number of
experiments comparing learned knowledge with that elicited from domain experts. For instance,
Michalski and Chilausky conducted a series of experiments on diagnosis rules, and found that
rules derived inductively from a set of examples consistently outperformed those suggested by the
experts, even when the experts' rules were put through extensive debugging procedures [Michalski
and Chilausky 1980].

It is frequently claimed that machine learning can relieve the “knowledge acquisition bottle-neck” of
AI systems [Simon 1983]. However, there have been few attempts to incorporate learning into
larger AI systems (See Hayes Roth & Hewett [1985] for a notable exception). Learning systems
have drawbacks in that changing systems become opaque and the learned information is conjectural
[Michalski 1986]. Empirical studies have shown that any structure that is initially present in a
system deteriorates as the system evolves, unless strenuous measures are taken to maintain the
structure [Lehman 1980]. Where that evolution is due to an automatic learning element, the
problem is compounded, as the evolution is invisible. Michie [1982] has also pointed out that the
knowledge derived by a learning system (usually in the form of rules) is not easily understood by
humans. If human experts do not find anything familiar in the rules produced by a learning system,
then the use of machine learning to supplement knowledge acquisition can be counter-productive.

3.2.3 Eliciting Conceptual Models

The greatest contribution of knowledge acquisition is in the techniques it provides for eliciting and
describing the mental models used by people. Norman [1986] describes the role of such models in
the design process. The designer has a conceptual model of the system to be built, whilst users of a
system build mental models of how that system works: if these conceptual models differ greatly,
then the user is likely to have problems using the system. The primary job of the designer is
therefore to build the system in such a way that her conceptual model is correctly conveyed to the
user, and as Norman points out, the main way that the design model is conveyed is through the
user interface. In order to ensure the image the system projects is an accurate portrayal of the
design model, it must be clear what that design model is: in other words the mental models used in
the design process must be made explicit.

- 33 -

Shaw & Woodward [1989] characterise the series of models constructed in the attempt to capture a
person’s knowledge. They distinguish between the expert’s internalised model (the mental model);
her first attempts to articulate that model (the conceptual model); and the received or developed
model built through interaction with the knowledge engineer (the model of the conceptual model).
To complicate matters further, the expert’s mental model might not be a true reflection of the
processes involved in applying her expertise.

There are a number of ways of gathering knowledge in the process of building these models.
Johnson et. al. [1988] classify the main methods used as follows: structured interviews and
questionnaires; observational techniques; concurrent and retrospective protocols; and experimental
techniques, for example the use of repertory grids. There are also a host of other miscellaneous
techniques that can be incorporated into those above, including group discussion, instruction, third
party commentaries, and brainstorming [Welbank 1983].

Of these methods, the most commonly used are those which provide verbal data, which must then
be processed in some way. Wielinga & Breuker [1984] list some of the problems with collecting
verbal data: there is no way of detecting whether the expert has omitted anything; the knowledge
may be hard to express verbally; the knowledge may not be accessible by introspection; the expert
makes implicit assumptions about the level of knowledge of the analyst; experts may not be
motivated to reveal their inner thoughts; and most experts have little experience in verbalising their
thoughts.

An alternative to handling verbal data is to make use of “mediating representations”, which mediate
between verbal data and operational representations [Johnson, 1989]. Such representations are
intended to assist in the early stages of conceptualization. Johnson lists the desirable features of
such representations as: expressiveness, economy, and communicability. Furthermore, mediating
representations provide a kind of high-level specification of the knowledge used in a system, and
as such are analogous to specification languages.

In summary, many of the problems in knowledge acquisition remain to be solved, while the
successful tools and techniques are still limited in scope. Shaw & Gaines [1989] provide a good
overview of the field, and discuss some future trends. In particular, they predict a growing
integration with related fields such as text analysis, hypermedia, and software engineering.

3.2.4 Specification as Knowledge Acquisition

Specification can be regarded as a knowledge acquisition task [Easterbrook 1989]. From this
perspective, the requirements specification is treated as a knowledge base, which can then be used
as a key resource to support the remainder of the software lifecycle. Requirements engineering is
concerned with the creation and refinement of this knowledge base. Given this view of
specification, support for the process can borrow heavily from work on knowledge acquisition.

Work on knowledge acquisition has provided a number of interactive tools for the elicitation
process [Boose 1990], which can be adapted for use in requirements engineering. For example,
Reubenstein & Waters [1989] describe a system called the Requirements Apprentice (RA), which
assists the analyst in refining an initial, informal specification. RA is a knowledge-based system
with three components: a cliché library which contains the domain knowledge; an inference engine
called Cake, which handles propositional deduction and maintenance of dependencies [Rich 1985];
and an interface, which provides the main functionality of the RA. The system provides assistance
in three main ways. The interactive output informs the analyst of any conclusions and
inconsistencies of entered information. The knowledge base built up during the process can be
used by other tools throughout the lifecycle. Finally, the system can produce various written
documents summarising the state of the requirements knowledge base, for validation.

- 34 -

Another aspect of knowledge acquisition is the processing of verbal protocols and transcripts of
interviews. Maarek & Barry [1989] describe a tool for identifying abstractions from interview
transcripts using lexical affinities. They envisage an eventual organisation of the knowledge as as
network of nodes containing both formalised abstractions and textual descriptions, with
hypertextual links. The initial tool they have developed assists in the process of building this
network by detecting repeated phrases in order to identify the key concepts. This tool shares many
features with similar tools developed in knowledge acquisition (See for example Woodward
[1988]). There have also been attempts to apply natural language understanding to the requirements
phase [Balzer, Goldman & Wile 1978].

Johnson, Johnson & Russell [1988] use a knowledge based approach for task analysis. They treat
tasks as concepts, using a frame-like representation to record associated information. A set of tasks
has structure, in that certain tasks or elements of tasks are more likely to co-occur than others.
Also, tasks differ in importance and representativeness. A framework for eliciting knowledge
about tasks is described, which draws extensively on knowledge gathering techniques from
knowledge acquisition.

3.3 Critical Analysis

We have surveyed a number of current methods for requirements engineering and knowledge
acquisition. We divided work on requirements engineering into specification languages and
specification processes, although clearly there is much interdependence and cross-over between the
two areas. There is also much lively discussion over the utility of formal methods. Work on
knowledge acquisition is closely related to requirements engineering, and has drawn on many other
fields in the attempt to develop methodologies for the capture of knowledge.

3.3.1 The Single Viewpoint Bias

All the methods surveyed so far share a shortcoming: They all concentrate on the development of a
single description of the item under study, whether it is a requirements specification, a system
model, a domain model, or a cognitive model. This single description can only represent a single
viewpoint, resulting in a “univocality” that has been criticised by several authors (see for instance
Cunningham et. al. [1985], Shaw & Gaines [1989]). There is still little or no support available for
developing and maintaining alternative descriptions from the various suggestions, nor for resolving
the conflict inherent in the process.

Advice for those building expert systems usually includes that the problem being tackled should be
solvable by a single expert. This is because no methodology yet exists for combining expertise
from multiple experts [Boose 1986]. While there are some techniques available for eliciting a
consensus opinion from a group of experts, most notably the Delphi technique, these are very
limited in scope, and only produce very general responses. Psychological phenomena such as
“group-think” indicate that consensus may not produce the highest quality decisions [Meyer &
Booker 1989]. Furthermore, there are some fundamental conflicts which cannot be handled with
consensus.

Backhouse [1988] makes more extreme criticisms of existing analysis techniques. He criticizes the
preoccupation with procedure and information plumbing rather than the actual business activities
saying that more attention should be paid to the agents involved in business and the social
obligations entailed by their communication. He also criticizes the descriptions used (e.g. Entity-
Attribute-Relation models) for being too arbitrary. He proposes a new approach which removes the
assumption of a single object reality, and introduces the idea of business as a co-operative activity
between agents. Winograd & Flores [1986] amplify this theme, and argue that communication is
central to human activities, and that the role of computers should be to support co-ordination
among people.

- 35 -

We discussed some of the consequences of suppressing or avoiding conflict in §2.2.4. However,
we have not yet defined exactly what we mean by conflict. In its broadest sense, the term conflict
covers any interference in one party’s activities, needs or goals, caused by the activities of another
party. The situation can be characterised as a disparity between the goals of the parties, although
this would not be considered conflict until the effects are felt. This use is at odds with the more
restricted use in political science as the opposite to co-operation as a mode of interaction. It
corresponds more closely to its use in organisational behaviour, in which “conflict” is used to
describe any situation in which the actions of one party interfere with those of another. Conflicts
do not necessarily need to be resolved, but where they are, the possible resolution methods range
from the co-operative to the non-cooperative.

The key to allowing multiple viewpoints to co-exist is to delay making a commitment to any one of
them [Thimbleby 1988]. If one viewpoint or a particular combination of viewpoints is adopted as
the primary one, and the specification based on that viewpoint, other useful viewpoints become
neglected. A decision has been made (however subconsciously), and a commitment made to the
chosen viewpoint. Such a commitment can overly restrict the future course of the design process.
If that commitment can be avoided, all viewpoints can continue to develop, and the interaction
between them can provide useful feedback on the consequences of those viewpoints.

To support the interaction of viewpoints, we need to model them explicitly. Each participant brings
a number of preconceptions or biases into the software specification process, together with a
certain amount of knowledge. The areas of knowledge do not fit together like a jigsaw, but instead
overlap in some places, conflict in others, and often leave gaps. A set of descriptions representing
the various viewpoints will not form a complete picture of the domain of interest, but can provide a
fuller picture than a single description. The most important areas of the domain will become
highlighted as those mentioned most often, and over which there will be most conflict.

3.3.2 Conflict between Experts

Conventional knowledge-based systems rely on consistent knowledge for their inference
mechanisms to work. In many cases, this is achieved by only consulting a single expert. Where
inconsistencies are detected, they are attributed to mistakes in the acquisition process, or the result
of biases [Cleaves 1988], and are eliminated through a lengthy process of interactive debugging
and refinement with the expert [Davis 1979]. The expert can be persuaded to participate in this
process in order to appear consistent. This insistence that expertise must be consistent and rational
imposes restrictions on the knowledge acquired. The knowledge acquisition process then becomes
not so much the modelling of the expert’s behaviour, but the synthesis of a domain model which
need not resemble any mental model used by the expert [Shaw & Woodward 1989]. In this way
conflicts in the expert’s knowledge can be filtered out.

When further participants are involved, the problems of conflict cannot be avoided so
conveniently. Although the same process of rationalisation can be undertaken with a group, there is
little pressure on groups of experts to agree with one another, and the synthesis of a consistent
domain model can be very difficult. One approach (see §3.4.4.1) is to keep the contributions
separate, and apply them as separate reasoning systems [Nii 1986b]. Again, this is merely a form
of conflict avoidance, with no means of combining the knowledge automatically. Instead, the
problem is reduced to that of deciding which rule should be selected when several are applicable,
which can be satisfactorily dealt with using a set of heuristics, as the possible combinations are
foreseeable.

One notable attempt to study conflict between experts is that of Shaw & Gaines [1988]. In
comparing the Entity-Attribute models of different experts, Shaw identifies four types of
comparisons between conceptual systems:

Consensus - experts use the same terminology to describe the same concepts;

- 36 -

Correspondence - experts use different terminology to describe the same concepts;

Conflict - experts use the same terminology to describe different concepts;

Contrast - experts use different terminology to describe different concepts;

Each of these situations can be useful in capturing different perspectives, and in particular, the
availability of alternative terminologies makes a knowledge-base more accessible.

Whilst Shaw’s use of the term conflict is rather different from ours, it does highlight the way that
terminological differences can obscure the deeper agreements and conflicts between people. Shaw
describes a methodology for recognising each of the four situations using entity-attribute grids.
However, this requires the participants to agree first on the definition of a common set of entities,
and is concerned with differences in the way experts distinguish between the entities. It is not clear
how this methodology might be extended to the types of representation used in systems analysis,
where the establishment of an agreed set of entities is itself a problem of conflict resolution.

3.3.3 Many viewpoints

In requirements engineering there have been a number of attempts to handle the problems of
multiple perspectives. For example, the distinguishing feature of the method CORE [Systems
Designers 1985] is its use of viewpoints to give structure to the description. These represent the
components of the system and its environment, and can be organizational, human, software, or
hardware. In other words, every information processing entity with which the eventual system
must interact, as well as those which will be partially or wholly subsumed by the system, are
modelled as viewpoints. Furthermore, each viewpoint has a corresponding viewpoint authority,
which is the person or machine responsible for carrying out the process described.

However, the viewpoints used in CORE provide a structure only for process knowledge.
Declarative knowledge about the domain, and about the history of the analysis process itself, is
excluded from this structure. Furthermore, the viewpoints are not allowed to overlap, and hence
any conflict between them is avoided. The areas of authority for each viewpoint must be precisely
defined during the process of identifying the viewpoints. There can be no redundancy, and hence
no inconsistencies. Differences can remain in the expected interaction between viewpoints, which
are ironed out in later steps of the method.

Conklin [1986] suggests that design needs many viewpoints, ideas, values, and concerns to be
exchanged and argued, and proposes a structure called an ISAAC to represent design decisions.
Each decision has an issue, a set of alternatives, an analysis of the alternatives, and a (possibly
tentative) commitment to one of those alternatives. This work developed out of earlier studies of
issue-based information systems [Conklin 1989], and forms part of a larger project on supporting
design. The system is based on hypertext, and emphasises the capture of the design activities rather
than just the final products of design.

Handling many viewpoints requires collaboration. Fickas [1987a] has reviewed some of the most
promising approaches for supporting the co-operative process in requirements engineering. These
include Gradual Elaboration [Goldman, 1982], in which a small number of types of step are
available to incrementally build the specification, Parallel Development [Feather, 1987], in which
partial specifications are developed separately according to different development concerns, and
then merged at a later stage, and Knowledge-Based Critiquing [Fickas & Nagarajan, 1988] in
which an intelligent model of the domain is used to debug a specification. Of these, the parallel
development approach is the most successful at supporting co-operative work, as the merge
process acts as a focus for conflict resolution, forcing the analyst to explicitly consider and
document the interaction between different aspects of the specification. However, it is still not clear
how the merge operations should best be carried out.

- 37 -

Finkelstein, Goedicke et. al. [1989] formalise the notion of a viewpoint. Each viewpoint represents
some area of knowledge and a preferred representation for that knowledge. More specifically, a
viewpoint has the following components:

a style, which is the representation scheme used;

an area of concern, or domain;

a specification, which is the set of statements in the viewpoint’s style describing the area of
concern;

a work plan, which describes how the specification can be changed, and any constraints on
it;

a work record, which describes how the specification developed, and its current status.

This definition of a viewpoint abstracts away from the people involved, allowing one person to
have several viewpoints (as a person may have several areas of concern), and also for one
viewpoint to represent several people (where people share an area of concern).

The notion of viewpoint provides a useful context in which to study conflict. As Robbins [1974]
points out, many conflicts are communicational in nature. Finkelstein & Fuks [1989] use the
viewpoint as a basis for a study of some of the communicational problems surrounding conflict.
They describe a formal model of dialogue between two agents, which allows agents to share
knowledge and detect inconsistencies between their knowledge. The dialogue takes the form of a
game, in which moves consist of speech acts, such as statement, question, challenge, or
withdrawal, and the rules constrain which acts are legal in which context. Agents can then query
chains of reasoning made by other agents, and request information which they need to verify the
conclusions. In this way, conflicts based on misunderstandings and incomplete knowledge can be
detected and resolved.

Feather [1989a] proposes a specification model based on parallel elaboration of the various
concerns. A basic specification is used as a point of departure for development along separate lines
of concern. At some later stage the resulting specifications are merged to produce a single
specification which will then reflect all the concerns. This model has the benefit of delaying the
resolution of conflict between separate concerns until after the information gathering stage. While it
is not yet entirely clear how best to merge the parallel elaborations, Feather has examined the
different types of conflict that occur.

One approach to easing the integration of separate specification components is through tools which
support negotiation. Robinson [1990] describes tools that allow a single arbitrator to evaluate the
preferences expressed by various perspectives, and to guide the search for new solutions which
satisfy all perspectives as much as possible. Taking a single domain model as a basis, in which
needs are expressed as goals, where perspectives associate different values with these goals,
integration involves searching for novel combinations of proposals, which increase the satisfaction
of all perspectives. This is done using a joint outcome space on which an ideal, but probably
unachievable combination of perspectives is used to stimulate consideration of other combinations
that come close to this ideal.

These approaches to software specification all question the assumptions made by conventional
software models which ignore conflict. Clearly, more work is needed to clarify how conflicts
based on differing requirements can be resolved. One major issue is the need to establish common
ground between viewpoints. No resolution can occur until participants have enough common
ground to communicate; indeed, such common ground is needed before conflict can be expressed
and recognised. In many of the above models, the common ground is assumed: in the parallel
elaboration model the common ground is the initial specification from which the separate
developments proceed, and in Robinson’s negotiation model, it is the shared domain model. Only
the viewpoints model does not make any assumptions about common ground, and even allows

- 38 -

different representation schemes to be used. However, it is not yet clear how correspondences can
be found between viewpoints.

A second issue is how the resolution is devised. If all the possible conflicts are foreseeable, then
the resolutions can be enumerated beforehand, either directly, or using a set of heuristics. Feather
uses this approach in combining parallel elaborations, and has investigated the ways in which steps
in the parallel process interfere with one another. Similarly, Robinson notes that there are some
conflict situations which have conventional resolutions, such as the possibility of multiplexing for
resource conflicts, and lists some heuristics which enhance his system.

However, in general the design process is not predictable, and sociological studies of negotiation
indicates that good resolutions require creative input (see §2.3.5). This poses problems for
automatic tools. Anderson & Fickas [1989] suggest that in well charted domains, the experts will
be aware of typical conflicts and how to deal with them, which suggests that resolutions can
simply be elicited from experts. This does not necessarily mean standard solutions are the best, nor
will they always work in the environment introduced by automation. The best approach would
seem to be to synthesize new solutions based on components of existing ones.

This section has surveyed recent work in software engineering that recognises the existence of
alternative and possibly conflicting views in requirements analysis. The models developed in the
work we surveyed allow for the capture of conflict by allowing the different views to be
represented. In this way, they remove the conventional assumption that conflict can be avoided in
software engineering. However, as yet no clear model exists of how conflict resolution might be
modelled using these frameworks.

3.4 Conflict Resolution

In addition to the research described in the previous section, there are many related fields which
have addressed the issues of multiple perspectives and conflict resolution. These fields fall roughly
into two traditions – the mathematical and the behavioural – which approach conflict in very
different ways, reflecting different disciplines. The former are concerned with numerical models of
the processes of bargaining and decision making, while the latter are concerned with social
responses to conflict and with how people approach negotiation, particularly in the context of
organisational behaviour. Section 3.3.1 introduces some common terms with which to describe
these fields, while sections 3.4.2 and 3.4.3 examine the two traditions in detail.

Finally, section 3.4.4 examines fields within computer science that have drawn on these two
traditions. Distributed Artificial Intelligence (DAI) studies how knowledge bases can be partitioned
to allow conflicting knowledge to co-exist, while Computer-Supported Co-operative Work
(CSCW) examines the use of computers in human interactions. An important tool in CSCW is
hypertext, which can allow groups of people to build and access an information base co-
operatively.

3.4.1 Terminology

Before we survey other fields which address conflict resolution, it is useful to introduce a suitable
terminology. We will talk about conflict between parties, as conflict may occur between
individuals, groups, organisations, or even between different roles played by one person.
Similarly, when discussing conflict resolution, we will refer to participants of the resolution
process, to cover a similar diversity. Not all parties to a conflict need necessarily be participants in
its resolution.

The approach used to settle a conflict is a Resolution Method. Methods include negotiation,
competition, arbitration, coercion, and education [Strauss 1978]. Not all conflicts need a resolution

- 39 -

method, as not all conflicts need to be resolved. Three broad types of resolution method can be
distinguished: Co-operative (or collaborative) methods, which include negotiation and education;
Competitive methods, which include combat, coercion and competition; and Third Party methods,
which include arbitration and appeals to authority.

Negotiation is a collaborative approach to resolving conflict by exploration of the range of
possibilities. It is characterised by the participants attempting to find a settlement which satisfies all
parties as much as possible. Such an approach has been variously termed integrative behaviour or
constructive negotiation (to distinguish it from distributive, or competitive negotiation). This
definition of negotiation is not universal. Authors such as De Bono [1985] restrict negotiation to its
distributive variety, implying a process of bidding and concession-making, and so attack it as
being inferior to an integrative approach. We prefer to give negotiation its broader definition, and
call the concession-making process Bargaining.

There are other collaborative methods than negotiation. Some conflicts might be resolved by
education, where the participants gain a better understanding of the problem, or simply learn about
each other’s viewpoint. Another important techniques is to reformulate the problem, so that it
disappears, or becomes unimportant.

In contrast, Competition concentrates on achieving maximum satisfaction for a participant, without
regard for the degree of satisfaction of other parties. However, a competitive approach is not
necessarily hostile. An extreme form of competition is when all gains by one party are at the
expense of others, which, in game theory, is termed a zero-sum game.

Third Party Resolution covers any situation where participants are unable to resolve a conflict
between themselves, and so have to appeal to an outside source, whether this be the rule-book, a
figure of authority, or the toss of a coin. Such a situation can occur with the breakdown of either
negotiation or competition as resolution methods. There are two types of third party resolution:
those in which the cases presented by each participant are taken into account, which we might term
judicial; and those where a decision is determined arbitrarily (e.g. tossing a coin), or by factors
other than the cases presented (e.g. by the relative status of the participants), which we might term
extra-judicial.

Bidding and Bargaining are phases of the resolution process. Bidding is where participants state
their desired terms for the settlement, often with an indication of the relative importance of them, as
a basis for bargaining. Bidding takes place in some form or other in most resolution methods, as
participants must present their side, although in methods such as coercion, the bidding might be
one-sided and implicit. A position is the set of terms that a participant commits itself to by making a
bid. In bargaining, participants search for a satisfactory integration of bids. In the simplest case
this involves a converging sequence of bid and counter-bid, while at the other extreme, participants
seek to blend complex bids together. Note that the description of the outcome as satisfactory
depends on your viewpoint. However, bargaining usually results in a compromise, whereas true
constructive negotiation seeks to develop a new solution which fully satisfies all participants.

3.4.2 Mathematical and Economic Models

3.4.2.1 Decision Theory

Decision theory is a prescriptive approach to help an individual make a choice among a set of pre-
specified alternatives. While the generation of alternatives is considered of paramount importance,
it is not generally addressed in decision theory, except where particular analyses of options can
lead to the suggestion of new ones. The usual analysis has two components: an uncertainty
analysis and a utility (preference) analysis [Keeney & Raiffa, 1976]. The interesting problems are
concerned with resolving multiple conflicting objectives.

- 40 -

Decisions can be analysed in the following way. The alternative actions are listed (A1,...Am).
There are a set of attributes of concern (X1,...,Xn) and each of the actions can be evaluated for
each attribute, yielding a vector of values for each action. Comparison between two action involves
the comparison of the two vectors, and weights can be used to give emphasis to attributes that
contribute to particular objectives [Finkelstein & Finkelstein 1983]. There are, of course, a number
of complications to this model. Firstly, the attributes are likely to be of incommensurable units,
making direct comparisons difficult. Intangibles, especially psychological aspects, need to be taken
into account, and these are notoriously difficult to measure and scale. Time also has an effect, as
consequences of a decision will vary as they unfold. Finally the uncertainties involved require
consideration of (multi-variate) probability distributions [Bell, Keeney & Raiffa, 1977].

A decision, as characterised by decision theory involves a single entity making a choice between a
number of options based on some evaluation of the options. This may be contrasted with conflict,
in which there is more than one entity, each with a different perspective, and the problem is not to
choose between the bids favoured by those perspectives, but to find a solution that satisfactorily
integrates the bids. In this sense, conflict resolution is more akin to problem solving than to
decision making.

Even if we list a number of alternative possible integrations of bids as options for a decision, the
usual assumptions of decision theory do not apply. Unless an arbitrator is brought in, the
participants in the conflict will evaluate the options differently, obtaining different decisions, and
so perpetuating the conflict [Galbraith 1977]. While decision theory does allow for alternative
evaluations to be taken into account, this is to allow for uncertainty, and probability theory is used
to analyse the alternatives. If the differences arise not from uncertainty but from different
perspectives, no probablistic analysis can be used. In the worst case, parties may not even agree
over the measures to be used to evaluate the options.

This does not mean that decision theory has no role in conflict resolution. During the evaluation
phase, there is ample opportunity for participants to use decision theory individually, to decide
whether to accept a particular bid (from a number of alternatives), to justify such decisions, to
decide what action to take next in the process, and to persuade the other participant(s) that a
solution is satisfactory. Indeed, a participant who can use decision theory to evaluate a bid from the
other person’s point of view can have a distinct advantage.

As decision analysis is concerned with decisions by single entities, group interactive processes are
ignored. Although decision analysis attempts to prescribe approaches for each individual, in which
the actions of other members of a group can be regarded as uncertainties, there is no means to
handle group decision making. Keeney & Raiffa [1976] use this observation to suggest uses of
decision analysis for personal conviction, advocacy and reconciliation. In advocacy, decision
theory can be used to provide a justification for a decision (often taken before the analysis) to
convince others. Reconciliation is where an arbitrator needs to justify a decision to both parties to a
conflict. Hence the principle role of decision analysis in conflict resolution might be that of
providing supporting evidence for the various bids.

3.4.2.2 Bargaining Theory

Bargaining theory is an attempt to produce theoretical models of bargaining processes, in order to
understand, for example, whether two parties will reach agreement, and what the terms of
agreement might be. It is strongly rooted in economics, effectively an extension of decision theory,
although attempts are sometimes made to draw wider social implications from the theories.
Bargaining theory usually restricts itself to the process of what we term the bidding and bargaining
phases, ignoring the context of the conflict. It is generally assumed that the parties both recognise
the utility of an agreement, and enter the process of bargaining in an attempt to reach such an
agreement. This reflects its concern with commercial deals and political agreements.

- 41 -

(a)

O
ur

 s
at

is
fa

ct
io

n

Other party’s satisfaction (b)

O
ur

 s
at

is
fa

ct
io

n

Other party’s satisfaction (c)

O
ur

 s
at

is
fa

ct
io

n

Other party’s satisfaction

Figure 3.1: The Joint Outcome Space. These diagrams illustrate how the options are perceived in
(a) a win/lose conflict, (b) a zero-sum conflict, and (c) a common problem. In (a) only two
outcomes are perceived, one party wins and the other loses. In (b) there are a range of possible
outcomes in between, but any gain by one party is at the expense of the other. By contrast, in (c),
any gain by one party is also a gain by the other.

Patchen [1970] in his review of models of conflict resolution, defines bargaining theory (which he
terms models of negotiation) as the study of “...the process by which two parties attempt, through
a process of bid and counter-bid, to reach agreement on the terms of their future interaction ... and
what the resulting rewards and costs to each will be”. He contrasts this to wider concerns of
conflict resolution which include how the actions of each side influence the behaviour of the other,
including the effects of coercion, co-operation, persuasion and threat. While early models restricted
themselves to the process of accepting and rejecting bids, later models take such actions into
consideration, allowing parties a range of actions at each point. The more sophisticated models take
into account such factors as the cost of various actions, including the time element, and the cost of
delaying agreement.

Bargaining theory frequently makes use of the joint outcome space as a tool for illustrating the
utility of various bids to the parties involved. This is a graph, plotting the level of satisfaction of
one party against another, and is applicable to two-party situations. Proposed solutions, or bids,
can be plotted on the graph to show their relative strengths. The joint outcome space is also useful
for analysing the type of conflict [Thomas 1976]. Figure 3.1 shows the graphs used by Thomas to
illustrate how the options are perceived in an either/or conflict, a zero-sum conflict, and a common
problem.

In contrast to decision theory, bargaining theory tends towards the descriptive, in attempting to
build models that explain observed behaviour. Because of this nature, models developed in
bargaining theory do not provide much guidance in practice [Strauss 1978]. For example, the
graphs shown in figure 3.1 show how a party might perceive a conflict, but do not indicate how
other resolutions might be found that satisfy both parties at once. In the zero-sum game, all gains
by one party are perceived to be at the expense of the other. While this situation occurs frequently,
particularly where the conflict is over the use of limited resources [Robbins 1974], it is rare that
there are no other solutions to the problem than some form of division. Such solutions may include
increasing the resource, decreasing dependence on a resource, or finding alternative resources.
These possibilities are outside the scope of bargaining theory, which concentrates instead on the
process of bidding and counter-bidding.

Bargaining theory is highly theoretical, and often the assumptions used do not apply to situations
outside a very limited set of commercial and diplomatic bargaining. Furthermore, many of the
theoretical models have not been empirically investigated, due to the difficulties in controlling the
many parameters involved [Patchen 1970]. Models which use measurements of, for example,

- 42 -

levels of aspiration, rates of concession, costs of non-agreement, etc., do not give much indication
how these might be interpreted in a practical study.

3.4.2.3 Game Theory

Rapoport [1974a] defines Game Theory to be a theory of rational decision in conflict situations.
Participants are regarded as players, and game theory examines the strategies used by the players in
the process of trying to achieve particular outcomes. It is usually assumed that the set of outcomes
is known (though not necessarily finite), and that associated with each outcome is a calculable
payoff for each player. All players are assumed to be rational in that each player’s preference
among the outcomes is determined solely by the sizes of the payoffs for that player. Also, players
assume all the other players are rational in the same way, and so can use the size of other players’
payoffs for information on their likely strategies.

Games can be classified according to whether they are two-player or n-player (n>2), whether the
player’s choices of strategy are independent (non-cooperative games) or can be co-ordinated
(cooperative games), and whether the sum of the payoffs for the players is constant or not. The
latter distinction is perhaps the most interesting: zero-sum games include nearly all popular
“parlour” games (chess, draughts, go, etc.) where all gains by one player are at the expense of the
other (See figures 3.1a and 3.1b). On the other hand, non-zero sum games include outcomes
where both players gain, and may require co-ordination between the players to arrive at a jointly
optimal result.

1 year each 10 years for A and
3 months for B

3 months for A
and 10 years for B

8 years each

Not Confess Confess

Not Confess

Confess

Prisoner B

Prisoner A

Figure 3.2: The payoff matrix for the prisoner’s dilemma. Each player must decide, in isolation
from the other, whether to confess to a crime that the judge is sure they both committed. By
confessing each will implicate the other, and their joint best strategy is for both to keep quiet.

The payoffs for a game are usually shown in a matrix. To illustrate, Figure 3.2 gives the payoff
matrix for the prisoner’s dilemma, a game which has received a lot of attention in the literature
[Rapoport 1974b]. The prisoner’s dilemma shows that a rational strategy might not always be the
best one. Each player must choose whether to confess, and the choice will affect the sentence given
to the prisoners: confession implicates the other prisoner. Whatever the other player does, the
payoff for confessing is a smaller sentence, and so a rational strategy is always to confess.
However, both players could improve their payoff by agreeing not to confess, but they need to be
able to trust each other not to break the agreement, as the payoffs tempt them to do so. The
prisoner’s dilemma has been studied in tournaments of repeated games (with monetary payoffs,
rather than sentences), which allow players to develop strategies [Axelrod 1984]. In this case
players need to persuade each other, through their play, that they can be trusted. The repetitions
allow players to use moves as punishments and rewards for previous actions.

There are a number of important limitations of game theory, which make the results less useful
than they might otherwise seem. The biggest limitation is the restricted set of actions available in a
game. For example, in the prisoner’s dilemma, each player can choose only a co-operative or a
non-cooperative action each move. While more sophisticated games introduce a larger set of
actions, the rules still enumerate a bounded set of possibilities.

- 43 -

As game theory deals with pay-off matrices, it is usually assumed that the payoffs for any action
are known with certainty by all players, in other words that all players have access to the same
fixed payoff matrix. As it is rarely the case that payoffs are known exactly in real situations, this
restricts the applicability of the results of game theory. If the participants do not know the payoffs
with certainty, then it is likely that their perceptions of the likely payoffs will differ. Furthermore,
game theory assumes that players are selfishly motivated and have to be induced into co-operation.

Despite these qualifications, game theory does produce some useful information about the kinds of
strategy that can be used to induce co-operation and how various strategies pay off for the players.
However, because of the limited scope for communication in the games, the games focus on how
bidding strategies are developed over a series of games, rather than on single confrontations. Also,
if we regard a move in a game as a bid, then negotiation in our sense is usually impossible, as a
move, once made, cannot be modified. The exploration that participants to a conflict would enter
into before bidding is shifted to a kind of experimental bidding, as the opponents test each other’s
strategies. An emphasis is placed on the learning process over a series of games, at the expense of
deep understanding of a single conflict [Patchen 1970]. In a design setting, we are not concerned
so much with strategy, but with integrative thinking.

3.4.2.4 Group Decision Making

An area related to both game theory and decision theory is the normative study of how individual
preferences can be combined into a group decision. Much of this work was initiated by Arrow
[1967], in his treatise on criteria for judging different methods of combining individual preference
rankings. Arrow defined the problem as that of finding a “fair” method, or welfare function for
combining individual preference rankings into a social preference. The conditions which Arrow
proposed for a good welfare function are that it should be:

1. Defined for all possible combinations of individual preferences;

2. Representative, in that if just one individual changes his preference in some direction,
the social preference should not change in the opposite direction;

3. Independent of irrelevant alternatives, in that the social preference between two options
is not affected by the placement of another option in the individuals’ preferences;

4. Not imposed, in that there is some combination of individual preferences that will
achieve each possible social preference

5. Not dictated, in that there is no individual whose preferences dictate the social
preference.

Unfortunately Arrow proved that these five conditions are inconsistent whenever there are three or
more choices, so that no welfare function can satisfy them all. Subsequent work then, has
examined the result of relaxing this set of conditions.

While no rule can satisfy all of Arrow’s conditions, some are still more acceptable than others.
Luce & Raiffa [1957] discuss majority rule as one of the most popular means of determining social
preference. One of the biggest problems with majority rule is that it can lead to intransitive social
preferences. For example, given three options, x, y, and z, society can end up preferring x to y; y
to z; and z to x. Luce and Raiffa also point out that even where only one single societal choice is
needed (as is usually the case in politics), and only two options are presented at a time for voting,
the order of a series of such votes can affect the final outcome.

 Zeleny [1982] questions Arrow’s insistence on independence from irrelevant attributes, citing
empirical studies which show that the inclusion of unavailable options can reveal more about the
strength of individual’s preferences, as well as altering their perceptions of what is desirable.
Instead, Zeleny proposes his theory of the displaced ideal. Each person rates the options, and the

- 44 -

(infeasible) combination of each person’s highest rated alternative, is used as a goal to guide the
search for a feasible combination. The alternative which comes closest to this ideal will be chosen.

Whilst work on group decision making extends decision theory to cope with more than one
decision maker, it still suffers from the assumptions used in game theory, that all the options are
known. For example, while it can help decide which candidate is selected in an election, it does not
consider whether there might have been other another candidate who did not stand, but who would
have been more popular with everyone. Similarly, in design, we are often not concerned with
deciding which of a number of options should be preferred, but in creating a new option that
combines the best of each existing option.

3.4.3 Behavioural Models

3.4.3.1 Conflict Theory and Roles

The sociological view of conflict is concerned with social order and the evolution of social norms,
i.e. how social order arises. Conflict theory states that society is in a permanent state of flux caused
by the conflicting pressures of various groups. Co-ordination of society depends on the coercion
of less powerful groups by the more powerful. Recent work recognises that there are many
different groups in society with different goals, and that conflict is a frequent occurrence.
However, Strauss [1978] points out that the majority of conflicts are resolved by co-operative
means, often unconsciously, and yet despite this, very little attention is paid to these co-operative
mechanisms. Strauss reviews the work of a number of sociologists in quite some detail, pointing
out that much of their work assumes that some form of negotiation takes place, but that none of
them actually address negotiation as such.

Viewing social orders as negotiated orders implies that a better understanding of negotiation is
needed. This means studying not just the negotiation process (and indeed Strauss points out that
far from being a single process there are many varieties of negotiation), but the context of the
negotiation, including relating negotiation to other modes of interaction available, and consideration
of the participants’ own views of negotiation. Most importantly, the nature of the relationship
between the participants can have a stronger bearing on the course of a conflict than the actual topic
of the conflict. This is especially true where participants wish to ensure that a working relationship
is maintained.

Deutsch [1973] begins to examine the nature of conflict, starting with a typology which
distinguishes how the issues that the parties are arguing over are related to the objective sources of
conflict. However, such a typology assumes there is a way to view the subject of the conflict
objectively, which is impossible if the alternative perspectives are equally valid. More useful is the
list given by Deutsch of issues involved in conflicts:

Control over resources;

Preferences and nuisances, where the tastes or activities of one party impinge upon another;

Values (“what should be”), where there is a claim that a value, or set of values, should
dominate;

Beliefs (“what is”), when there is a dispute over facts, information, reality etc.;

The nature of the relationship between the two parties.

This list closely follows those suggested by Robbins [1989], who adds that communication
problems are a major cause of what he terms pseudo-conflicts, and De Bono [1985], who notes
that conventional thinking styles encourage people to be contrary.

- 45 -

Social conflict is also studied in Role Theory, which attempts to explain conflicts in terms of the
social roles which people play. Each person plays a number of roles, for example, parent,
employee, spouse, union member, and conflict can arise between the roles played by a single
person. The conflicts arise because of the different demands placed on different roles. These
demands might arise from feelings of loyalty or responsibility, as well as from the expectations that
other people hold of a particular role. Gross, McEachern & Mason [1958] describe a study of
conflicting expectations of a school superintendent deciding the level of teacher’s pay, and discuss
how different superintendents resolved the issue. They found that the resolution often depended on
how valid the subject considered the expectations to be, and whether the people that held them
were likely to impose sanctions if the subject didn’t conform to them.

3.4.3.2 Organisational Behaviour

Organisational behaviour is concerned with the functioning of organisations of various types with
special emphasis on the business aspects and management. One of its major concerns is team-work
within organisations, and how communication and co-ordination of teams can be effected. Early
work tended to assume that all conflict was undesirable and should be eliminated from
organisations. However, empirical work in the last few decades has demonstrated that conflict is
an inevitable feature of group interaction, and the term conflict management has been used to
describe means of resolving it.

Recently, Robbins [1974], among others, has advocated an expansion of conflict management to
include not just resolution of conflict, but stimulation of conflict too. This is a result of
observations that despite deeply ingrained social conventions that regard conflict (and disagreement
in general) as destructive, conflict has a useful role in organisations. Conflict provides a stimulus
to innovation as it involves questioning and evaluating received wisdom. It is also a major weapon
against stagnation and resistance to change. Conflict management will then not just be concerned
with peace-making, but with stimulation of conflict where appropriate. The difficulty lies in finding
the right level of conflict, and ensuring it can be expressed in constructive ways. Robbins notes
that if the conflict develops into open struggle, it is unlikely to remain constructive.

3.4.3.3 Conflict in Group Behaviour

Robbins [1989] distinguishes four stages in the development of conflict in group behaviour. The
first stage is the potential for conflict in which, while unrecognised, the conditions occur that allow
conflict to arise. These can be grouped according to type as:

Communicational, including insufficient exchange of information, noise, and the semantic
differences that arise from selective perception and difference of background;

Structural, which includes the goal compatibility of members of the group, jurisdictional
clarity and leadership style;

Personal factors, including individual value systems and personality characteristics.

The second stage begins when the conflict is recognised, although the conflict will often not be
acted upon until it is felt as well as perceived. When the conflict leads to action, the third stage,
behaviour, is reached. The possible actions can vary enormously from the subtle to the overt. The
nature of the action often dictates the course of the conflict, and in this stage the means for
resolving the conflict will usually be initiated.

The final stage concerns the outcome of the conflict, and in particular whether the outcome is
functional or dysfunctional for the group. An outcome that is functional to the group may not be
considered functional by members of that group, especially where certain members feel they have
lost. However, if the group’s objectives are furthered, which usually also implies that the

- 46 -

(Uncooperative) (Cooperative)

(A
ss

er
tiv

e)
(U

na
ss

er
tiv

e)

Competitive
(domination)

Collaborative
(integration)

Sharing
(compromise)

Avoidant
(neglect)

Accommodative
(appeasement)

D
es

ir
e

to
 s

at
is

fy
 o

w
n

co
nc

er
n

Desire to satisfy other party’s concern

Figure 3.3: Behavioural modes of tackling
conflict. Five distinct modes are identified,
together with (in brackets) the outcome sought in
each mode. The shaded area indicates the extent
to which negotiation might be useful.

relationships within the group have not deteriorated, then the conflict has been functional for the
group.

3.4.3.4 Means of Handling Conflict

In §3.4.2.1 we mentioned a number of basic methods of conflict resolution, and categorized them
as collaborative, competitive or third party. However, in organisational behaviour, researchers are
more concerned with behavioural approaches to conflict, and whether it can be resolved or not.
Studies have shown that different people are predisposed to tackle conflict in certain ways,
according to their character rather than the context of the conflict. It is useful to identify these
modes, and examine the utility of each.

Thomas [1976] describes five orientations towards conflict handling, based on areas of the joint
outcome space (See figure 3.3). He defines them as follows:

Competitive - one participant seeks to dominate the process, achieving his or her goals
without regard to others. It is useful for quick decisive action, or where unpopular
actions are perceived as necessary for important issues.

Collaborative - participants seek to understand their differences and achieve a mutually
beneficial solution. It is appropriate where participants’ insights and commitment are
important and need to be merged, for instance where their concerns are too important to
be compromised.

Avoidant - the conflict is recognised to exist but is suppressed by one or more parties, or
handled by withdrawal. It is useful where an issue is unimportant, where the potential
disruption would outweigh the benefits of resolution, or where information gathering is
more important.

Accommodative - a party becomes self-
sacrificing to appease another, and
places the other’s interests above
their own. It is useful when issues
are more important to others than to
you, where one party is losing and
needs to minimise loss, or simply to
build harmony and gain social
credits.

Sharing - each party makes some
concessions in order to reach a
compromise. It is appropriate where
temporary settlements or expedient
solutions are needed especially
under time pressure, or where goals
are directly opposed.

Each of these modes is appropriate in some
circumstances; the more aware people are of the
possibilities the more likely a suitable mode
will be used. It is useful to compare these
modes with the methods available for conflict
resolution. For example, collaborative methods
such as negotiation and education, while most
often used in the collaborative mode, can also
be adopted in other modes. Education can be
used to achieve conflict avoidance or

- 47 -

A’s Perspective

B
’s

 P
er

sp
ec

tiv
e

1) A’s Perspective

B
’s

 P
er

sp
ec

tiv
e

2) A’s Perspective

B
’s

 P
er

sp
ec

tiv
e

3) A’s Perspective

B
’s

 P
er

sp
ec

tiv
e

4)

Figure 3.4: Scott [1988] uses this method to explain how the process of exploration can yield new
solutions which neither party foresaw. In the first diagram, A and B’s perspectives are very
different, with little overlap. In (2), B begins to explain her perspective to A. Because A’s
perspective is different, A is able to take a great leap forward. Note that in the process of learning
more about the each others perspective, each covers new ground that neither saw before. The
darker shaded areas show ideas that both now share, which neither saw before. It is this area that
is likely to yield a jointly acceptable solution to the conflict.

accommodation by enabling participants to understand their differences better. Similarly,
negotiation can assist with achieving a compromise, seeking an accommodation, or regulating
competition. It is likely that successful negotiation requires at least some assertiveness and at least
some co-operation from each participant. This in turn implies that each participant must have some
motivation to resolve the conflict rather than avoid it.

3.4.3.5 Negotiation Models

A number of models for conducting face-to-face negotiation in a commercial setting have been
proposed, and are often popularised as management training material [Scott 1988], [Fisher & Ury
1981] [De Bono 1985]. Of these, Scott’s book [1988] is fairly typical. He gives plenty of advice
for preparation and the opening moments (setting the climate and procedure) of a negotiation,
which are applicable to meetings in general. His model of the actual negotiation is of more interest
here: he uses a four stage model to pace the negotiation. The stages are: exploration; bidding;
bargaining; and settling.

Scott emphasises the exploration stage as the most crucial, taking up the most time. The
exploration stage allows the participants to explore a range of possibilities before any confrontation
takes place. In particular, it allows the participants to explain to each other their interests, which
help to establish and maintain their long-term working relationship. The process is explained by
Scott in a diagram (See figure 3.4), whereby at the start the two sides see only a tiny part of each
other’s perspective. As they explore each other’s point of view, they discover shared goals that
were previously obscured from both.

De Bono [1985] discusses the flaws in the argumentation process that render it ineffective as a
means of negotiation. He shows how the assumption of a particular perspective (or theory) dictates
how the world will be perceived, leading to a rejection of alternative theories. From this he argues
that the Popperian method, of adopting a theory and attempting to disprove it, is misguided as the
very adoption of the theory leads to a biased perception of the evidence. Instead, we need to hold
several alternative theories at once.

More pertinent to the study of conflict resolution is his characterisation of argumentation as a
polarising process. If an idea needs challenging, an opponent will set up an anti-thesis and initiate
an argument. As the argument heats up, each side gets more rigid, and devotes less energy to
exploring the alternatives. Each is certainly not encouraged to see any good in any part of the
opponent’s thesis. De Bono uses this observation to claim that a third party is needed to try an

- 48 -

build constructive solutions, breaking away from the divisive nature of argument. Unfortunately,
De Bono himself gets carried away in arguing against argument, and does not consider any
applications of argumentation useful.

The key to De Bono’s method is to design solutions to conflict, as opposed to fighting, negotiating
or problem solving. His complaints against negotiating and problem solving are based on very
narrow definitions of these methods. For example he suggests that negotiation leads to
compromise solutions, which are less than satisfactory all round. This assumes that negotiation is
little more than a process of bidding, counter-bidding and concession making. Our definition of
negotiation takes in integrative behaviour and so is more akin to the design approach advocated by
De Bono. However, De Bono insists that such solutions can only be designed with the help of an
independent perspective, i.e. by third party methods.

The bibliographic notes in Scott [1988], comment that many of the tactics De Bono suggests for
third parties could just as easily be used by the negotiators themselves. Stefik et. al. [1987] suggest
that removing the personal attachment to positions dissipates the problem. They observed that their
computerised meeting room allowed participants to dispense with the feeling of ownership of
ideas, and so reduce the associated emotions when ideas are discarded or adopted. This theme
forms the basis to the negotiation model proposed by Fisher & Ury [1981], who recommend that
rather than bargaining over positions, participants should focus on interests, and investigate
options for mutual gain.

Fisher & Ury’s model, which is the result of a large project on negotiation at Harvard, is really a
set of recommendations, or tactics, rather than a rigid model. They too, characterise the usual
bargaining process as polarizing, and recommend that the first step is to separate the people from
the problem. This is to prevent emotions getting in the way, and to foster an attitude of working
together on a problem. Then rather than making bids (i.e taking positions) the participants should
focus on their interests. Their third recommendation reflects De Bono’s insistence on multiple
hypotheses, by developing a number of options that provide mutual gain, without concentrating on
any single one. The final recommendation, to establish objective criteria, is designed to help come
to an eventual decision.

These models provide some excellent strategies for dealing with commercial negotiations.
However, while a co-operative mode is desirable for resolving design conflicts, it is not
immediately clear that negotiation is the best method. However, some of the recommendations
made in these negotiation models are clearly useful for design. To summarise the main points:

Exploration of each other’s perspective is essential to constructive negotiation;

Participants should be separated from the bids in order to avoid polarization;

The negotiation must begin by examining interests rather than positions so as to achieve a
better understanding of the conflict;

There is a need to generate many options without discarding any prematurely;

The procedure (and criteria) for selecting a good solution must be agreed on.

3.4.4 Computational Models

3.4.4.1 Distributed Artificial Intelligence

Distributed Artificial Intelligence (DAI) studies how intelligence can be modelled in the co-
operation of a set of agents [Huhns 1987], questioning the usual AI assumption that a single self-
consistent entity (such as a conventional knowledge base) can demonstrate intelligence. Problem-
solving activities can be divided up among agents, according to their specialist knowledge. As the
system runs, the agents communicate partial solutions, and possibly control information (e.g. re-

- 49 -

allocation of tasks), amongst themselves, until they converge on a final agreed solution. The
premise is that intelligence is an emergent feature of co-operative behaviour.

The paradigm has a natural ability to handle conflicting knowledge without the usual logical
contortions arising from inconsistent conclusions. It allows agents to develop and maintain
alternative hypotheses. Different agents will contain different knowledge, which may compliment
or conflict with knowledge contained in other agents. This is demonstrated in the blackboard
system [Nii 1986a, 1986b], which is typically used for recognition problems. Separate knowledge
sources communicate partial hypotheses using a shared blackboard. The knowledge sources
modify and extend existing hypotheses on the blackboard, until one of them adequately explains
the phenomena being observed.

In the blackboard model the separate knowledge sources have no knowledge of each other [Erman
& Lesser 1975]. Removing the global blackboard requires that agents communicate directly. In
Lenat’s BEINGS system they simply broadcast messages, usually in the form of requests for help,
and hope that some other agent will reply [Lenat 1975]. Such systems still assume problems can be
partitioned into totally independent sub-problems, and so the co-operation is reduced to that of
trading tasks and sharing results. However, this is an unrealistic assumption, and is essentially
conflict avoidance. There is a growing realisation that most problems cannot be partitioned in this
way [Ginsberg 1987].

Various techniques have been proposed to allow epistemic reasoning, especially in multi-agent
planning systems. Agents must be able to reason about what other agents know and are capable of
in order to make full use of their existence, and to co-operate effectively [Konolige & Nilsson
1980]. Similarly, to communicate properly, agents must be sure their communications contain
enough context to be understood, and that they are useful to the recipient [Appelt 1980].

Also, most DAI systems assume benevolent agents, all working towards the same goal.
Rosenschein notes that in real world situations, perfect co-operation never happens, as the goals of
any two agents will never coincide exactly [Rosenschein 1985]. He examines payoff matrices from
game theory as a way of comparing goals, and discusses various situations in which conflict of
goals can occur, and how they can be resolved [Rosenschein & Genesereth 1985]. Clearly it is
these models that will have the most relevance to human conflict resolution, which also arises
because of differences in the goals of the participants.

While DAI has contributed a variety of computational models of agent interaction, it has not
progressed much beyond the game theoretical studies of conflict resolution [Sycara 1988]. Models
which require resource conflicts to be resolved involve little more than bidding and bargaining
strategies. Of most interest are those models which allow multiple hypotheses to be developed
concurrently. At present these accept the first hypotheses to meet certain criteria, where the criteria
used are built into the system. Work is needed to study how to combine elements of conflicting
hypotheses as the basis for better hypotheses. In order to achieve this, the rationales behind each
element of the hypotheses are needed.

3.4.4.2 Computer-Supported Co-operative Work

CSCW studies how computers can be used in collaborative activities. The field has only been
recognised as such since the early eighties, although it has conceptual roots stretching back to the
work of Engelbart [Engelbart 1963]. It takes a perspective of the computer not as an end in itself,
but as an enabling technology, and studies how the computer might be used within the domain of
interactions between people, and between people and information sources.

Greenberg [1989] divides the research on CSCW into two areas: Real-time collaboration and
asynchronous collaboration. The former studies how computers are used in meetings both to
provide electronic media for use in face-to-face meetings, and to facilitate remote conferencing.

- 50 -

Asynchronous systems are used to co-ordinate group working over longer periods, and to provide
new communication channels between colleagues. These include electronic mail, bulletin boards
and hypertext.

CSCW is relevant to conflict resolution in that it provides a number of tools which are intended to
improve group collaboration and hence manage conflict. Most such tools are asynchronous,
concerned more with the co-operative organisation of ideas over a period of time, although some
meeting support tools, such as Xerox PARC’s CoLab [Stefik et. al. 1987] address the same
concerns. CoLab is a testbed meeting room which uses high resolution screens to replace the role
of the whiteboard. Two of the software tools provided are of interest here: Cognoter and Argnoter.
Cognoter is used to develop outlines for talks and papers collaboratively. It divides meetings into
three phases: brainstorming, in which a shared window is used to jot down (unrelated) ideas;
organising, where participants explore the relationships between ideas by linking them in some
order and grouping them; and evaluation in which the ideas are tidied up, details filled in, and
irrelevant ideas eliminated.

Argnoter is intended for use in evolving designs, where proposals have been partially worked out
beforehand, and so the scope for conflict is greater. The intention is to overcome three major
causes of dispute: personal attachment to positions, unstated assumptions, and unstated criteria.
Again, three phases are used: proposing, arguing and evaluating. In the first phase, proposals are
presented using webs of interconnected windows, often modifying existing proposals, or
combining features of several. The arguing phase consists of noting reasons for and against each
proposal, and linking these arguments to the proposal. The final phase is concerned with
discovering the assumptions made by the arguments, and listing criteria for decision making.

Argnoter was designed to disassociate people from proposals so that they feel freer to critique. The
assumptions associated with arguments are grouped together into belief sets, to characterise points
of view, and to explore the consequences of those views. Stefik et. al. [1987] compare the tool to a
spreadsheet in that it doesn’t understand the proposals and arguments that it manipulates, but can
compute the logical relationships between them. The resolution of conflict was one of the
motivations in the development of the tool, with the hypothesis that making the structure of the
arguments explicit reduces the disagreements caused by uncommunicated differences. In this way,
the tool incorporates much of the methodology advocated by Fisher & Ury [1981]. However, the
actual role of the tool in the conflict resolution process is not investigated, as the researchers were
more concerned with how the enabling technology affects the meeting.

3.4.4.3 Hypertext

Hypertext systems [Conklin 1987] offer the ability to support the collaborative elicitation and
organisation of ideas over longer durations. In particular, several hypertext-based software
engineering environments have been developed, to help cope with the volume of information
needed, and to support communication between a team. As Schuler [1988] points out, hypertext
provides an excellent vehicle for supporting (but not supplanting) negotiation. Hypertext allows
differing opinions and viewpoints to be represented and linked in the same system, encouraging
plurality rather than stifling it.

The ability of hypertext to represent the associative structure of knowledge using typed links and
nodes allows systems to reflect the structure of conflicts. Lowe has built a hypertext system
directly based on a model for debate and reasoning, known as SYNVIEW [Lowe 1985]. By
concentrating on debate, the system can contain all viewpoints rather than just a dominant one,
with any group decision-making or voting based on access to a common body of material. The
system is used for a group of experts to co-operatively compile information on a particular subject.
It allows the experts to disagree, and provide evidence for their statements, by adding backings and
qualifiers to chains of reasoning. Each statement of evidence can also be subject to disagreement.
In this way, the system captures the style of a debate.

- 51 -

SYNVIEW appears to work well when the information has already been thought out by the
experts, and is intended as a presentation tool. It does not assist the constructive thinking needed in
design. This is because debating protocol concentrates on the adoption and defense of positions,
encouraging an intransigence that inhibits creativity.

The dynamic nature of hypertext can be exploited to provide tools to explore problems in their early
stages. While the ability to link together ideas associatively as they occur makes hypertext ideal for
this kind of application, the ability to annotate and amend such links rapidly is important
[Easterbrook 1990].

Software development hypertext systems allow designers to link together chunks of code,
documentation, specification, etc, in order to record how the development progressed, and how the
various parts of the system interact. For example, the Personal Information Environment (PIE)
[Goldstein & Bobrow 1984], concentrates on perspectives. A program of research at MCC in
Texas has produced gIBIS and ISAAC [Conklin 1989] which directly support group exploration
of issues by allowing users to build up a network of issues, positions (or alternatives) and the
arguments that support or refute them. While all these systems are designed with the software
engineering application in mind, the principle could be adapted for other types of problem.

Several authors have used hypertextual linking in knowledge acquisition, for instance to link
together (formal) interpretations and the original text (e.g. Woodward [1988], Regoczei & Hirst
[1989], Jones [1989]). Gaines [1989] terms this shadowing, suggesting that items in a formal
knowledge base can be linked to informal nodes of a hypermedia system, providing extra
information for human digestion. This approach offers an excellent route to combining the power
of a symbol manipulation system with the expressiveness of natural languages and images.

3.5 Summary

This chapter has surveyed work from a number of relevant fields. The first section discussed
approaches to requirements engineering, which was divided into work on languages and work on
specification processes. These two areas compliment one another: successful requirements
engineering relies on both rich representations and suitable methods. Work on specification
processes was divided into a number of paradigms, including formal methods, planning and
transformation. Section 3.2 discussed related work in knowledge acquisition, and in particular
techniques for elicitation of conceptual knowledge.

However, all these methods were found to share a shortcoming, in that they concentrate on the
development of a single description, representing a single perspective. Part of the problem is that
existing methods do not support the process of negotiation. Where a single consistent description
is demanded, then all conflicts have to be resolved before the knowledge is formulated. These
methods are therefore susceptible to the problems of conflict suppression described in chapter 2.

Section 3.3 describes recent work which recognises the need to handle conflict in knowledge
acquisition and in requirements engineering. The former recognises the value of using more than
one expert, and concentrates on how multiple experts knowledge can be encoded into a knowledge
base. The latter centres on the need to consider the requirements of many different people, and the
notion of viewpoints has been introduced, as a way of representing multiple perspectives.

Two major issues are raised concerning work on viewpoints. Firstly, common ground needs to be
established between participants so that they can communicate: in most cases this common ground
is taken for granted. Secondly, if conflicts are to be resolved, then there must be a way of devising
solutions. Good resolutions are likely to require creative input, and so cannot be enumerated
beforehand. Some conflicts might be handled using a heuristic approach; however it is not clear
what types of conflict would be amenable to this approach.

- 52 -

Section 3.4 surveys a number of fields pertinent to the study of multiple viewpoints and conflict
resolution, which were divided into three areas, mathematical, behavioural, and computational.
The first of these includes areas of decision theory and game theory. These fields are highly
theoretical, and make some restrictive assumptions about, for example, the state of knowledge of
the participants, and their motivations. Nevertheless, research in decision theory has developed a
number of tools which can be used to clarify the issues in decision making. Game theory and
bargaining have laid the groundwork to evaluating and understanding the use of strategies in
conflict situations.

The behavioural tradition, by which we mean much of the work on conflict from the social
sciences, show more promise in channelling conflict situations into creative processes, but gives
little indication how such processes might be supported with computational tools. The main results
from research in these areas is that not only is conflict inevitable in society, both within and
between individuals and organisations, but that conflict has a useful role in facilitating change and
producing higher quality group decisions.

Of the fields within computing science, most are extremely young, some less than a decade old,
and are only just recognising the role of conflict management. These fields seem to fall neatly into
two camps: the AI approach, which attempts to automate completely the resolution of conflict
between agents, and is based on mathematical approaches; and the supportive approach, in which
computers are used as tools for supporting human conflict resolution, enabling greater
collaboration.

There is a consensus of opinion in work on group behaviour that good solutions to conflict require
creative input. If this is the case, and it certainly seems likely in design contexts, then it is unlikely
that algorithmic conflict resolution methods can be provided. Rather, we can provide tools for
analysing conflict situations and for encouraging co-operative and creative approaches to conflict
resolution. The formal techniques developed in mathematical models of conflict can be used in
these tools to supplement the creativity encouraged in behavioural models.

- 53 -

4 Specification from Multiple Perspectives

At the end of chapter 2, we described a number of objectives for a framework to support the
requirements engineering process. The goal of this thesis is to develop a model which meets these
objectives. The remainder of the thesis describes the development of a model of requirements
engineering based on multiple perspectives. This chapter presents the underlying ideas, while the
following two chapters describe in detail the two main parts of the model, together with the tools
which have been developed to support them.

This chapter presents the rationale behind the multiple perspectives model. The first section
presents the key ideas and assumptions underlying the model. The terms perspective and viewpoint
are defined, and the issues of conversation support, representation schemes and changing
requirements are discussed. Section 4.2 explores the advantages of modelling multiple
perspectives, and demonstrates the operation of the model on an example drawn from the literature,
while section 4.3 describes four key areas of difficulty in supporting the model. Finally, section
4.4 addresses the research methodology and gives a brief summary of how the model evolved.

4.1 Key Concepts

The model is based upon the development of a set of individual knowledge bases to represent the
views, or perspectives, of the people with whom the analyst must interact. This allows the
elicitation of knowledge from different sources to be separated from the integration of these
sources’ contributions. As the perspectives are captured and represented before the integration
begins, the integration process is made explicit, allowing techniques of conflict resolution and
negotiation to be applied to the collaborative process of building the specification. The way in
which the specification is built can then be controlled by the analyst, rather than by the order in
which the information arrives.

So far, the terms “perspective” and “viewpoint” have been used informally, to convey a rough
idea. In section 4.1.1 we define exactly what these terms refer to in the model, and discuss their
relationship. The remainder of the section describes the principles upon which the model is based:
support for a conversational approach, the freedom to use many representations, and the
accommodation of evolution in the specification.

4.1.1 Perspectives and Viewpoints

In order to reach an understanding of a business activity on which to base a requirements
specification, some structure must be imposed. Traditionally, a description of the system being
studied is constructed and incrementally elaborated. This description acts as a unifying theory with
which to interpret the information about the problem as it is gathered. Typical analysis techniques
include identifying processes and dataflows in order to structure the description. More recently,
methods such as CORE have introduced the notion of viewpoints (see §3.3.3). Viewpoints are a
logical development from processes and dataflows, which enable the processes to be more clearly
identified with the agents that perform them, and hence capture the notion of responsibility
[Finkelstein & Potts 1985].

Such techniques provide a way to structure and represent a system model, but do not necessarily
capture any of the ephemeral or peripheral knowledge used by the participants during the process
of requirements definition. For example, in CORE the viewpoints are used to structure a single,

- 54 -

consistent description of the system, leaving no room for alternative descriptions. In particular,
CORE viewpoints are not allowed to overlap. Everything the analyst is told is either fitted into the
description, by adjusting it where necessary, or remains unrepresented.

In this thesis we adopt a more abstract version of a viewpoint, which we term a perspective.
Perspectives provide alternative descriptions of the system, which need not agree. Hence, the same
concepts can be represented in different, conflicting ways. Each person can describe the system as
they see it, rather than adding detail to someone else's description. For each perspective, the
description may be structured using the most appropriate representation scheme. The perspectives
are not restricted: they are descriptions of whatever each person considers to be relevant. In
general, each person's description will be most detailed in the parts that concern them, and over-
simplified elsewhere.

Once the perspectives have been elicited, the process of specification building then involves their
comparison and integration. The resolution of conflicts between the perspectives becomes an
explicit process, amenable to established techniques and computerised support.

Unfortunately, there is no one-to-one mapping between people and perspectives. Individuals are
quite capable of holding several conflicting perspectives, and occasionally a group of people will
share a particular perspective. One reason for this is that a person will often need to perform in
more than one capacity, to carry out different tasks. Each task exists within a context, and may
involve assumptions that are not valid for other tasks.

There is some correspondence between perspectives and roles – however, the perspective is not a
description of a task or a role, but a description of the world from a particular angle. It would be
more precise to identify a perspective with the context in which a role is performed. The
relationship between people and their perspective descriptions is analogous to that between
managers and their areas of authority (c.f. management domains [Sloman & Moffet 1988]).
Authority can be shared and areas can overlap; conflicts can arise both between areas of authority
held by a single person and between people who share an area of authority.

As an example, consider the job of a librarian. A librarian may have to perform several roles, and
will describe the requirements of the library system differently, depending on which role she is
considering them from. The intricacies of the task of cataloguing may conflict with the need for
information at the issue desk. When considering the job of issuing books, the librarian might state
a particular search facility is required. At some other time, she will be considering the cataloguing
task, and might state that this same facility would be too complicated to provide. Such conflicts
may disappear when pointed out to the person concerned, due to a conscious desire to appear
consistent. However, in this case the conflict has not been resolved, but only suppressed: the
search facility is still desirable, even if this particular librarian decides it can’t be done.

Conflicts such as this often reveal when people are considering their requirements from different
perspectives. As in the example above, suppression usually involves a decision which might not be
appropriate to take until more information is available. In particular, it may become clear that there
is a way of reconciling the conflicting pressures. Note that where the roles are performed by
different people, there will be less pressure for the conflict to be suppressed.

Informally, a perspective can be defined as a description of an area of knowledge which has
internal consistency and an identifiable focus of attention. Following Finkelstein et. al. [1989] (See
§3.3.3) we use the term viewpoint more specifically, to denote the formatted representation of a
perspective. A viewpoint consists of a set of statements which constitute a description. This
description will be in a particular representation style, for example a particular type of diagram, or
some specification language. A viewpoint will also have an originator, from whom the description
was elicited. In most cases we can expect the originator to be a single person. However, as the

- 55 -

elicitation of viewpoints proceeds, coalitions of people will be seen to share a viewpoint, and so an
originator may be a group of people, or even an entire organisation.

This distinction between perspectives and viewpoints allows us to regard a viewpoint as a partial
description of a perspective. The viewpoint is restricted to what has actually been stated by the
originator, in other words to the part of the perspective that has been elicited. This restriction of
viewpoint descriptions is useful for validation purposes: the viewpoint does not contain any
(possibly spurious) assumptions about what the originator might think – it is a verbatim description
of what the originator actually said. In effect, statements are regarded as commitments for the
speaker (See §5.2.1). The originator of a viewpoint can review her current set of commitments at
any time, making modifications as necessary.

4.1.2 Conversation

One underlying assumption is that specification is a conversational activity. The definition of a
viewpoint reflects this: a viewpoint is a record of the statements made by an originator. It is not a
description of what a person might think, nor is it a reconstruction of what a person appears to do.
Where such things need to be represented they form other viewpoints, originating from whoever is
doing the hypothesizing or the reconstructing.

The elicitation of knowledge inevitably involves some form of interaction with the people who
might have that knowledge. Such interaction can take many forms, and analysts typically use
several techniques to gather information, some of which involve dialogue, while others have no
verbal component (See §3.2.3). No assumptions are made about what form the elicitation takes,
except that it involves some form of interaction with the originator, and presumably some degree of
interpretation. The viewpoints capture the information arising from that interaction.

Whichever methods are used, at some point the analyst will need to discuss the gathered
information with the originators, and it is these discussions that form the main vehicle for
clarifying and validating the knowledge, and hence building the specification. The discussions
between analyst and originator enable both parties to explore the current state of their viewpoint
descriptions, and how those descriptions relate to the evolving specification.

Any framework for the requirements engineering process must not only support this conversational
aspect, but must also encourage it, to ensure that the various contributors actually participate. In
order to be effective, the discussions should not be restricted by the model, nor by the form of
support provided by it: the discussants need to be free to raise any issues that concern them. If they
are prevented from raising particular issues because of some imposition on the order of discussion,
then such issues might never receive proper attention. In other words, the course of the
discussions must be controlled by participants, rather than the model.

This requirement has an important ramification, in that where temporary inconsistencies and over-
simplifications arise, there is no guarantee that the discussants will resolve them immediately. If the
acquired information is to be represented as a knowledge base, then this knowledge base must
allow participants to continue to interrogate it, to explore its current state, even in the presence of
inconsistencies. This reflects the human ability to explore an idea, whilst ignoring any inconvenient
or trivial details. The support tools must accommodate the inconsistencies until such time as the
participants are ready to discuss them. They may turn out to be important conflicts, or they may be
the result of errors or misunderstandings.

The use of perspectives supports the conversational aspect of requirements elicitation by capturing
the information exchanged in conversation. It also facilitates and encourages discussion in several
important ways. It allows participants to identify their contributions, and to see how those
contributions have been represented – the analyst can present a viewpoint description back to its
originator to initiate the process of discussion and clarification. Because inconsistencies are

- 56 -

assumed to be distinctions between perspectives rather than errors, there is no need to resolve them
immediately they are detected. This allows the participants to explore particular ideas, by posing
them as new perspectives. Finally, the conflict resolution process described in chapter 6 explicitly
encourages the discussion of the issues underlying conflicts between perspectives.

4.1.3 Representations

The model provides a structuring for the collection of information from many sources. However, it
does not impose any particular representation on that information. Many of the analysis techniques
developed in the past are little more than representation schemes, where the form of representation
used determines the way in which that information is gathered and analysed. In contrast, the model
described in this thesis provides no representation scheme at all, in the expectation that existing
representation schemes can be adopted as required.

The definition of a viewpoint (§4.1.2) restricted it to a description of the actual statements of the
originator. However, as the intention is to enable some degree of interrogation and manipulation of
the viewpoints, there is little to be gained by simply constructing them as natural language
descriptions. Indeed, descriptions of this form are already available as the transcripts of
conversations with a particular person. Rather, the statements need to be translated into a formatted
description. This translation serves two purposes: it checks the analyst’s understanding of the
originators’ statements, and it allows the description to be formally analysed in various ways. The
formatted description can be presented back to the originator as a form of summarization, so that
the originator can validate it.

It was noted in chapter 2 that requirements engineering involves many different types of
knowledge, using many different representations. Typically, several representation schemes are
used to supplement each other, whilst avoiding any duplication of information. It is often useful to
describe the same information using different representations: the introduction of such redundancy
can help reduce misunderstandings and discover conflicts. Different representations are more
suited to particular areas of knowledge, in the same way that different programming languages suit
particular problems [Petre & Winder 1988]. People have preferred ways of describing particular
parts of their knowledge, and it is helpful if appropriate representation schemes can be used to
structure the viewpoints.

The multiple perspectives model provides exactly this facility: the knowledge gathered for each
perspective can be represented using any appropriate representation scheme. This allows the people
with whom the analyst interacts to describe their contributions in a form that they feel comfortable
with. The problem of comparing descriptions in different representations becomes part of the
general problem of comparing information for which there might not be any prior common
understanding.

4.1.4 Evolution

The process of knowledge acquisition can never be regarded as complete during the lifecycle of a
software system. Although specification is an attempt to provide a complete definition of the
requirements, some of those requirements will not become apparent until a new system is
introduced. Also, the environment in which the system must operate will change, and these
changes will be reflected in the perspectives of the people concerned with the system. The process
of requirements elicitation therefore never really stops.

As elicitation proceeds even after parts of the specification have been constructed, there is a danger
that new information will invalidate the decisions involved. This may reflect both changing
requirements, and clarification of mistakes and misunderstandings in the original requirements.
There are two ways in which evolution arises in the multiple perspectives model: the addition of
new perspectives and the elaboration of existing ones. New perspectives might be added as the

- 57 -

result of new distinctions becoming apparent, additional participants joining the process, or new
needs being identified. Existing perspectives will continue to be developed throughout the lifecycle:
the originators will be encouraged to review their descriptions periodically, and changes are
especially likely as a result of the validation process (§4.2.4).

The multiple perspectives model does not attempt to impose definite phases of elicitation and
integration, as it is recognised that the integration process will entail the elicitation of additional
knowledge. Rather, exploratory integrations are interleaved with the process of developing the
individual perspectives. While the viewpoints provide the initial input to the resolution process, it
is unlikely they will contain all the information needed, particularly if creative solutions are needed
for major conflicts. The integration process will inevitably include a great deal of reconsultation
with the originators of the viewpoints. The existing viewpoints provide indicators of where such
consultation is necessary, and what type of additional information is needed.

Specification building is treated as an exploratory process, concerned with the comparison and
combination of parts of existing viewpoints. The viewpoints themselves are not altered by this
process, but remain as representations of the perspectives. Instead, the results of the comparisons
are kept separate from the participating viewpoints. As such integrations always take place in the
context of a particular set of viewpoints, the later addition of new viewpoints will not invalidate the
reasoning behind any decisions taken. Similarly, because the participating viewpoints are
preserved as a record of the information used in the decision-making process, any decisions can be
re-examined. Hence, the effects of any further changes to the participating viewpoints, resulting
from reconsultation with the originators, can be traced.

An inevitable result of this exploratory process is that decisions will frequently need to be re-
examined. This is desirable in any situation where knowledge is incomplete. The extra effort
involved is reduced by explicitly capturing the decisions, together with the knowledge on which
they were based, and providing tools to allow full traceability: from viewpoints to the decisions
they participated in, and from decisions to the viewpoints on which they were based. The problem
is also reduced by encouraging analysts to delay decisions until they become necessary (See
§4.2.3).

- 58 -

(a)

single
description

Spec

Analyst

(b)

Spec

Analyst

m
ultiple descriptions

Figure 4.1: The traditional approach to requirements analysis involves the analyst building a
single description of the world which gradually evolves into a specification. Information from
each source is fitted into the single description. By contrast, our model maintains a separate
description for each perspective, and these separate descriptions are combined into a
specification. The perspectives remain after the specification building process, allowing the
process to be reconstructed.

4.2 Rationale

The main justification for introducing perspectives is the observation that the conceptual models
which people use for their respective tasks seldom match exactly [Norman 1986], and that
resolving the differences between them is a difficult problem. In the model we propose, a separate
knowledge base is built for each perspective, to capture the knowledge offered by the person
expounding that perspective. This ensures that each perspective is properly represented in the
integration process, increasing the chances that the eventual specification will represent the views
of all participants.

The model has important implications for validation of specifications. If the specification is to
describe accurately the needs from which it is derived, then it must be validated by all the people
whose needs it is supposed to represent. Validation of a complete specification is a difficult task,
which should be divided up into manageable parts. The multiple perspectives model allows
participants to validate their individual contributions separately. Having done this, they can then
trace how their contribution relates to the specification, and to the decisions involved in building
that specification. The model encourages their participation throughout the specification process.

4.2.1 Separating Perspectives

In the requirements specification process, individuals start with different knowledge and different
preconceptions, which are gradually merged into a specification. Before these people have
communicated some of their knowledge and established some common ground, it is difficult to
combine their knowledge into a consistent specification without misrepresenting them, or
neglecting parts of their contributions. Furthermore, the merging process involves important
decisions which resolve conflicts between competing needs.

In the multiple perspectives model, the elicitation process involves the construction and evolution
of individual viewpoints. As the viewpoints are developed independently, the analyst need not
worry how the viewpoint being developed fits in with the rest of the information. This allows the
analyst a much greater control over the process: the implications of a particular viewpoint
description can be ignored while it is being developed, even if there is a direct contradiction with
other viewpoints.

- 59 -

As each person’s point of view is elicited separately, participants are able to describe what they
see, rather than having to add to other people’s descriptions. A description need not accommodate
other points of view, and so remains an accurate representation of an individual’s contribution.
Furthermore, the model allows individuals to be inconsistent. Such inconsistencies can be
represented by several viewpoints, and so do not prevent the analyst from reasoning with the
evolving descriptions. As participants are not constrained to be consistent, they can explore what-if
questions, and ignore inconvenient consequences of ideas as they are developed.

4.2.2 Combining Knowledge Sources

While the model does not impose specific phases of elicitation and integration of viewpoints, it
allows the two processes to be identified and separated, even when they are interleaved. Without a
framework for maintaining separate descriptions, it is difficult to avoid modifying incoming
knowledge as it is elicited, to take account of what is already known: in this case the integration of
knowledge from multiple sources remains an implicit process. In contrast, by representing the
perspectives explicitly, the processes of resolution can be examined, with the perspectives captured
separately, before integration takes place.

We have already observed that integration of knowledge from many sources is a decision-making
process. Support for the explicit integration of separate perspectives provides a focus for this
process. By maintaining a set of (often incompatible) perspectives, the analyst can build up the
whole picture before attempting to combine them, delaying any decisions until an appropriate time
(See §4.2.3). Where inconsistencies arise between perspectives, they are explicitly resolved by
detailed discussion, as such inconsistencies often indicate the presence of important conflicts or the
need for design decisions.

The model also facilitates the recording of the decisions. Given that the information used to make
the decisions is already captured as a set of viewpoints, each decision can be captured and
recorded, together with the context in which it was made. Furthermore, the process of
documenting these decisions is automatic. The original viewpoints will remain available for
examination, allowing the rationale behind the decisions to be seen.

4.2.3 Delaying Decisions

The previous section emphasised that the integration of knowledge is a decision-making process,
and discussed how the model supports decision-making. We have also suggested that by
accommodating inconsistencies, the model allows the analyst to delay making particular decisions
until the relevant knowledge is gathered. This ability to delay decisions also contributes to the
stated aim of not imposing any ordering upon the discussions between participants (See §4.1.2).

A decision about how to integrate several pieces of knowledge, or how to resolve a conflict
represents a commitment: by making the decision, the analyst is committing herself to the outcome
of that decision. These commitments inevitably involve a narrowing of attention, as the act of
making the decision implies that there are other possibilities which will henceforth be excluded
from consideration. A premature decision implies a commitment which may unnecessarily restrict
the future development [Thimbleby 1988]. Most importantly, it can curtail the creativity process by
discouraging exploration of novel ideas. Not only are other possibilities excluded from
consideration, but the participants often forget they exist. Hence, while it is sometimes possible to
reverse decisions if it becomes clear they are unworkable, in general, once a decision has been
followed through it is hard to recognise that an alternative approach might be better. It is also hard
to recognise which decision was faulty: if the alternatives are forgotten, in retrospect the decision
will no longer be considered to have been a decision.

To prevent the unnecessary restriction of the development process, we distinguish between
specification commitments and exploratory decisions. This is made possible by not maintaining a

- 60 -

single “correct” specification, which would embody all the commitments made so far. Instead the
set of perspectives represents the many possibilities, and exploratory comparisons and integrations
are treated as new perspectives, rather than as part of any specification. Eventually parts of these
perspectives may become parts of a specification, but by avoiding treating them as such during the
development process, we avoid restricting the exploration with premature commitments. The
process can be regarded as delaying commitments, in that binding decisions are deferred until an
appropriate time.

4.2.4 Constructing Specifications

In chapter 2, we described the role of the specification, concluding that it must be testable,
unambiguously precise, modifiable, and representative. These criteria are affected both by the
manner in which the specification is constructed, and by the form it takes. In particular, the degree
of formality has a strong bearing on precision and testability, while the degree of involvement of
clients will affect its representativeness.

An overriding concern is the validation of specifications. The multiple perspectives model assists
with validation in two main ways: Firstly, participants can see how their contribution has been
encoded, how it fits into the whole picture, and how their descriptions relate to others. This allows
them to make changes where they feel a viewpoint is misrepresenting them. Secondly, as each
person’s contribution is represented explicitly, the role it plays in the subsequent integration
process can be traced. Hence any item in the final specification can be traced back to the viewpoints
from which it originated. More importantly, a viewpoint can be used by its originator as a pathway
into exploration of the complete specification.

Precision and the elimination of ambiguity are often achieved through the use of formal
specification languages. However, these introduce their own problems: they can be difficult to read
and will be unfamiliar to the people whose knowledge is being represented. This in turn introduces
problems with validation. As the multiple perspectives model allows each person to examine how
her contribution has been represented, in isolation from others’ contributions, the use of an
unfamiliar notation is less daunting. We noted in §4.1.4 that the model make no commitment to a
particular representation. In fact, the ability to mix representation schemes allows mediating
representations [Johnson 1989] to assist with the presentation of a formal specification.

One of the strengths of the model is its encouragement of negotiation. The viewpoints are built by
collaboration between the originator and the analyst. This collaborative process ensures that
discussion takes place, allowing misunderstandings to be eliminated. The specification must be
agreed between the participants, and therefore involves detailed discussion and resolution of
conflict. This encouragement of discussion, and the common understanding it leads to, helps avoid
ambiguities in the specification. A further source of ambiguity arises from differing uses of
terminology. Such differences should not necessarily be eliminated, but they must be detected: it is
when they remain undetected that ambiguities result. The resolution process described in chapter 6
provides a route to the detection of such differences.

While the model does not guarantee that the specification formed at the end is representative, it at
least ensures participants have a greater role to play in the process. Where knowledge is
accumulated in a single central description it rapidly becomes unrecognisable to the originators
[Compton & Jansen 1989], partly through the encoding process, and partly through the elaboration
by many other sources. This has a tendency to alienate the participants, as they lose any sense of
ownership of the specification. In the multiple perspectives model, originators are the owners of
their viewpoints, allowing them to be a part of the resolution process, and giving them a motivation
to participate further.

The viewpoint knowledge bases developed during the requirements phase are retained as
annotations to the specification. This allows experimentation to continue throughout the life of the

- 61 -

Entity:

Attributes:

Entity:

Attributes:

person

name (John Major)

office (Prime Minister)
salary (£62,000)

party

name (Conservative)

in_power (yes)

Relation: member_of

Entity:

Attributes:

Entity:

Attributes:

person

name (John Major)

party (Conservative)

office

name (Prime Minister)

salary (£62,000)

Relation: holds

Entity:

Attributes:

Entity:

Attributes:

party

name (Conservative)

office

name (Prime Minister)

holder (John Major)
salary (£62,000)

Relation: in

Figure 4.2: An example of different descriptions of the same concepts, all expressed using
entity-relation-attribute diagrams (adapted from Stamper et. al. [1988]).

system, with the viewpoints providing the traceability and rationale to support the specification.
The use of viewpoints provides a modularity that facilitates change: the viewpoints can be modified
and added to as described in §4.1.5. Furthermore, as the viewpoint knowledge base used during
development of the specification is retained as a part of that specification, a great deal of extra
information is available to anyone who interrogates the specification .

4.2.5 An Example Problem

We have outlined a novel approach to requirements elicitation, using viewpoints to enable
individual and idiosyncratic descriptions to be built. These separate descriptions can be associated
with the perspectives people use when performing particular roles. In section 4.1.2 we described
in very general terms a possible conflict between two roles of a librarian. However, we have not
considered in detail how viewpoints are likely to differ.

There will clearly be a number of small difference of detail between viewpoints. For example, if
the descriptions are in a predicate calculus, there will be a number of propositions which are true in
one and false in another. Where quantifiers are employed to describe real-world concepts the
potential for contradiction is enormous. Alternatively, if the descriptions are Entity-Attribute-
Relation models, there might be some differences between what are chosen as entities in the
domains, and what are considered to be attributes of other objects. Figure 4.2 presents an example
adapted from Stamper et. al. [1988]: is the office of prime minister an entity, and the current holder
an attribute; is the holder an entity, and the office he holds an attribute; or are they both entities with
a relation between them? Although these examples may seem trivial, if such differences arise in the
unstated assumptions on which people base their viewpoints, then their descriptions may

- 62 -

Clients Analyst's Knowledge Base

A
A -> B
¬B

A
A -> B
¬B
B

¬B

¬B

(ii)

A

A->B

A
A -> B

A
A -> B
B

A
¬B

A -> B
¬B

A
¬B

A -> B
¬B

(i)

Figure 4.3: A conventional knowledge base cannot handle the problem. (i) shows the analyst
drawing the wrong conclusion based on the simple evidence of the employees' first statements.
There is nothing to indicate to the analyst that the conclusion is wrong. (ii) shows an attempt to
rectify the problem by asking the employees about 'B'. This causes further problems, as the
knowledge base then contains an inconsistency.

eventually seem completely incompatible.

We can illustrate the problems of basing reasoning on differing assumptions with a small example,
analogous to that first described by Schoenmakers [1986]: A software analyst interviews two
employees of the client organization to establish the requirements (in this case for a library system).
The first employee states that some fact A is true:

We've got to have time limits for lending

whilst the second states that if A is true, then so is B (i.e. A -> B):

If we've got to have time limits for lending

then we'll need fines to enforce them!

The analyst puts these together, and concludes that B is true:

In that case we'll need fines as a requirement

Unfortunately, both employees know that B is false (neither really wants fines!), as is consistent
with their individual statements. The second employee stated the implication believing the premise,
A, to be false (she didn't want lending limits), quite possibly prompted by the analyst suggesting
A because the first employee had mentioned it. The first employee, of course, wouldn't agree with
the implication (other sanctions or even unenforced limits are not unreasonable for this particular
library).

Any doubt as to whether the problem is a valid one can be expelled by listening to clients talking

- 63 -

about the requirements. Phrases such as “Well, if A occurred we would need B to handle it”, and
“If we had A, we would want B” are often used in the counterfactual sense: the speaker still
suggests the implication, knowing that the premise is not true; or worse, reluctantly adds the
implication once someone else has specified the premise. The rather simplistic scenario given
above belies a tricky problem: it is more likely that the conclusion will be based on a long chain of
inference, and the problem will go undetected until too late.

This problem cannot be detected in a conventional knowledge base, as no information will be
available to say that the two statements A and A -> B originate from different sources, and might
not be compatible (Figure 4.3a). Even if the analyst found out both employees believe that not B
is true, perhaps by examining assumptions, and added it to the knowledge base, the problem
would still remain, as the knowledge base is then inconsistent. Furthermore, the contradiction is
not a direct one and might only be detected by generating all the consequences of the current set of
assertions, which is often impractical (Figure 4.3b).

Spotting the inconsistency is only half the problem. Assuming a good tool could help to detect the
problem, there is no information available about which of the three propositions (A, A->B, and
not B) are faulty. The analyst would need to decide which position is right before proceeding, as
most inference systems cannot allow all three propositions to remain. This may force the analyst to
make an early decision, in this case about lending limits, when such a decision may not yet be
appropriate.

4.2.6 An Example Solution

We will now demonstrate how the model copes with the fines problem. The first thing to note is
that simply adding the statements to a knowledge base discards important information about who
said what, and in particular, the fact that the statements came from different sources. Using the
model, the descriptions given by each person will be kept separate, and can always be traced back
to their originator for clarification.

After the analyst has interviewed each employee, the system will contain two viewpoints, as
shown in figure 4.4a. We can assume there will be other information as well as the statements
about fines, including information about how lending limits and fines relate to the overall goals of
the library, such as maximising access to the books. However, we will concentrate on the
assertions already described. We can also assume that the analyst has represented these statements
in some suitable formalism, for example predicate calculus: the first viewpoint contains a predicate
such as LENDING_LIMITS while the second contains LENDING_LIMITS –> FINES.

At some point the analyst is considering the high-level requirements for the specification, and
needs to know whether the library will use fines. A conclusion about fines cannot be drawn
directly by either viewpoint, but nor is there any conflict between them. There are several possible
avenues of exploration open. The analyst could create an exploratory viewpoint containing the
assertions from both viewpoints, which can then generate the conclusion fines. Note that this does
not affect the information stored in the original viewpoints. This conclusion can then be tentatively
added to the specification.

There is a danger at this point that this tentative conclusion will become fossilised into the
specification. However, several tactics are employed to prevent this. Firstly, the support system
links this assertion in the specification to the originating viewpoint, which in this case is an
exploratory one created by the analyst – no other participant has asserted it. Also, notes are
attached to the other viewpoints for them to check whether their originators agree to this new item
being added to the specification, as they had no information on it. This latter technique ensures that
everyone has a chance to monitor the formation of the specification.

- 64 -

Clients Analyst's Knowledge Base

A
¬B

A -> B
¬B

(ii)

A
¬B

A -> B
¬B

(i)

A

A->B

A

A -> B

⊥

¬B

A
¬B

A -> B
¬B

¬B

¬B

Figure 4.4: The assertions are recorded separately, so that no conclusion can be made in any
single viewpoint. In (i) there is nothing that both viewpoints agree on. In (ii) the analyst has
asked the employees about B, and as they both agree on not B, this can be placed in the
specification.

Eventually, one of the clients will point out that fines are not desired. This new information will be
added to that person’s viewpoint, and the process which added the requirement for fines to the
specification will be replayed. This is possible because the evidence that supported the original
process can be traced. The replay will detect a conflict between the tentative viewpoint asserted by
the analyst and the modified viewpoint of the client. The analyst may decide either to withdraw the
exploratory viewpoint, or invoke a conflict resolution process to explore the issues further.

As an alternative scenario, the analyst could have returned to either or both of the originators of the
viewpoints and ask them directly whether there is a need for fines, before attempting to add it to the
specification. In this case they will both assert that fines are not wanted, and this extra information
can be added to the viewpoints (figure 4.4b). The analyst now has an answer about fines, and
neither of the viewpoints has become inconsistent, and so can still be individually interrogated. The
two original predicates will probably never be included in the specification, as they are not directly
relevant: if ever they are, then some form of conflict resolution will need to be invoked to remove
the inconsistency in the specification.

In summary, the problem can be solved with little difficulty by applying the model, as it records
who said what, and what evidence is used for various inferences. There are several cases where
conflict resolution might have become necessary: in these cases the resolution model described in
chapter 6 would allow the participants to explore the issues and assumptions underlying their
assertions, and at the very least find out why they disagree.

4.3 Outline of the Model

Having discussed some of the issues underlying the model and the reasons for adopting it, we will
now take a closer look at the model and the tools that will support it. The model can be regarded as
having two parts: the elicitation and integration of perspectives. Each of these will be explicitly
supported; in other words the support system will provide a set of tools for knowledge gathering

- 65 -

and a set of tools for specification building. This is not to say that the two sets of tools won't
interact: the normal use would be to interleave the two tasks, using exploration of the specification
to guide the elicitation process.

The remainder of this section discusses a number of specific areas of difficulty in the model. The
elicitation of perspectives introduces two main difficulties: how to identify the perspectives
(§4.3.1); and how to build the viewpoint descriptions which represent the perspectives (§4.3.2).
Integrating perspectives also introduces two areas of difficulty: how to compare disparate
perspectives, for which there might be no common understanding (§4.3.3); and how to resolve
conflicts between perspectives (§4.3.4).

4.3.1 Identifying Perspectives

Identifying the perspectives before the elicitation process begins is a difficult task, and the
distinctions between the roles a person plays will often only become apparent during detailed
discussions. This difficulty can be overcome by allowing the decomposition to evolve during the
process. The analyst can begin with a set of agents based simply on people, or even groups of
people, which can then be decomposed into roles as they are identified. This reflects the notion that
the set of viewpoints identified will depend on the sophistication of the description. For example, a
first attempt at describing a library system might include the role user, which will be shared by
many people. Later refinement may distinguish different types of user, such as student user, staff
user, and visitor, with different needs and different goals.

To develop a larger set of more specific perspectives from the initial generalised set, new
distinctions between perspectives must be discovered. Overly-general perspectives might be split
into several smaller ones, each of which focuses on a particular area of the knowledge contained in
the original perspective. Chapter 5 discusses the criteria we used for deciding when to split
perspectives, and the mechanisms used to perform the split. In general, there are three cases: when
a viewpoint description becomes inconsistent, when a different representation scheme is needed for
part of the knowledge, and when the analyst and originator decide that a distinct perspective is
appropriate.

As well as criteria for distinguishing perspectives, rules are needed to determine to which
perspective each piece of knowledge belongs. As there is no one-to-one mapping between
perspectives and people, each person may be the originator of several perspectives. While each
perspective has a distinct originator, and each person has a distinct set of perspectives associated
with them, it is not always clear how new information offered by a person fits into their set of
perspectives. We approach this problem by organising the perspectives into a hierarchy (See
§5.1.3), where lower perspectives inherit from higher ones. Pieces of knowledge can then be
moved around in the hierarchy until an appropriate level is found.

4.3.2 Developing Perspectives

Once a perspective has been distinguished, the viewpoint description representing that perspective
can be developed. The viewpoints are formatted descriptions, intended to be analysed and reasoned
with, while the knowledge offered by the originators is likely to be informal. Interpreting between
the natural language used in the conversations and the appropriate formal symbols of the
representation scheme is not a problem unique to this model. The model does not provide a novel
solution to this problem, but rather assumes that existing elicitation and interpretation techniques
can be used.

The problem is complicated by the fact that there is no unique interpretation for many statements.
The model mitigates this complication in two ways. Firstly, extra perspectives can be added to
represent alternative interpretations. Secondly, links between items in the formal description and
the original transcripts are maintained, allowing inspection of the source material, for validation.

- 66 -

The freedom to make use of any appropriate representation scheme introduces two main problems.
Firstly, for the adoption of a particular representation to be of use, the support tools must be able to
manipulate descriptions in that representation. In particular, tools must be provided to check for
consistency within a description, and to allow the display and interrogation of descriptions. The
support environment we have developed incorporates sets of rules for manipulating a basic set of
representations, and allows sets of rules to be added for any new representations which the analyst
may wish to use. The second problem is that the unfettered use of multiple representations assumes
that at some point they can be compared and consolidated into a consistent specification. It is by no
means clear yet that this is always possible, but the method described in chapter 6 provides one
possible approach, which is not restricted to any particular type of representation.

4.3.3 Comparing Perspectives

Once the development of viewpoints is underway, exploratory comparisons will need to be made.
While we have emphasised that each viewpoint should be an uncompromising representation of a
particular perspective, the participants will need to build an understanding of how the perspectives
relate to one another. Such comparisons can reduce the amount of effort needed later to integrate
the perspectives into a specification. Viewpoints which share identical subsets of assertions,
especially definitions of terms, can be re-arranged to inherit these assertions from a common
viewpoint. Also, viewpoints which contain very similar descriptions might be merged earlier rather
than later.

Two very different frameworks in which to carry out this comparison process were investigated.
The system described in chapter 5 used a blackboard as a shared exploration space, from which the
specification was developed. Statements from any perspective could be placed on the blackboard,
but could only pass from here into the specification if no other perspective disagreed. The model
therefore required a consensual approach to specification. The system described in chapter 6
introduces a model more in keeping with the exploratory nature of the model. Any viewpoints can
be compared at any time, and tools are provided for noting correspondences. If as a result of the
comparisons some common description is evolved, this becomes a new viewpoint, which has as
its originators the existing viewpoints that were compared. This approach successfully divorces the
creation of a specification from exploratory comparisons between perspectives.

Given a model in which comparisons can take place, the actual process of comparing viewpoint
descriptions is still a tough problem. The viewpoints may differ in use of terminology and use of
representation as well as in the content material. Methodologies for comparing descriptions in
particular representation schemes have been developed (e.g. Shaw & Gaines [1988] – See §3.3.2)
and might be adopted for particular comparisons. However, the model does not constrain the
choice of representation scheme, and so the general problem of comparing viewpoints remains
unsolved. We make the assumption throughout this thesis that the originators of the viewpoints
will not be wholly unfamiliar with their colleagues’ knowledge, so that they will be able to suggest
correspondences between the viewpoints. These in turn can be used as a basis for discussion of the
relationships between perspectives.

4.3.4 Resolving Differences

The integration of perspectives to produce a consistent specification begins with the comparison
process described above. The model allows differences between perspectives to be ignored until a
resolution is needed, allowing time to gather the relevant information. If the difference is based on
a misunderstanding, then delaying the resolution may give the participants a chance to discover the
problem without having to make an unnecessary decision. Where the comparisons reveal real
differences, then some form of conflict resolution is needed.

There are several difficulties in the conflict resolution process. If comparing perspectives is
difficult then detecting conflicts must be equally so. Without a common understanding, all

- 67 -

differences will appear to be conflicts, whether based on misunderstandings, alternative
interpretations, or genuine disagreements. We tackle this problem by considering all unexplained
differences between perspectives to be possible conflicts: the definition of conflict given in §3.3.1
was deliberately broad for this reason. Part of the conflict resolution process involves exploration
of the underlying causes of the conflict, before resolutions are generated. This exploration process
involves deciding what form of resolution is appropriate: it may not even be necessary to generate a
resolution. For example, conflicts over terminology might be formalised into the specification
allowing a choice of terms in particular cases.

As the specification must be representative, the adoption of particular perspectives at the expense of
others must be ruled out. Rather, for genuine disagreements, a constructive negotiation process is
required, to find a solution that satisfies the concerns of all participants. Hence, when a conflict is
detected, the issues which led to the conflict need to be elicited, so that solutions which satisfy
those issues can be proposed and evaluated.

One of the biggest problems with conflict resolution is ensuring that all the interested parties take
part in the resolution process. If a perspective has been neglected it may be necessary to discard the
resolution and start again: if new perspectives are added after the resolution is generated, then this
is always a danger. When a resolution is chosen for a conflict between perspectives, it represents
an exploratory decision rather than a binding commitment. The process that led to the resolution is
recorded along with the decision, so that the process can be re-examined later if necessary. Storing
the resolution as a new perspective allows comparisons between this resolution and any other
perspectives to be carried out.

4.4 Method

The previous section describes four areas of difficulty in the model. There are inevitably a number
of important research themes arising in each of these areas, as the model covers a broad range of
activities. However, this thesis concentrates on the development of the model as a whole. The
model itself and the tools developed to support it are the key research contribution. Issues arising
from the application of the model are illustrated with examples where appropriate.

Once the general approach was established, the applicability of the model was explored with a
series of prototype support systems. The results from these were then used to refine the model.
The systems took the form of a knowledge-based environment, with tools developed to manipulate
the viewpoint descriptions. Section 4.4.1 describes the development history of these systems.
Examples drawn from the case study of a library system specification were used to test the
functioning of the these tools: section 4.4.2 explains the origins of this case study.

4.4.1 Tools

During the development of the model, three experimental systems were built. The first of these was
built in response to the judge problem discussed in §4.2.5, and consisted simply of a set of rules
for combining knowledge from separate sources (See §5.4), where all knowledge within the
knowledge base was labelled with its source. The system satisfactorily solved the problems raised
by the judge problem, in that it prevented incorrect solutions being drawn. However, it raised more
questions than it answered, and in particular identified two areas which needed more research. The
first of these was how to identify viewpoints: having established that viewpoints do not correspond
to people, the attribution of each piece of knowledge to a viewpoint becomes problematic. The
second problem was how to resolve differences into an agreed solution.

A new system was developed to explore the first of these problems: identifying and manipulating
viewpoints. The paradigm of the blackboard system was adopted [Nii 1986a], where the rules
governing how knowledge is combined on the blackboard were adapted from the first system. The

- 68 -

Consider a small library system with the following transactions:

1. Check out a copy of a book/ Return a copy of a book.
2. Add a copy of a book to/ Remove a copy of a book from the library.
3. Get the list of books by a particular author or in a particular subject area.
4. Find out the list of books currently checked out by a particular borrower.
5. Find out what borrower last checked out a particular copy of a book.

There are two types of users: staff users and ordinary borrowers. Transactions 1, 2, 4 and 5
are restricted to staff users, except that ordinary borrowers can perform transaction 4 to find
out the list of books currently borrowed by themselves. The system must also satisfy the
following constraints:

1. All copies in the library must be available for checkout or checked out.
2. No copy of a book may be both available and checked out at the same time.
3. A borrower may not have more than a pre-defined number of books checked out at one time.

Figure 4.5: This case study is a small library system. It raises a number of difficult issues but is
particularly compact. The study was set as a problem for the Fourth International Workshop on
Software Specification and Design and is based on a problem by R. Kemmerer.

need to identify some crude viewpoints before the elicitation process begins led to the development
of an evolutionary approach, where viewpoints are split when they become inconsistent, resulting
in hierarchies of viewpoints. Consideration of the actions performed on these viewpoints led to the
commitment reasoning scheme described in section 5.2.3. The entire system is described in the
next chapter.

Experience with this system suggested that it had one main failing: the rules for combining
knowledge were inadequate. A method of resolving conflicts was needed to complete the model.
Consideration of the various existing work on conflict resolution described in chapter 3 led to the
development of a model for supporting human conflict resolution. This model and the support
tools developed to demonstrate it are described in chapter 6.

The two systems described in the next two chapters are intended to be used in conjunction. The
conflict resolution model assumes that viewpoints have been elicited and suitably represented, and
would be invoked when conflicts arise between viewpoints. Together the two systems represent
the two major parts of the model: the acquisition and resolution of perspectives. The support
systems described are intended to be illustrative only, and do not address all the issues arising from
the model. A discussion of further areas of research is given in chapter 7.

4.4.2 Case Studies

Throughout this thesis, examples from the domain of a library system are used to illustrate various
ideas. The library problem is well-known in research on specification and has regularly been used
as a set problem at the IEEE International Workshops on Software Specification and Design
(IWSSD). The wording of the problem set for the workshops is given figure 4.5, and concerns a
database to keep track of issue of books to users in a small academic library.

The library example has been criticised as a toy domain. However, its repeated use at the
workshops, and the variety of different attempts that have been made to formally specify it and
derive a design from it, indicate that it is by no means trivial. The main drawback with the problem
as used at the workshops is that it is already an informal specification, which restricts the problem
to a small sub-set of all the possibilities for a library system. A number of decisions and
assumptions have already been made, and these represent a part of the requirements engineering

- 69 -

process. In other words requirements engineering includes the processes that went into the
derivation of the of problem given in figure 4.5.

To provide a rich enough set of problems with which to demonstrate both the model and the tools
which we have developed to support it, we consider not just the library problem but the processes
that went into its formulation, and the processes that follow this formulation. For example, some
of the analyses of the problem in papers presented at the IWSSDs can be compared to demonstrate
different perspectives of the requirements, and the conflict that might ensue. Another set of
examples come from consideration of the complications of requirements engineering catalogued in
chapter 2, and how they might manifest themselves in the library domain. For example,
disagreements may have arisen over the use of fines to enforce lending limits, leading to a problem
like that given in §4.2.5.

Accounts of the requirements processes from real projects are hard to come by. Not only are they
not published for commercial reasons, they are usually not even recorded: the first tangible
document is the specification. However, some research projects have attempted to construct
realistic case studies, recording both protocols from designers/analysts, and dialogues with clients.
Such studies (e.g. Adelson & Soloway [1986]; Fickas, Collins & Olivier [1987]) provide some
evidence that the type of problems we describe do in fact arise, and some of our examples are
drawn from these studies.

4.5 Summary

This chapter has outlined a model of requirements engineering. The model is based on the
construction of a set of viewpoints to represent the perspectives of the participants of the process.
A perspective is defined as an area of knowledge that has internal consistency and an identifiable
focus of attention; typically it will be associated with the context in which some role is performed.
A viewpoint is defined as a formatted description of a perspective, and represents the elicited part
of a perspective.

The model is based on a number of principles. Firstly, requirements engineering is seen as a
conversational activity, where conversations between analyst and client explore the current state of
the specification. Secondly, the participants should be free to choose any appropriate representation
for different areas of knowledge. Finally, the construction of specifications is an exploratory
activity, so that a specification must be allowed to evolve.

There are a number of reasons for adopting this model, which were presented in section 4.2.
Underlying these reasons is an overriding concern for validation. By representing each person’s
contribution separately from any others, each person can identify their contribution, and can trace
how their contribution affected the specification. As viewpoints are elicited and represented
separately, the process of integrating them becomes explicit, and so can be guided and recorded.
By building a description of the perspectives, the analyst can focus on the interaction between
them, and understand how the different views arise. Furthermore, the decisions involved in the
integration process can be delayed, as there is no compulsion to combine viewpoints. Finally, the
model encourages participation in the requirements process, resulting in a more representative
specification, and facilitating validation.

An important innovation is that the model separates two key activities: elicitation of requirements
and integration of perspectives. By separating them, the problems of each activity can be
considered in isolation. Section 4.3 described the four main areas of difficulty: identifying
perspectives; building the viewpoint descriptions; comparing perspectives; and resolving
differences. The remainder of this thesis examines these difficulties in more detail.

- 70 -

5 Modelling Separate Perspectives

This chapter describes a system called Analyser, which provides an environment to support the
multiple perspectives model introduced in the last chapter. Analyser allows the analyst to build and
maintain a set of viewpoint descriptions, and construct a specification from them. The viewpoints
are created to represent the perspectives as they are identified. The system uses a blackboard to
provide the mechanism for interaction between viewpoints; the tools which operate this blackboard
allow the analyst to develop a specification by combining the descriptions held in the viewpoints.

Analyser does not attempt to provide a method for elicitation of requirements, but simply provides
a framework in which the elicited knowledge can be represented and manipulated. The viewpoints
consist of sets of statements, in some suitable formalism, and have no internal structure other than
that provided by the formalism. As such they capture partial descriptions of the world
(“perspectives”), without prescribing the components of those descriptions. Similarly, the system
does not prescribe what a requirements specification should consist of, but concentrates on the
need to ensure the participants agree its contents.

The first four sections of this chapter describe the main features of the system; each of these
sections concludes with a summary of the relevant tools. Section 5.1 discusses how perspectives
are identified, and introduces the notion of a viewpoint hierarchy. Section 5.2 describes how the
viewpoints can be interrogated, using a commitment reasoning scheme. The viewpoints themselves
are formatted descriptions and are usually derived from an informal set of statements: section 5.3
describes how statements in natural language are translated through a process of annotation.
Section 5.4 discusses the operation of the blackboard, and the construction of specifications.
Finally, section 5.5 presents our conclusions from the Analyser system, including the
shortcomings which eventually led to the development of the conflict resolution system described
in the following chapter.

5.1 Identifying Perspectives

The first problem described in section 4.3 was that of identifying perspectives. Before the
acquisition process begins, there is little indication of what the relevant perspectives are, and yet it
is desirable to know which perspective statements belong to as they are elicited. Most attempts to
provide intelligent support for requirements definition make use of a pre-existing domain
knowledge base (e.g. Reubenstein [1990]). In general, however, the prior existence of such a
knowledge base cannot be assumed: the very nature of requirements elicitation is that it is the initial
exploration of a new application. The knowledge needed to distinguish perspectives is unlikely to
be available prior to the elicitation of the knowledge embodied in those perspectives.

Furthermore, distinctions between perspectives might only become apparent in retrospect. As
noted before (see §4.1.2), the perspectives do not correspond to people, but rather are associated
with roles. Not only is it not always clear which role a person is playing at any one time, but also
roles can be shared by groups of people or organizations. This can make it difficult to identify an
appropriate perspective for any particular statement as it is uttered.

5.1.1 Evolving Perspectives

As the elicitation of viewpoints proceeds, the distinctions between them will become clear, and
new distinctions will arise. Rather than create an extensive set of viewpoints beforehand, the

- 71 -

Figure 5.1: Evolving viewpoints. A viewpoint representing a librarian contains the following
statements:

maximise(circulation)
maximise(circulation) -> lending_limits
lending_limits -> fines

The librarian then adds the assertion ‘not(fines)’:

maximise(circulation)
maximise(circulation) -> lending_limits
lending_limits -> fines
not(fines)

The viewpoint is then inconsistent by the inference rule modus ponens, and so a family of
viewpoints is created, to isolate the inconsistency:

maximise(circulation)
maximise(circulation) -> lending_limits

lending_limits->fines not(fines)

analyst needs to be able to evolve them as the process proceeds. The support environment must
allow a degree of fluidity in the representation of viewpoints, so that the descriptions can be re-
organised into new viewpoints as new distinctions are discovered.

As a starting point, an initial set of viewpoints corresponding to the people with whom the analyst
interacts might be used. All the assertions that a particular person makes are collected in a
viewpoint, building up a description of that person’s view of the requirements. Each viewpoint is
then an accurate representation of the interactions between the person concerned and the analyst.
As an example, for the library system, the analyst may initially talk to two people: a librarian and a
user. Two viewpoints would be created, to keep their statements apart. As the elicitation proceeds,
other people may need to be interviewed, and so new viewpoints can be added to represent them.

We noted that perspectives do not correspond to people, as people may use several incompatible
perspectives (§4.1.2). Hence, if a conflict arises within a viewpoint, then either a mistake has been
made, or the viewpoint actually represents two different perspectives. In this case the viewpoint
must be split into several separate viewpoints to represent these separate perspectives, as our
definition of a viewpoint specified that it be a self-consistent description. There are several
situations in which the need for such a split becomes clear; these are discussed in more detail in
section 5.2. In general terms, a viewpoint will need to be split if it contains conflicting knowledge,
or if a different representation is needed for some part of the knowledge.

The Analyser system copes with conflicts within viewpoints by creating families of viewpoints to
handle them. New viewpoints are created as descendants of the original viewpoint, so that they
inherit the original description. The conflicting statements are placed in different descendants, so
that individually, each remains self-consistent. Any remaining statements which are consistent with
both descendants remain in the original viewpoint, to be inherited by all descendants. The process
is illustrated in figure 5.1.

- 72 -

Viewpoint Splitting Algorithm

1) Test for inconsistencies when new statement (A) is added to a viewpoint. This is likely to
result in a number of inferences (the supposition set) being drawn from the union of A with the
viewpoint. However, neither A nor any of the supposition set are added to the viewpoint yet.

2) If there are no inconsistencies then add A to the viewpoint, and add the supposition set to
the viewpoint’s list of suppositions.

3) If there is an inconsistency, then:
i) Create a descendant to contain A. This is the motivating statement for this descendant.
ii) Create another (empty) descendant. Any previous descendants of the original viewpoint

now become descendants of this second descendant.
iii) If not(A) is in the original viewpoint, then move it to the second descendant. Otherwise

add not(A) as a supposition in the second descendant. This is the motivating statement
for this descendant.

iv) For each descendant, if any statements in the original viewpoint are inconsistent with a
descendant, move them to the other descendant.

Figure 5.2: The algorithm for splitting viewpoints. In the Analyser system, each new statement
added to a viewpoint is tested for inconsistencies, and if there are any, the viewpoint is split.

When choosing which statements to move into the descendants in order to isolate the conflict, there
are often several combinations to chose from. For example, in figure 5.1 it would be sufficient to
separate any pair of statements to break the chain of inference. As the viewpoint was (by
definition) consistent before the newest statement was added, the new statement can be considered
to have caused the inconsistency. Hence the newest statement is always chosen for one
descendant, and the system attempts to identify the closest conflicting statement for the other. In
this case it is the last step in the inference chain which generated the inconsistency. The new
statement which caused the inconsistency, and its negation, are the motivating statements of the
two descendants respectively. The algorithm used for splitting viewpoints is given in figure 5.2.

There are several ways of viewing the resulting family of viewpoints. The original viewpoint still
exists as far as the analyst is concerned, and can be seen to contain competing descriptions of some
particular sub-topic. The remainder of the viewpoint remains consistent, and so can still be used
for the analysis process. At some later date, a choice might be made between these, and the
descendants merged back into a single consistent description. An alternative interpretation is that
there are now two separate viewpoints which happen to share some areas of description. Each of
these is composed of the union of a descendant together with the parent viewpoint.

The process of refinement will eventually turn the original set of viewpoints based on people into a
hierarchy of viewpoints, where each inherits the contents of its ancestors. In particular, all the
viewpoints can be regarded as having an original global ancestor which holds any consensus
information. As the specification process is concerned with establishing consensus, then this
global viewpoint can be regarded as the evolving specification. As conflicts are resolved between
viewpoints, the resolutions are added to this global viewpoint. The process is described in section
5.4.

This approach is similar in effect to DeKleer’s “Assumption-Based Truth Maintenance System”
(ATMS) [DeKleer 1986]. This maintains separate contexts, to describe separate points in a search
space. The system makes assumptions while exploring this space. When an inconsistency arises,
an appropriate assumption is retracted so that the inconsistency disappears. Often, any of a number
of assumptions could be removed, and a new context is generated for each of the choices. The

- 73 -

Fines No fines

Fixed
fines

Incremental
fines

Librarian perspective

Other
sanctions

No other
sanctions

etc...

Figure 5.3: A possible hierarchy of viewpoints of the librarians, concerning the question of
fines.

Fines No fines

Fixed
fines

Incremental
fines

Librarian perspective

Other
sanctions

No other
sanctions

etc...

Fines No fines

Fixed
fines

Incremental
fines

Librarian perspective

Other
sanctions

No other
sanctions

etc... borrowing
curtailed

borrowing
restricted

Figure 5.4: The set of active viewpoints varies depending on the level of detail needed. This
diagram illustrates two possible sets of active viewpoints for the librarian perspective on fines.

system assumes, however, that inconsistencies must be the result of previous assumptions. In
contrast, Analyser’s viewpoints do not contain any assumptions (see §5.2.1); inconsistencies arise
from alternative perspectives.

5.1.2 Viewpoint Hierarchies

Given the procedure described above, hierarchies of viewpoints will develop as the elicitation
proceeds. These hierarchies are unlimited in depth, as descendants themselves may contain
conflicts. The process can be regarded as exploration of possibilities: if each split represents a
conflict requiring a decision, then each choice can be explored in more detail, giving rise to further
conflicts. For example, consider the librarian perspective. There may be disagreement over
whether fines are needed, and so two descendants are created to represent these positions. The
viewpoint that advocates fines might itself be divided over the type of fine needed (e.g. fixed or
incremental), and then further divided when the actual level of fine is considered (see figure 5.3).
The discussion of these latter issues does not pre-suppose a decision has been taken about whether
to have fines, and the viewpoint which excludes fines is still part of the model.

This example also serves to illustrate that the set of relevant perspectives varies depending on how
the system is viewed, and the hierarchies can be used for information hiding. In the above
example, when concentrating on another part of the specification, we may wish to ignore
completely the conflict over fines, and consider there to be a single librarian perspective, which is
the common ancestor in figure 5.3. At some point, another part of the specification may depend on

- 74 -

Librarian’s
Viewpoint

Description

Area of
dispute

Competing
alternativesfines

¬ D
D

?fines?

D??
C??

C ¬ C

not
fines

Figure 5.5: A single viewpoint may contain several areas of uncertainty. The areas of
uncertainty are clearly delimited, and each has a number of alternatives attached: these
alternatives are the descendants of the viewpoint.

whether we have fines, and so it would be useful to consider there to be two librarian perspectives,
one which wants fines and one which doesn’t. At a greater level of detail still we might consider
there to be several perspectives, representing the different types of fines, or other possible
sanctions in the absence of fines. Figure 5.4 illustrates two possible sets of active viewpoints.
Clearly the set of relevant perspectives varies depending on the level of detail needed.

Analyser supports this process of information hiding by keeping track of which set of viewpoints
are considered active. Active viewpoints take part in the blackboard procedures (see §5.4) and are
displayed in full to the user on request. Inactive viewpoints are not displayed, but their presence is
indicated by flagging the disputed part of their parent viewpoint when the viewpoint is displayed.
By selecting this flagged part, the user can ask for the descendants to be displayed, and if
necessary added to the list of active viewpoints. Making descendants active in this way can be
regarded as instantiating what the entire viewpoint would look like if each of the descendants were
chosen to resolve the conflict. This can be useful for exploring consequences of decisions. Note
that when descendants become active, their common parent is no longer considered as a single
viewpoint, and so is no longer active. Once active, descendant viewpoints can be de-activated in
favour of their parent.

The the inheritance structure means that the higher a statement in the hierarchy, the more widely
agreed it is. However, the hierarchies are developed as distinctions between viewpoints are
discovered. There is no guarantee that the more fundamental distinctions will be recognised earlier
than those concerned with detail, even though the former should appear higher in the hierarchy.
While interviews with originators naturally tend to start with general concepts, and gradually focus
in on details, fundamental disagreements are often not discovered until the disparities of detail are
explored. For example, in figure 5.3, the hierarchy should probably be arranged with the question
of sanctions higher than the question of fines, as fines are a form of sanction. However, the
question of fines occurred early in the discussions, and discussion about sanctions in general only
occurred when considering what would happen if there were no fines. Clearly, the hierarchy will
not always develop by expansion of the leaves; there may occasionally be a need to rearrange
things higher up. In the next section we discuss how to determine at what level in the hierarchy a
split should occur.

There are many ways to structure the set of viewpoints into hierarchies. The example given in the
previous section illustrated that it can be hard to determine which statement(s) are in dispute. It is

- 75 -

(a)

fines no fines reserve
collection

no reserve
collection

librarian
viewpoint

(b)

¬ F

F

R ¬ R

¬ F ¬ F

F

FR R¬ R ¬ R

Figure 5.6: As a descendant inherits from its parent, it inherits any other (unrelated) conflicts in
that parent. If the parent is active and the descendants inactive, this is represented as several
sets of descendants (a). If one pair of descendants is made active, each member will inherit the
other pair (b), although it make no difference whichever order the inheritance is effected: the
two hierarchies in (b) are exactly equivalent. Effectively, each descendant inherits not just the
contents of the original viewpoint, but any other splits it might have.

correspondingly hard to determine how viewpoint splits interact. In many cases a split only affects
a small part of the viewpoint, so that the new descendants inherit a large body of common material.
A future split in a different area of this common description might be entirely independent of the
first split. Hence a viewpoint may be split in several different places, and have several different
sets of descendants.

When a viewpoint description has several different sets of descendants, it can be regarded as a
description containing several areas of uncertainty. For each of those areas, several options might
exist (see fig. 5.5). Furthermore, some of those options might also contain areas of uncertainty.
This view of the situation applies when the original agent is the active one. However, if we wish to
make some of its descendants active, in other words, construct what the viewpoint would look like
if particular decisions were made, the case isn’t quite so simple. As each descendant inherits the
whole of the parent description, it inherits any areas of uncertainty within that description. Hence if
one set of descendants are activated, any other descendants of the parent viewpoint appear to be
descendants of each of the newly activated viewpoints. The situation is shown in figure 5.6.

5.1.3 Placing Statements

Initially, when viewpoints are created to represent the people with whom the analyst interacts, there
is no difficulty determining which viewpoint each piece of information belongs to. However, as
the viewpoint hierarchies develop, the simple relationship between people and viewpoints breaks
down. While each viewpoint has a specific originator, each originator may be represented by
several viewpoints. When a person is describing some area of knowledge, it may not be clear
which perspective that person is using, and hence which viewpoint to place the description in.

As splitting a viewpoint involves creating new descendants for it, all the viewpoints corresponding
to a particular originator will be in a single hierarchy, having a single ancestor. All other

- 76 -

a)

No lending
restrictions

Lending
restrictions
with fines

Incremental
fines

librarian
viewpoint

fixed
fines b)

fixed
fines

No lending
restrictions

Lending
restrictions
with fines

librarian
viewpoint

Incremental
fines

No
fines c)

librarian
viewpoint

Incremental
fines

Fixed
fines

No lending
restrictions

Lending
restrictions

With
fines

Without
fines

Figure 5.7: Splitting viewpoints within a hierarchy. Given the initial hierarchy (a), while the
originator is elaborating the shaded viewpoint, she reflects “of course, we may not need fines”.
Clearly this conflicts with the need for incremental fines. If the shaded viewpoint was split, the
situation would be as shown in (b), but there is still a conflict between “no fines” and the
commitment to “lending restrictions with fines” inherited from above. Hence the system works up
the hierarchy until it finds the highest viewpoint with which there is a conflict and splits that. In
this case the “lending restrictions” viewpoint is split as shown in (c).

viewpoints in the hierarchy inherit from this ancestor, and so any new statement by that originator
could be placed in this top-level viewpoint. If the new statement is consistent with all previous
statements from the same originator, the new statement does belong in this viewpoint.
Unfortunately, checking consistency with all the descendant viewpoints is computationally
expensive: one of the aims of using viewpoints was to reduce the need for consistency checks.

The problem can be solved by the observation that new knowledge is rarely elicited in isolation. In
a dialogue, the majority of statements will be related to their immediate predecessors; during
validation new information is added in reaction to an existing viewpoint. The system records, for
each originator, which viewpoint was last accessed, and uses this as the default for any new
statements. The analyst may override this default when entering new statements, and choose any of
the active viewpoints.

The new statement is checked for conflicts with the viewpoint to which it is added. If there is no
conflict, it can be added directly. However, it is possible that the new statement may conflict with
one of the descendants, as the descendants contain more detail. Rather than check all the
descendants for conflicts immediately, this checking can be deferred because the descendants are
inactive. As the viewpoint to which the statement was added is active, none of its descendants can
be. The descendants are flagged as possibly inconsistent, to be checked when (and if) they are
made active.

If the new statement conflicts with the viewpoint to which it is added, then the viewpoint needs to
be split. In fact, it may not be appropriate to split the current viewpoint, as the conflict might occur
higher up the hierarchy. The viewpoints at each level in the hierarchy contain less information than
the ones below, so the system moves up the hierarchy until a viewpoint is found which does not
conflict with the new statement. The last viewpoint with which the statement conflicted is the one
which is split. Figure 5.7 illustrates this process. Figure 5.8 then describes what happens to any
existing descendants of the viewpoint to which the statement is added.

We noted that the statement which caused a viewpoint to be split is recorded as the motivating
statement for the new descendants (see §5.1.1). If this statement is retracted or modified, then the

- 77 -

conflict which the split represents may have disappeared, making it possible to re-unite the
descendants.

Inheritance Rules for New Descendants

1) If no descendant exists, the usual algorithm (fig 5.2) is used (a, b).

2) If the statement is inconsistent with the viewpoint, then it follows that it is inconsistent
with all descendants. In this case, the two new descendants are created. Any previously
existing descendants now become descendants of the second new descendant (c).

3) If the statement is consistent with the viewpoint, it might be inconsistent with some
existing descendants. For each family, test whether the new statement is consistent with each
descendant. The following situations are possible:
i) The new statement is consistent for all existing descendants – in this case it can be added

directly to the original viewpoint (d).
ii) The new statement is inconsistent with all existing descendants – in this case rule 2 above

applies (c)
iii) The new statement is consistent with some descendants and not with others – if there is

only one descendant in each pair with which the new statement is inconsistent, it is placed
in the alternative to this descendant (e, f). Otherwise, the two new descendants are created
as in rule 2. Any pairs which are both consistent with the new statement become
descendants of the first new descendant; any that are both inconsistent become descendants
of the second (g).

a)
A

B

C

D

A

B

C assert(D) e)
A

B

¬ D
¬ E E

A
B

¬ D
¬ E E

D

assert(D)

b)
A

B

¬ D A

B

¬ DD

assert(D)
f)

assert(D)
A

B

¬ C Z ¬ ZC
¬ D¬ D ¬ D

A

B

¬ C Z ¬ ZC
¬ D¬ D ¬ D D

c) A
B

¬ D

Z ¬ Z

A
B

¬ D D

Z ¬ Z

assert(D)
g)

assert(D)
A

B

¬ C Z ¬ ZC
¬ D¬ D

A

B

¬ C Z ¬ ZC

¬ D D

d)
A

B

Z ¬ Z

A
B

D

Z ¬ Z

assert(D)
h)

A

B

¬ C Z ¬ ZC
¬ D

A

B

D¬ C Z ¬ ZC
¬ D

assert(D)

Figure 5.8: Rules for creating descendants, with examples. These compliment the algorithm
given in figure 5.2. It is important to note that when a new statement is added to one descendant,
it is incorrect to add it to any other families too, as they automatically inherit the split which
contains the new addition, as shown in (h).

- 78 -

5.1.4 Functionality of Viewpoint Creation Tools

The Analyser system is a menu-based system for the creation and manipulation of a set of
viewpoints. All viewpoints within the system are either added directly by the analyst, or created by
the system to handle conflicts. Viewpoints added by the analyst are identified by name, where the
name used is entered by the analyst. This will usually be either the originator’s own name, or the
name of a role played by the originator. Viewpoints which are created automatically are identified
by their motivating statements, that is, the statements which generated the conflict that the
viewpoints were created to handle. These viewpoints can be renamed by the analyst, if they appear
to represent identifiable perspectives.

The basic commands for handling viewpoints are provided as a single menu. As well as commands
for creating and renaming viewpoints, there are commands to list the active viewpoints and to
display the contents of a particular viewpoint. From the list of active viewpoints, viewpoints can be
selected to be de-activated, in favour of their immediate ancestor. In this case the selected
viewpoint together with its sibling are removed from the list, to be replaced by their parent
viewpoint (This action is not available for top level viewpoints). When the contents of an active
viewpoint are displayed, any areas of conflict are flagged with question marks. These can be
selected and the descendant viewpoints which handle the conflict can be activated. In this case the
original viewpoint is removed from the list of active viewpoints. Note that when a viewpoint is
displayed, all the statements inherited from ancestor viewpoints are also shown.

The commands for adding statements to viewpoints are described in section 5.2.4.

5.2 Reasoning Within Viewpoints

The set of viewpoints developed form a knowledge base which various people will need to
interrogate. This interrogation includes finding out what has been asserted and testing various
properties of descriptions. It also includes comparing descriptions, which we discuss later. This
section is concerned with the processes of reasoning with individual viewpoint descriptions.

5.2.1 Viewpoints and Commitments

It is important to emphasize at this stage that viewpoints are not intended to be models of their
originator’s beliefs. Rather, we restrict the descriptions in the viewpoints to what the originator has
explicitly stated: the viewpoint represents only what the originator has committed herself to by
stating. This distinction is important when it comes to validation, as it is far easier (though not
always trivial!) to get a person to agree that she said some statement, rather than agree that she
believes some assertion. Where a person wishes to alter a description during validation, they are
more likely to be successful in revising their own previous statements, rather than someone else’s
model of what they are thinking. Information added by other people or by the system using
inference rules remain separate.

This adherence to commitments means that the system does not need to reason about what a person
knows or believes. Hence, many of the epistemological problems of reasoning about belief (e.g.
see Halpern & Moses [1984]) can be ignored. However, there will be many occasions on which
the analyst will wish to speculate about what else a person might be willing to commit themselves
to, and what assumptions their commitments make.

When interrogating viewpoints, a number of inferences will be made concerning the descriptions,
which may or may not be subscribed to by the viewpoints’ originators. Note that if we allow
people the luxury of being inconsistent, then they also have the right to refuse to accept (or simply
ignore) the logical consequences of their assertions. It therefore becomes necessary to distinguish
between the assertions made by originators, which we call commitments, and the inferences drawn

- 79 -

from them using the inference rules, which we call suppositions. The latter represent the system’s
hypotheses of how the originator might extend the viewpoint description, and become
commitments if the originator later confirms them. In effect, the suppositions act as a scratch-pad
associated with each viewpoint, while the viewpoint descriptions contain only the commitments
made by their originators.

As the suppositions are not a part of the viewpoint, but are associated with it, it is not always clear
what should happen to them when a viewpoint is re-organised. Furthermore, suppositions can
become invalid, as new commitments are added or old ones retracted. We solve these problems in
Analyser by maintaining a dependency map between suppositions and the commitments on which
they are based. If a commitment is deleted by being retracted or moved to a descendant, then the
related suppositions are deleted or moved as appropriate.

5.2.2 Inference Rules and Conflict Detection

As the model makes no restrictions on the representation schemes used for viewpoints, the type of
reasoning that can occur within the knowledge base can vary. We assume that a theorem prover or
inference engine is provided for whichever representation languages are used. The inference rules
for each representation are held as a separate viewpoint, from which the viewpoints using that
representation inherit. This maintains the modularity of the environment, and allows new
representations to be introduced as necessary.

When we discussed splitting inconsistent viewpoints, we didn’t clarify how conflicts are detected.
A set of routines to test for conflicts are needed for each representation scheme used, which are
stored with the inference rules and inherited by the viewpoints. In this way the kinds of conflict
tested for in each representation scheme can be varied as desired. For example, the rules for
detection of conflict might be based on detection of logical inconsistencies, together with tests for
clashes of terminology.

Representing inference rules as viewpoints, to be inherited by other viewpoints introduces an extra
degree of flexibility. When a person offers a description in a particular language, it is usually
assumed that they subscribe to the rules governing the use of that language. However, if
disagreements do arise over what forms of inference are valid in a particular representation, the
viewpoint containing the rules can itself be split. In this way the system can handle representation
schemes for which several varieties have evolved. This flexibility ensures that viewpoints do not
have to make use of any aspects of a representation language with which their originators disagree.

Using this approach, new representations can be added to the system by adding a viewpoint
containing an appropriate theorem prover, and a set of rules for detection of conflicts. We have not
attempted to investigate the various mechanisms in detail, but assume that inference rules have been
developed elsewhere for each representation scheme used. Currently Analyser only supports a first
order predicate calculus, which was sufficient for our initial experiments with viewpoint
development. This restriction also greatly simplified the problem of comparing viewpoints, and
hence the rules for operation of the blackboard. The predicate calculus is supported with a
simplified set of rules for detecting conflicts, based on the generation of contradictions through the
application of rules such as modus ponens.

5.2.3 Commitment Reasoning Scheme

The viewpoint descriptions are built up through the addition of statements, or commitments. The
statements correspond to the units which compose the descriptions: for example, predicates in a
logic representation, or nodes and arcs in a graphical representation. Commitments can be added to
(assertion) and removed from (retraction) a viewpoint. When a statement has been asserted, the
viewpoint is committed to that statement; if a statement is retracted (or has never been asserted) the
viewpoint is uncommitted on that statement. If a viewpoint contains two conflicting statements, it

- 80 -

Inconsistent

Uncommitted

true false

retract

assert

assert

deny

deny

+resolve -resolve

Over-specified

Unspecified

included excluded

retract

assert

assert

deny

deny

+resolve -resolve

Figure 5.9: The commitment reasoning scheme allows any statement to be in one of four states.
The UNCOMMITTED state is the default, indicating that an item has not been discussed yet. The true
and false states indicate that a person has committed himself to one or other. The Inconsistent state
is used to show when a person has contradicted himself. Such states require explicit resolution (or
total retraction), to ensure the originator was aware of the contradiction. This need not be
immediate, as the system can still reason in the presence of such inconsistencies. This scheme
resembles a four-valued logic, but can also be interpreted in terms of whether an item is specified,
unspecified or over-specified

is over-committed for these statements. Note that a viewpoint will only appear to contain
conflicting statements: in reality these will be contained in separate descendants.

Analyser was initially built to handle descriptions in a first-order predicate calculus. As viewpoints
are partial descriptions of the world, the closed-world assumption of formal logic does not hold: if
a predicate is not in the viewpoint, it is not necessarily false. Rather, a distinction is drawn between
UNCOMMITTED and FALSE. In effect, a three-valued logic [Blamey 1986] is used within viewpoints,
with the three values TRUE, FALSE, and UNCOMMITTED.

Furthermore, asserting the falsity of a statement does not cause any previous commitment to the
truth of that statement to be retracted, and vice versa. Effectively the result is a fourth truth value:
INCONSISTENT. In practice, the inconsistency is isolated in descendant viewpoints, as noted above.
However, unless those descendants are active, the hierarchy will be treated as a single viewpoint,
which is inconsistent in some well-defined areas. These areas are represented as statements with
the value INCONSISTENT, and which cannot take part in any inferences drawn from the active
viewpoint.

This scheme was developed from the dialogue logic presented in [Finkelstein & Fuks 1989],
which used a set of dialogue rules to enable a set of agents to exchange information. The rules
allowed agents to assert, deny and retract statements, and to question or demand evidence for other
agents’ assertions. These actions are applicable in Analyser because a viewpoint represents only
explicit statements made by the originator. Assertions and denials are used to add statements to
viewpoints, where assertion means asserting some statement is true, while denial means asserting
some statement is false. Similarly, retraction can be used to remove any commitment. The scheme
can also be compared to that used in the Cyc project [Lenat et. al. 1990], although Cyc uses a
different definition of “deny”, as it does not distinguish between axioms and inferences in the
knowledge base.

In summary, the commitment reasoning scheme attaches one of four values to any statement within
a viewpoint, and these values are altered by assertions and retractions. The transitions are laid out
in figure 5.9. An analogy can be drawn with the notions of over-specification and under-
specification, as shown in figure 5.9b. We have not attempted to extend this scheme to other
representation schemes, particularly those where conflicts cannot be characterised as logical

- 81 -

inconsistencies. However, we anticipate that the values of UNCOMMITTED and INCONSISTENT would
still be needed to label statements in any representation scheme used within the viewpoints.

5.2.4 Functionality of Viewpoint Manipulation Tools

A set of tools for building, interrogating and manipulating viewpoints is provided in the Analyser
system. The functionality of the viewpoint building tools follows closely the transitions of the
commitment scheme described above. The actions apply to the current default viewpoint unless
another viewpoint is explicitly selected. In the latter case, the selection is made from a menu of
active viewpoints.

The following commands are provided in a single menu:

assert(X) – add the statement X to a viewpoint. If the statement X is already included in
the viewpoint, the user is warned, and no action is performed. If the statement X
conflicts with the viewpoint, according to the conflict detection rules, the value
INCONSISTENT is given to the statement. The user is asked to confirm this, and the
viewpoint is split as described in section 5.1.3.

deny(X) – add the statement not(X) to a viewpoint. This is exactly equivalent to
assert(not(X)). For representations which do not permit negations, this menu selection
would be unavailable.

retract(X) – removes both the statements X and not(X) from a viewpoint, if either appears
as a commitment in the selected viewpoint. If neither exist, the user is warned, and no
action performed.

resolve(X) – invokes a resolution process for a statement X which is inconsistent. The user
chooses X from a list of statements for which the viewpoint is split, i.e. those which
are the motivating statements of the viewpoint’s descendants. The chosen statement is
placed on the blackboard, and the usual blackboard procedure invoked (see §5.4.1)

5.3 Deriving Viewpoint Descriptions

So far we have discussed viewpoints as formatted descriptions consisting of sets of statements,
without considering where these statements came from. In fact, the result of consultations with
clients is invariably large quantities of both textual and non-textual material. This might include
transcripts of interviews, notes, diagrams, and manuals. The contents of these need to be
formalised to some degree, and this formalisation will involve a translation from the original
informal representation to a more formal one. Many existing methodologies, both from knowledge
acquisition (see Cordingley [1989]) and from requirements analysis (see Sommerville [1989]),
have devoted attention to this translation process. Many such methodologies make explicit
assumptions about the type and form of knowledge being collected, and provide a representational
framework based on such assumptions.

For the viewpoints model, we deliberately make no assumptions about the knowledge being
gathered, as we are not primarily concerned with the elicitation process. There are many existing
elicitation methods which might be used to collect the knowledge initially, and different methods
might be appropriate for different viewpoints. For the Analyser system, some basic tools are
provided to assist with the task of interpreting textual material, and in particular, interview
transcripts, which are assumed to be available on-line. These tools are based (loosely) on ideas
drawn from speech act theory [Searle 1969], and are intended to complement the commitment
reasoning scheme described earlier.

- 82 -

goal(max_access).

goal(max_access) ->
goal(max_books_on_shelves)

goal(max_books_on_shelves)

goal(max_access) ->
goal(min_user_restrictions)

low_book_allowance -> user_complaints

Librarian: The main aim of the library is to
maximise access to the books.
Analyst: Okay. How do you measure success?
Librarian: Well really it boils down to maximising
the number of books on the shelves.

[...discussion on books being checked in and out...]

Analyst: (Summar is ing) So you'd aim to keep as
many books on the shelves as possible?
Librarian: Yes ... but also we'd want to pose as few
restrictions as possible on the users
Analyst: That affects access to the books then?
Librarian: Oh yeah, ...
[...discussion of effects of user restrictions on
library usage...]

Analyst: What sort of restrictions are undesirable?
Librarian: Well if you only allow users a couple of
books out at a time they start to complain. There's
no point keeping lots of books in stock if people
can't borrow them freely.

Librarian Commitments:

is_a(user_restrictions, low_book_allowance),

low_book_allowance -> not(max_access)

Figure 5.10: Example annotation of a transcript. Note that there are many possible ways that
the selected chunks can be represented as predicates; the analyst has chosen a particular
scheme. This can be altered later if it proves unworkable, or if the originator doesn’t think it
represents what was said.

5.3.1 Interpreting Interview Transcripts

In linguistics, the study of pragmatics (see for example Levinson [1983]) has devoted much
attention to the process of understanding utterances. In particular, speech act theory distinguishes
between the illocutionary force and the propositional content of utterances [Kaplan 1989]. In the
elicitation process, the illocutionary acts are limited in scope to actions of requesting, giving,
receiving and denying information, where the propositional content of the utterance constitutes the
information being exchanged. Hence a limited set of actions like those set out in section 5.2.4
suffice to represent the majority of utterances found in a dialogue between analyst and client. What
remains is to determine the propositional content of the utterances.

Text, and dialogues in particular, can be divided into chunks, where each chunk focuses on a
particular area of knowledge. The first task in processing the textual information is to break it up
into chunks, and identify an originator for each chunk. The originator might be the speaker in a
dialogue transcript, the author of a note, and so on. The chunks themselves will be of arbitrary
size, typically containing a single sentence or a group of closely related sentences.

Each chunk of text can be interpreted into a set of propositions (“statements”) which act as a formal
representation of the information contained in that chunk. These statements are then added to the
appropriate viewpoint for their originator. Furthermore, the system records a reference link
between the chunk of source text, and the statements in the viewpoint. Using these links it is
possible to determine where each item in the viewpoints came from, and for any piece of source
text, how it has been interpreted. Such links play a vital role in the validation of viewpoints. The

- 83 -

entire process can be seen as one of annotation, in which the source text is annotated with formal
interpretations (see figure 5.10).

For many utterances, there is no unique interpretation into a set of formal statements. The
viewpoint model allows alternative interpretations to co-exist, as separate viewpoints can be used
for the alternative interpretations. The interpretation can be changed if it becomes clear that the
chosen interpretation deviates from the intention of the originator. This is possible due to the ability
to retract commitments. Changing an interpretation is a compound action consisting of retraction of
the original statements, and the assertion of the statements comprising the new interpretation.

In summary, the system does not attempt to impose any particular elicitation methodology, and it is
anticipated that such methodologies could be used in conjunction with the system. The system does
provide tools to support the process of annotating dialogues with formal interpretations. These
tools make use of the analyst’s skill at interpretation, merely supporting and documenting the
process.

The result is a series of chunks of text, linked to the formal statements which represent them.
Although such linkage is reminiscent of hypertext, the current generation of hypertext systems do
not allow any automated reasoning with the information they contain. Instead, they implement
passive networks in which the nodes are chunks of text which are impenetrable to the machine.
The linking of formal objects to textual chunks is what Gaines [1989] terms shadowing (see
§3.4.4.3) and has been used in a similar way in knowledge acquisition systems such as Cognosis
[Woodward 1988].

5.3.2 Functionality of Annotation Tools

The Analyser system supports the annotation of protocols by allowing the user to select areas of
text to be linked to viewpoint’s commitments. The text files can be loaded as needed, and are
assumed to contain transcripts of dialogues between clients and analysts, but can in fact contain
any textual source material. The system keeps track of which files it has accessed, but cannot
process the files in any way, except to record selected areas of text. Selections are recorded using
the character positions of the start and finish, which means that files are assumed not to change.
While this is appropriate for transcripts, if the source files are likely to change a more dynamic
implementation of selections would be necessary.

Textual sources can be linked to relevant statements in the viewpoint descriptions in two ways.
Firstly, areas of text can be selected and interpretations for that chunk of text added to the
appropriate viewpoint using an appropriate representation. Commitments added in this way are
linked to the selected chunk of text (see fig. 5.11). Note that this operation is appropriate for when
the analyst has loaded a transcript for the first time and is processing it. The ability to add to the
viewpoints without having to stop to consider inconsistencies is most useful during this activity.

Alternatively, commitments can be added to the viewpoints directly. In this case the user will be
prompted to select a chunk of text as a source for the new commitment, although it is not
compulsory to provide one. This prompting has two advantages: it encourages the user to consider
what the viewpoint’s originator actually said, and in so doing may prompt the user to consider
other commitments arising from the same chunk of transcript.

The links can be traced from either direction. For example, the user can select a piece of text, and
ask for display of all the commitment which are linked to it. Note that the division of the source
text into chunks is not indicated when the text is displayed, hence the selected text might overlap
with any number of chunks. Also, commitments can be traced back to the linked chunk of text.
The system will re-load the transcript file if necessary, and highlight the relevant chunk.

- 84 -

Figure 5.11: A Screen-dump from Analyser, showing the process of annotating a transcript.
Any alterations made to a viewpoint will be linked to the selected text in the transcript file.

5.4 Integrating Viewpoints

So far we have considered how viewpoints are identified and what form they take. The
development of a viewpoint does not occur in isolation from other viewpoints, and comparisons
can shed new light on a particular perspective. Hence at any point in the process, parts of two or
more viewpoints might be compared. The comparisons may involve conflict resolution, but are
intended to be exploratory – any resolutions generated need not be incorporated in the final
specification. Feedback from these explorations can be used in the development of the viewpoints,
for instance to modify terminology, or to elicit information that the originator neglected.

The exploratory comparisons are made on a global blackboard. At any time the analyst can explore
the current state of the viewpoints knowledge base by experimenting with the blackboard. The
specification is built incrementally by the process of co-operation using the blackboard. The analyst
acts as the scheduler, enabling any viewpoint to place an item on the blackboard for discussion,
while the viewpoints act as representatives for their originators. This section describes the
operation of the blackboard.

5.4.1 Blackboard

The system adopts the principle that anything in the specification must be agreed by all
perspectives. The blackboard acts as a space in which the agreement can be checked on various
statements. The rules that govern the operation of the blackboard are relatively simple: viewpoints
place statements on the blackboard, which can then be altered or annotated by other viewpoints.

- 85 -

Once an item on the blackboard is agreed by all viewpoints, it can be removed from the blackboard
and added to the specification. This rule requires a consensus to be reached before any item is
added to the specification, although a viewpoint which has no information about some item (and
hence no “opinion” on it) is deemed to agree to it. The analyst controls the entire process, initiating
and halting it as necessary.

Any statement that a viewpoint is committed to can be placed on the blackboard. This will normally
be in response to an action by the analyst, such as a query about whether some item can be agreed
for the specification. Once on the blackboard, the statements can be amended or expanded by any
other viewpoints.

Any viewpoint can object to the addition of a statement to the blackboard if that statement conflicts
with the viewpoint’s commitments. The analyst can decide whether to allow the objection to stand,
and if so, whether it replaces the original disputed statement. In the spirit of exploration, it is
possible to allow both to stand, to explore the consequences of each possibility. This makes the
blackboard inconsistent, but there is no problem, as multiple hypotheses can co-exist on the
blackboard. Typically, the analyst will then examine the relevant evidence, pursuing further
discussions with the viewpoint’s originators if necessary.

When a statement on the blackboard is not disputed by any viewpoint, we define it as agreed, and
becomes part of the specification. As the specification only holds agreed statements, it could be
regarded as the global ancestor viewpoint to be inherited by all other viewpoints. However, it is
possible that statements in the specification are not commitments for particular viewpoints, and a
viewpoint should only be committed to the assertions its originator has explicitly made. To prevent
the agreed statements being imposed as commitments for all, the usual inheritance rules are relaxed
so that the viewpoints do not inherit commitments from the specification. Any statements in the
specification that a viewpoint does not hold as commitments are added to that viewpoint as
suppositions, so that they may be discussed with the viewpoint’s originator if necessary.

There is a further complication caused by the fact that the development of viewpoints may continue
while the specification is constructed. It is possible that new commitments cause a viewpoint to
conflict with a previously agreed statement. Hence, all new commitments are first checked against
the specification, before being directed to the chosen viewpoint. If there is a conflict with the
specification, the disputed statement is returned to the blackboard. Also, originators may later
retract commitments on which parts of the specification were based. For this reason, all items on
the blackboard are linked to the viewpoints which placed them there, as are the contents of the
specification. If a viewpoint subsequently retracts the commitments on which the item was based,
the relevant part of the specification can be returned to the blackboard for renewed examination.

5.4.2 Exploration

The blackboard is used as a tool to create the specification. Its simplest use is to ask whether some
assertion is supported by the viewpoints. Such a query results in the viewpoints being polled to
discover whether any are committed to the item. If a viewpoint is found which is committed to the
assertion, then the commitment is placed on the blackboard, and the blackboard procedure
described above is invoked.

If no existing viewpoint is committed to the assertion, the analyst may explore further, by placing
the queried statement directly on the blackboard. In order to keep track of the user’s explorations,
an additional viewpoint is maintained, which contains all the exploratory assumptions made by the
analyst while using the system. Any direct alterations to the specification or the blackboard made
by the analyst become commitments in the analyst viewpoint. This viewpoint is treated similarly to
any other: if any assumption is inconsistent with previous interventions, the analyst is warned
using the same mechanism as the viewpoints. However, the analyst can choose to ignore

- 86 -

inconsistencies, causing this viewpoint to be split. This allows the user to explore alternatives and
compare the results.

5.4.3 Agenda

The process of specification building is exploratory, and will proceed before all the necessary
information has been gathered. Feedback from these explorations can guide the acquisition
process. To assist with this process, notes can be added to viewpoints as reminders to the analyst
that further discussion is required about some item, in much the same way that Adelson and
Soloway [1986] observed that designers make notes to remind themselves to come back to some
item at a more appropriate time. Taken together, the notes attached to any viewpoint can be
displayed as an agenda to guide the development of the viewpoint.

Notes are generated by a number of events in which the viewpoint takes part. For example, if a
viewpoint needs to be split to handle a conflict, a note is created identifying the commitment which
caused the conflict. This will then serve to remind the analyst to check with the originator whether
the conflict is genuine, or whether a mistake was made.

Notes are also created in response to events on the blackboard. A viewpoint will generate a note for
itself if anything passes into the specification that the viewpoint had no information on. This
provides a safe-guard that prevents any perspective being missed out in some discussion areas, and
can also help in detecting when different terms are being used to describe some concept. The notes
will remind the analyst to raise the point with the viewpoint's source. Similarly, a viewpoint will
generate a note if the analyst overrides it on the blackboard.

5.4.4 Functionality of Integration Tools

The operation of the blackboard system in the Analyser is achieved through a set of commands
available to the user via a menu. The commands form a means of interrogating the specification:
through this process of investigation, it is sometimes necessary to invoke the blackboard
procedures. These commands are as follows:

specify(X) – checks what the specification has to say about the statement X. For example,
in a logic-based representation, whether X is true or false according to the specification.
If there isn’t enough information in the specification to answer this (i.e. if X is
unspecified), the blackboard procedure is invoked for the statement X.

evidence(X) – This can be read as “what evidence is there in the currently active viewpoints
that X might be true?”. All the statements contained in the viewpoints which could be
used to determine the truth or falsity of the statement X are listed. Note that if X is on
the blackboard this action can be used to find out which viewpoints support X and
which oppose it.

advise(X) – This can be read as “which questions should be asked of which originators to
determine whether X is true?”. Any suppositions attached to viewpoints which would
add enough evidence to determine the truth or falsity of X are listed. While in the
simplest case, the analyst could just ask all originators about X, some originators might
not know anything about X, and there may be some cost involved in contacting the
originators. The advise command provides an indication whether there are any
viewpoints from which X (or its negation) can already be inferred, or could be inferred
given some other premise. This in turn indicates which originators are most likely to be
able to offer information about X.

explore(X) – commits the user to the statement X, so that it can be placed on the
blackboard. The usual blackboard procedure is then invoked. Note that the system
keeps track of all the statements the user is committed to through this command (see
§5.4.2).

- 87 -

5.5 Conclusions

We have described the parts of Analyser. This section considers the system as a whole. Section
5.5.1 is concerned with the current implementation, and describes particular weaknesses associated
with the implementation, which could be improved in a subsequent version. Section 5.5.2
describes the advantages offered by the system. There are inevitably a number of problems with
the system: these are described in section 5.5.3. The main problem is that the blackboard
mechanism is incapable of handling conflict. This problem lead to the development of the system
described in the next chapter.

5.5.1 Implementation

Analyser is implemented in PROLOG running on an Apple Macintosh. It has been tested on a
number of small examples drawn from the requirements for a library system, and as used for
illustration throughout this chapter. It was developed primarily in response to the problem
described in section 4.2.5, which it handles adequately.

There are a number of weaknesses of the system, and in particular the blackboard proved unable to
handle conflicts, for a number of reasons which we discuss in section 5.5.3. There are also a
number of areas in which the current implementation might be improved which we discuss in this
section. These areas have not been attended to in Analyser, as the entire system was subsumed into
Synoptic, which is discussed in the next chapter.

As mentioned earlier, the only representation scheme supported at present is a first-order predicate
calculus. While in principle it is possible to add new representation schemes just by providing set
of rules for reasoning with them, this has not been attempted for Analyser, as it is not clear how
other representation schemes can be accommodated on the blackboard, nor it is clear how multiple
representations might be combined using the blackboard mechanism. A further weakness of the
current implementation is that the only rule provided for conflict detection is to check for direct
contradictions. Detection of conflict is a difficult problem, and it is likely that a collection of
heuristics is needed. We have not attempted to develop such heuristics, but return to the problem of
conflict detection in the next chapter.

Another area of weakness is in the notes facility: it is not yet clear when and how the notes should
be reactivated. At present the analyst can list the current outstanding notes, in the order in which
they were generated. Clearly, there are other orderings possible, the most obvious criteria being
importance and urgency. One way of determining the relative importance of notes is by their type:
for example, a viewpoint being overruled might be more important than a gap in the viewpoint’s
knowledge. In the current implementation, notes are typed according to how they were generated,
but no tools are provided for sorting or selecting particular types of note.

5.5.2 Advantages

Analyser provides a degree of support for the multiple perspectives model described in chapter 4,
and so has many of the advantages that were used to justify the model. It allows an analyst to build
a knowledge base out of the elicited information, in which conflicts can be explicitly captured and
represented. The presence of conflicts does not interfere with the process of reasoning with and
interrogating this knowledge base. Furthermore, each piece of knowledge exists within the context
of a viewpoint, and this context provides extra information about the reliability and applicability of
the knowledge. The use of commitments emphasises the conversational nature of requirements
analysis, and enables contributors to validate the knowledge they have provided.

The system addresses in detail the first two problem areas identified in section 4.3: identifying and
developing perspectives. By developing hierarchies of viewpoints as the elicitation proceeds, there
is no need to define the perspectives beforehand, and a initial set of viewpoints corresponding to

- 88 -

people is sufficient. The viewpoint hierarchies allow the analyst to explore possibilities within
viewpoints. The level at which the hierarchy is viewed can be changed by making different
descendants active, and this allows the analyst to explore what the viewpoint would contain if a
particular option was chosen.

As conflicts are explicitly represented as splits between viewpoints, resolution of these conflicts
becomes explicit, and the blackboard provides a focus for this process. The specification built
through this process is linked back to the viewpoints on which it was based, so that the originator
of any item in the specification can be traced. This linkage has a another benefit: it allows the
viewpoints to build up areas of expertise within the specification. Although the boundaries of these
areas remain fuzzy, it is possible to find out which viewpoints contributed to a particular group of
statements. If a conflict arises over a statement related to this group, then the viewpoints which
have the greatest expertise for the group can be consulted for their agreement.

5.5.3 Problems

The blackboard mechanism was chosen as a basis for the integration process, for its simplicity.
Unfortunately, the model has not proved to be powerful enough, in that the co-operation is
restricted to agreeing or blocking other viewpoints’ suggestions. As there is no direct
communication between the originators, they cannot seek creative solutions to conflicts, nor even
reach any form of compromise through negotiation. The blackboard restricts how viewpoints can
affect each others contributions.

Part of the problem seems to be that the blackboard model assumes perfect co-operation: there can
be no conflict between the viewpoints. As has already been noted, conflict is inherent in the
analysis process. Also, the requirement for complete consensus on any statement before it can go
into the specification is too strong. It assumes that split viewpoints are either eventually reconciled,
or the items which caused the split are not included in the specification. This is against our intuitive
notion that disputes are likely to be important areas.

One of the problems that this implementation does not address is how to recognise and handle the
use of different terminology by different people. Shaw & Gaines [1989] point out that this is a
difficult problem when combining contributions from many people. There are, however, some
mitigating factors in Analyser. Firstly we assume that to a certain extent the participants will
recognise some of the instances of mismatching terminology, possibly during the translation into a
formal representation. Secondly, viewpoints create notes as reminders to consult their originators
when anything enters the specification for which they have no information; this will often trap
situations where viewpoints use a different terminology. Other features could be added to ease the
problem, for example, allowing viewpoints to define synonyms. However, these techniques do
not constitute a satisfactory solution.

The problem of differing terminologies raises another question. Interpretation of natural language
utterances into formal predicates involves the formulation of a suitable ontology. It is clear that
different viewpoints will use different terms to build their description, and there might not be a
simple correspondence between the sets of terms. Certainly there there is unlikely to be any pre-
existing common ontology. However, in order to compare the viewpoints, and for communication
between viewpoints, the descriptions must use the same terms. In fact, this ideal can be relaxed:
there does not need to be a shared ontology, as long as correspondences between the separate
terms can be found. The conflict resolution model described in the next chapter addresses these
problems in more detail.

- 89 -

5.6 Summary

This chapter has described a system called Analyser, which implements part of the framework
described in chapter 4. In particular, it concentrates on the identification and development of
viewpoints, and introduces a method of handling conflicting knowledge by creating a hierarchy of
viewpoints. Each viewpoint contains a description in some suitable representation, and has a
unique originator.

The problem of identifying perspectives is handled by evolving distinctions between viewpoints as
the descriptions are elicited. As perspectives are self-consistent areas of knowledge,
inconsistencies reveal distinctions between them. Hence, initial viewpoints based loosely on
sources of knowledge are split whenever they become inconsistent. Descendant viewpoints are
created to isolate inconsistencies. These inherit a common description from the ancestor viewpoint.
The result is that initial viewpoints are developed into hierarchies. Section 5.1 described the
mechanisms by which the hierarchies are created.

As each viewpoint is consistent, it can be interrogated as a knowledge base, and inferences can be
drawn from it. A distinction is drawn between statements actually made by the viewpoint’s
originator, which are termed commitments, and inferences drawn from those statements, which are
known as suppositions. Viewpoints only contain commitments: suppositions may be associated
with a viewpoint, but do not become part of the viewpoint unless they are confirmed by the
originator. The descriptions can be in any representation scheme, provided that inference rules for
that scheme have been added to the system.

The viewpoints contain formatted descriptions which doesn’t necessarily translate directly from the
language of interaction. For this reason Analyser provides a set of tools for processing transcripts.
These record, for every statement added to a viewpoint, a link to a chunk of the transcript. Hence,
the analyst and the originator can trace how statements in the transcript have been translated, and
also where items in the viewpoint descriptions originate from.

Analyser uses a blackboard for integrating the viewpoints into a specification. Statements from the
viewpoints can be placed on the blackboard, to be added to or amended by other viewpoints. When
there is no disagreement, the statements are placed in the specification. The blackboard allows a
certain amount of exploration, in that the analyst can initiate and control the operation of the
blackboard. Viewpoints keep track of events on the blackboard, and notes are automatically created
if their originators need to be consulted. For example a note is created if a viewpoint is over-ruled
by the analyst, or if a viewpoint has no information about items that are added to the specification.

The main weakness of the system is the blackboard, which only supports a consensual approach to
specification. The ability to detect conflicts is poor, and there is no mechanism for resolving
conflict. Consideration of this weakness led to the development of a model of conflict resolution.
The next chapter describes this model, together with a system called Synoptic, which extends
Analyser to include a form of computer-supported negotiation.

- 90 -

6 Computer-Supported Negotiation

This chapter presents a model for the resolution of conflicts in the requirements engineering
process. The model forms a part of the multiple perspectives model, and can be regarded as a form
of computer-supported negotiation. Specifically, it addresses the last two problem areas identified
in section 4.3, namely, comparing perspectives and resolving the differences between them. The
intended use for the model is very specific: it allows the analyst to compare and merge previously
elicited viewpoint descriptions, with assistance from the viewpoint originators. It is not intended to
be a problem exploration tool, nor a form of meeting support, although the model may have
applications in these areas.

A support tool, Synoptic, has been implemented to demonstrate the feasibility of the model.
Synoptic displays elicited descriptions side by side, allowing the participants to compare and
annotate them. Discrepancies noted by the participants are then used by the system to prompt for
underlying assumptions and issues. In effect, the system provides guidance and clerical support as
the participants break the conflict down into a number of components in order to propose options
for resolution.

The model is prescriptive in that it acts as a set of guidelines, without being a rigid formal process.
The tools which support the model are highly interactive, and are designed to provoke discussion
of the conflict situations as much as elicit a suitable resolution. The model draws heavily on the
behavioural approaches used in organisational psychology, and in particular takes note of the need
to separate the people from the problem, in order to avoid the polarising nature of arguing from
entrenched positions. There are three phases in the model: an Exploration phase, a Generative
phase, and an Evaluation phase. These phases are discussed in detail in the rest of this chapter,
after a discussion of the context for the model.

6.1 Conflict Resolution

In §3.3 we defined conflict as any interference in one party’s activities, needs or goals caused by
the activity of another party. In software engineering, the specification encapsulates the needs of
the participants as a set of requirements. If two parties have opposing requirements, then any
attempt to represent these requirements in the specification will give rise to conflict, as each would
exclude the other. On the other hand, if one set of requirements is ignored completely, then a
potential conflict has been suppressed. Depending on the actions of the ‘injured’ party, the conflict
may resurface later.

The same principle holds for descriptions of the world (“domain descriptions”). In the case of
requirements elicitation, part of the information elicited is a description of the system as it is at
present. This includes both activities that may eventually be subsumed by the system, and the
environment with which the eventual system must interact. These descriptions are rarely objective;
opposing views which might not be expressed directly will manifest themselves as differences in
these descriptions. Hence, conflicts will frequently be expressed as discrepancies between the
viewpoint descriptions.

6.1.1 Sources of Conflict

It has been demonstrated that conflict, as defined above, is common in group interactions [Robbins
1989]. We can therefore assume that any application domain involving more than one person will

- 91 -

be subject to typical group conflicts. While it might be argued that a design process with a single
goal, perceived in the same way by all participants, might be free of conflict, few real design
processes are of this nature. This immediately suggests two possible sources of conflict in a real-
world design process: conflict between the participants’ perceptions of the domain, and conflict
between the many goals of a design.

The extent of conflict in software engineering has recently been revealed by a major field study of
software projects [Curtis, Krasner & Iscoe 1988]. Focussing on the behavioural aspects of
software design, this study identified three major problem areas: the thin spread of application
domain knowledge; fluctuating and conflicting requirements; and breakdowns in communication
and co-ordination. Each of these problem areas is a source of conflict, and each depends crucially
on communication between participants as a basis for any solution. A good conflict resolution
approach necessarily emphasises communication between parties.

Conflicting and fluctuating requirements have many causes, from change in the organisational
setting and business milieu, to the fact that the software will be used by different people with
different goals and different needs. Handling constant change in requirements (which has been
termed requirements maintenance [Finkelstein et. al. 1989]) requires an evolutionary approach that
must be based on accurate capture of rationales and process information.

Unless the application domain with which the software deals is free of conflict, then the resulting
software must incorporate this conflict. For small programs, the domain can be restricted until the
conflict is excluded. For any large scale software, this is not practical. When the application
knowledge is spread over many people, there is likely to be much disagreement between them, and
fitting together the many contributions will inevitably lead to inconsistency.

Even if a domain appears to be free of conflict, quite often there will be areas in which there are
different ways of looking at things. While such perspectives may not be fundamentally
incompatible, they are likely to appear inconsistent, and so lead to conflict. Even if participants are
describing essentially the same concepts, the style in which these are described may vary: even
formal representation schemes allow enough variation in style so that there may be many different
ways of saying the same thing.

Other sources of conflict include: conflicts between suggested solution components; conflicts
between stated constraints; conflicts between perceived needs; conflicts in resource usage; and
discrepancies between evaluations of priority.

The viewpoints model provides a basis for the study of conflict, by allowing viewpoint
descriptions to be developed separately. Each viewpoint is a consistent description, so that
conflicts are expressed as differences between viewpoints. Note that conflicts may occur within the
requirements of a single person. As the viewpoints do not correspond to people, they take account
of the conflicts between a single person’s roles, as well as inter-person conflicts.

6.1.2 Consequences of Suppressing Conflict

As noted in chapter 3, existing software process models generally ignore conflict. This can lead to
a number of problems. Where conflicts do occur, they are likely to get suppressed, because there is
no means of expressing them within the framework. It is possible that these conflicts will remain
suppressed, leading to dissatisfaction with the specification and the process that led to it. Often, a
single perspective will be adopted as the basis for the specification at the cost of any alternative
perspectives.

If these conflicts are eventually resolved, the resolution must be carried out outside the framework
of the method and consequently is likely to be carried out at an inappropriate time, using an

- 92 -

undesirable means. In addition, resolution thus achieved is untraceable, making rationales invalid,
and results irreproducible.

Suppression of conflict will have serious effects on the remainder of the software development
process. In the worst case, suppressed conflicts may lead to the breakdown of the requirements
process, or the withdrawal of participants. Failure to recognise conflict between the perspectives of
the participants will cause confusion during the requirements phase, which will then continue
throughout the lifecycle. The participants’ understanding of the specification will differ, leading to
further misunderstandings during design and implementation.

Research into group behaviour indicates that conflict can produce higher quality solutions [Brown
1988]. Certainly, exploration of the areas where participants descriptions differ can lead to a much
better understanding of the domain. This is a strong argument for conflict to be carefully managed
in the software process, with participants encouraged to express divergent views. This will ensure
that the resulting system does not reflect just one point of view, and does not ignore concerns
which interfere with the dominant concern.

In software design, effective collaboration is essential. It is vital that there be no losers from any
conflict in the specification process, as the commitment of all participants must be maintained.
Hence, encouragement of conflict must be matched with resolution methods which strive to satisfy
all parties. An integrative approach should be adopted, to ensure that when divergent views arise
they are incorporated into the process. The ultimate goal of the requirements process should be to
produce a specification which represents all concerns.

6.1.3 Role of Communication

The need to maintain collaboration implies that any model for conflict resolution in requirements
engineering must be based on collaborative modes of interaction (see §3.4.3). The two key
collaborative methods for conflict resolution are (integrative) negotiation and education. Both of
these emphasise communication between participants, and both greatly ease conflicts based on
communication problems.

Communication between participants has an important role in conflict resolution. As Robbins
[1974] notes, increased communication leads to decreased conflict up to a certain level, but that too
much communication can lead to increased conflict. A possible explanation is that a certain amount
of communication allows participants to discover commonalities, iron out perceived conflicts, and
correct misunderstandings. However, a high level of communication highlights the details on
which participants do disagree. Such conflicts are likely to be well-founded, and should not be
discouraged. However, arguing over trivial details can be counter-productive, and so a balance
must be struck between encouraging communication and devoting appropriate amounts of effort to
resolution of particular differences.

Comparison of descriptions derived from different sources forms an important part of the process
of eliminating errors. The multiple perspectives model facilitates this by separating the elicitation
and comparison of descriptions into separate activities. In the comparison process, participants
compare their own viewpoints with those elicited from others. By discussing areas of divergence,
underlying assumptions are revealed, as are any omissions in the viewpoint descriptions. In so
doing, problems of group-think are avoided, as each viewpoint is elicited prior to the comparison.

6.2 Conflict Resolution Model

The model of conflict resolution presented in this chapter differs from the blackboard approach
described in §5.4 in a number of important ways. For example, resolution of differences between
viewpoints does not necessarily result in a specification. The model allows parts of viewpoints to

- 93 -

Viewpoint A development

Viewpoint B development

Exploratory
comparison Viewpoint C

Exploratory
comparison Viewpoint D

Figure 6.1: The multiple viewpoints model allows exploratory comparisons of viewpoints as
they are developed in parallel. The results of these comparisons then may be discarded, or
developed as new viewpoints.

be compared, while ignoring the remainder of them. This will result in an agreed description of a
small part of the participating viewpoints. It then makes sense to regard this new description as a
new viewpoint for two reasons: other viewpoints might still conflict with it, and later elaboration of
the participating viewpoints may invalidate the resolution.

Furthermore, the blackboard approach attempted to merge viewpoints automatically, involving
their originators only when problems arose. In recognition of the difficulties of conflict resolution,
and the need for creative solutions to difficult conflicts (see §3.4.5), the conflict resolution model
described here is an interactive process. The initial comparisons might be made by the analyst, but
in many cases the analyst will only be able to speculate about the reasons a perspective was
described in a particular way. Hence, the process is likely to involve the originators directly, in
comparing their viewpoints with others. For this reason, the model is termed computer-supported
negotiation.

6.2.1 Resolution Context

The process of knowledge acquisition never stops. Throughout the lifecycle of the system, the
users’ perspectives will change, and so will their needs. On the other hand, the elicitation of a
viewpoint does not occur in isolation from other viewpoints, as comparisons can shed new light on
a particular perspective. Hence at any point in the elicitation process, parts of two or more
viewpoints might be compared.

The comparisons between viewpoints may involve conflict resolution, but are intended to be
exploratory – any resolutions generated need not be incorporated in the final specification.
Feedback from these explorations can be used in the development of the viewpoints, for instance to
modify terminology, or to elicit information that the originator neglected. The results of any
exploratory integrations can be treated as new viewpoints which can continue to take part in the
development process (Figure 6.1). Such derived viewpoints effectively represent coalitions of
perspectives, which have been shown to arise in software projects [Curtis, Krasner & Iscoe 1988].

The modelling of viewpoints allows differences between perspectives to be captured and
accommodated. If only a single description was maintained, differences between parties would
tend to be avoided or suppressed, and often go unnoticed. As the viewpoints contain formal
descriptions, it is possible to combine parts of different viewpoints to reason with, and detect
inconsistencies. This process of parallel development of viewpoints – with exploratory integrations
being initiated at any point – provides the context for the conflict resolution model.

- 94 -

6.2.2 Detection of Conflicts

The first problem for conflict resolution is to recognise that a conflict exists. This might be harder
than it seems for a number of reasons. The terminology used by the participants is unlikely to
match exactly [Shaw & Gaines 1988], and the styles in which knowledge about an issue is
expressed will differ. This difference may be because of different representation schemes, or
different descriptions within the same representation scheme. Also, participants will have different
areas and different amounts of knowledge, making it difficult to make comparisons. These
problems make it hard to tell where participants are agreeing, let alone where they are disagreeing.

The definition of conflict in §6.1 was based on interference: two parties are in conflict if the
activities of one adversely affect the interest of another. Hence, viewpoints are free to differ, and
only conflict when that difference matters for some reason, leading to interference. There are a
number of situations in which the differences matter:

¥ When viewpoints need to be compared.

¥ When there is a need to reason with knowledge from several viewpoints.

¥ When the originators insist their viewpoints are “better” than others (and so perhaps
should be adopted at the expense of them).

¥ When a coherent description is needed for further progress.

Under normal circumstances, differences between viewpoints are ignored, allowing them to
develop independently. By only entering the conflict resolution process when differences between
viewpoints matter, we avoid attempting to resolve conflicts unnecessarily. A conflict, then, is
simply a difference that matters.

Note that defining conflicts as differences that matter will include many things that might not
normally be regarded as conflicts. The distinction that Deutsch [1973] draws between real and
apparent conflicts is deliberately ignored. Apparent conflicts here might include: where one party
has misunderstood another’s position; where viewpoints use different terminology to describe the
same thing; and where the interests at stake do not interfere, and can be combined directly. All
these are treated as conflicts, and part of the task of the negotiation process is to identify what type
of conflict has occurred, and hence whether or not a resolution is needed. The rationale for this
approach is simple: it is impossible to tell without exploration whether a conflict is real or apparent,
and this exploration is an essential step in the conflict resolution process anyway. The first phase
of the model encourages participants to talk around the conflict, allowing any missing information
to be gathered, and the participants to learn about each other’s positions. This may even cause the
conflict to disappear.

6.2.3 Example Conflicts

Examples of conflicts in domain descriptions are not hard to find. Throughout this chapter, two
such conflicts, in the domain of the library system, will be used to illustrate the working of the
conflict resolution model.

The first of these is taken from the literature, and concerns the case study used at the fourth IEEE
International Workshop on Software Specification and Design (see figure 4.5). Many of the papers
presented at the workshop analysed this case study, giving descriptions of the domain. However,
the descriptions differ in various ways, having been developed independently, usually with a
perspective chosen to illustrate the authors own work. Excerpts from two such papers are given in
figure 6.2, both of which use dataflow diagrams in different ways.

- 95 -

check out
books

borrower
database

library
cards

books to
check out

library
database

updated
borrower
database

checked
out

books

updated
library

database

check out
book

check
out data

borrower
name

book record

borrower record

Figure 6.2: Excerpts taken from dataflow diagrams for the library case study at the fourth
International Workshop on Software Specification and Design. (a) is from Lubars [1987], p68 and
(b) is from Kerth [1987] p183.

On Shelf

At Binders Out

On returned stack

borrow

return

shelve

return

send to
repair

send to
repair

AvailableOut of
Circulation

Lent

Recalled

On reserve

reserve

repair/missing

re-stock

issue

return

recall

issuereserve

reserve
cancel
reserve

Figure 6.3: The possible states for a library book: (a) from the perspective of physical
whereabouts; and (b): from the perspective of accessibility of a book.

A more complete (but hypothetical) example is shown in figure 6.3. Two possible state transition
diagrams for the books of the library are given, which may have been elicited from two different
librarians. One gives a description based roughly on a book’s physical whereabouts, whereas the
other gives a description based on how a book can be accessed. While it may appear that there are a
number of correspondences between the two descriptions, these are not as simple as they seem.
For example, the concepts ON SHELF and AVAILABLE are similar, except that the latter includes books
waiting to be shelved: it assumes that librarians are able to locate unshelved books for loan. OUT and
LENT are also similar, except that the former includes books being used within the library, while the
latter only includes such books if they are from the reserve collection. To make things worse, both
could have used the same terminology.

6.3 Exploration Phase

The first phase of the model is exploration. The aim of this phase is to arrive at a better
understanding of the conflict. Essentially, this is a process of knowledge elicitation, as additional
knowledge is needed about the descriptions in conflict. This phase involves identifying why the
conflict occurred, and hence the type of conflict, the extent of the conflict, and the issues involved.
Such information might be represented in a number of ways ranging from formal to informal,

- 96 -

through a process of annotating the descriptions and linking elements of them together. In
particular, links showing correspondences and discrepancies can be used.

The exploration phase begins once a conflict has been detected. The information available consists
of the relevant parts of the viewpoint descriptions, and an indication of where the conflict was
detected. For example, given the descriptions in figure 6.3, let us say that the analyst is trying to
establish when a book is available for loan. The states ON SHELF in figure 6.3(a), and AVAILABLE in
figure 6.3(b) seem to correspond roughly, but there is conflict, as neither the names, nor the
transitions attached to these states match. In this case we begin the exploration with these two
diagrams and an indication that the conflict is between ON SHELF and AVAILABLE.

The result of the exploration phase is a map of the conflict. This includes a list of correspondences
and differences between the descriptions. In other words, the original disparity between viewpoint
descriptions has been broken down into specific lists of items in the descriptions which
correspond, and items which do not. Together, these comprise the components of the conflict. The
exploration phase also elicits any issues underlying the correspondences and differences, and for
each issue, criteria for its satisfaction.

6.3.1 Establishing Correspondences

The first problem is to establish some common ground between the descriptions. This is important
to delimit the extent of the conflict, and to provide the participants with a basis for communication.
The process starts with two descriptions, within which particular statements are known to conflict.
To determine the extent of the conflict, the statements around the conflicting ones need to be
compared, as these provide a context for the conflicting statements. Initially, this context consists
of those statements in the original viewpoints which are directly connected to the ones in question.
In a graphical notation, these are the arcs and nodes connected to the items in question, and for a
chain of inference, all the immediate antecedents and consequences are used.

The participants begin by identifying correspondences between the items in the descriptions. Such
correspondences may be exact or approximate. There is an exact correspondence if the items are
agreed as having the same definition; the correspondence is only approximate if the meanings are
similar, but differ in certain details. Many terminological differences will be discovered at this
point: methodologies for recognising terminological mismatches, such as that of Shaw & Gaines
[1988], as well as tools for detecting graph isomorphism, could be usefully employed here. The
tool support provided by Synoptic is somewhat less sophisticated than these, relying on the user to
identify correspondences.

To illustrate this process, consider the library books example. The originators of the descriptions
compare the arcs attached to the states ON SHELF and AVAILABLE. Firstly, they might note that there is a
correspondence between SEND TO REPAIR and REPAIR/MISSING. The correspondence is not exact but it
appears that the former is included in the latter. This raises the issue of how books which go
missing are handled in the first viewpoint, and whether this needs to be represented. The actions
BORROW and ISSUE appear to be identical, but note that the return action in one diagram is the inverse
of issue, while in the other, it leads to a new state, ON RETURNED STACK. In this case we can assume
that the state AVAILABLE in the second diagram is the composition of ON RETURNED STACK and ON SHELF.
Other correspondences can similarly be found, and items may be involved in more than one
correspondence.

The examples described demonstrate a number of different types of correspondence (Figure 6.4).
Most obviously there is equivalence, as in the case of ISSUE and BORROW (Figure 6.4a). Often,
different terms will be used to describe the same thing from different perspectives. In this example,
one is the name of an action described by a librarian, and the other the same action described by a
borrower. Both terms are useful, and could be recorded as synonyms. The comparison raises the
issue of which should be used where.

- 97 -

Figure 6.4: Correspondences between the descriptions of the library: (a) a correspondence between
single items (although one of them recurs in the description); (b) a correspondence between a
single item and a group; (c) a correspondence between two groups of items; and (d) an item for
which there is no correspondence.

As well as correspondences between single items, frequently groups of items will be linked.
Where a single item in one description corresponds to a group in another, the representations are at
different levels of decomposition (Figure 6.4b). This is a common problem in systems analysis, as
there is no standard way of deciding whether different parts of a description are at the same level of
abstraction. The measure of level of abstraction is a subjective one, and different analysts will
decompose the parts of a description in different orders. In many cases, such correspondences will
not be exact, as decomposition usually reveals details about a description not considered at a

- 98 -

coarser grain. Again, such comparisons yield issues that one description may not have addressed,
which could be usefully discussed.

Correspondences between a group of items in one description and a different group of items in
another description reveal where different types of decomposition have taken place. For example,
the states ON SHELF and ON RETURNED STACK in the first description correspond to the group AVAILABLE, ON

RESERVE and RECALLED in the second (Figure 6.4c). In this example, both groups are decompositions
of “In the library”. The two groups will not necessarily match exactly. For example, the RECALLED

state seems to include recalled books both before and after they are returned, and so is not totally
captured within the group ON SHELF / ON RETURNED STACK. Different decompositions reveal different
concerns within the system modelling process, in a similar way to Feather’s parallel elaborations
[Feather 1989a].

Finally there is the case where an item or group of items in one description has no correspondence
in the other. This may be because it has been omitted, or because the role played by such an item
has been filled in other ways. For example, the SHELVE transition in the second description has no
correspondence in the first (Figure 6.4d).

The result of this stage is a list of correspondences between items in the viewpoints. Each
correspondence may be recorded as exact or partial; but note that exact correspondences do not
imply identical structure. The former indicate where there is agreement, and so restrict the area of
conflict. However, where the correspondence is partial, there is still conflict to be resolved. In
effect, the conflict has been broken down into its components: the initial rough description is
replaced with a list of specific disparities between items in the descriptions.

6.3.2 Identifying Conflict Issues

For a conflict to be resolved constructively, the reasons the parties are in conflict must be
ascertained. These reasons may vary from lack of communication and poor understanding of other
viewpoints, to differences in priorities and areas of concern [Robbins 1989]. Often the actual
conflict is unrepresentative of the real issues which led to the conflict. Deutsch [1973] calls these
displaced conflicts, and discusses the psychological reasons which cause people to express conflict
in indirect ways. Although Deutsch’s considerations are mainly to do with conflicts in personal
relationships, there are other reasons why conflicts may appear displaced. For example, the
descriptions being compared might be the result of long chains of development which are not
necessarily based on the same initial assumptions and motivations.

Easterbrook [1989] notes that simply asking people to state any assumptions made by their
descriptions is unlikely to be fruitful. There will be many assumptions, goals, and motivations
involved in any description, some very trivial, and only a few will be relevant to the analyst. They
are idiosyncratic in that what is obvious to one person may be an important decision to another
[Kaplan 1989]. Discussion of assumptions must be prompted in some way, by asking “Do you
assume X?” rather than “What do you assume?”.

The systems gIBIS [Conklin 1989] and Argnoter [Stefik et. al. 1987] made use of the notion of
issues, which are simply points that the design needs to address. They may take the form of
suggested requirements (e.g. “The check-out process should ensure the borrower has not taken too
many books”), or questions which need to be resolved (e.g. “How many books is too many?”).
However, in these systems, issues are elicited unprompted: in gIBIS as a prelude to identifying
positions and in Argnoter as supportive arguments for proposals. Our approach is to elicit issues
only as a response to specific conflicts. Conflict provokes discussion of the issues, as participants
raise any issues they feel other party’s descriptions neglect. This prompting avoids having to ask
participants simply to list any assumptions they made. It also avoids time wasted discussing issues
on which there is already agreement, or which are irrelevant to the current context.

- 99 -

To assist with the elicitation of issues, four types of free-text annotation may be attached to the
items in the descriptions, and to the correspondence links between items:

Comments - these are general purpose annotations, which can be attached to any item or
group of items in the conflict. A typical use would be to attach to a correspondence
between items to suggest a reason for the difference or similarity of items. Example: A
comment might be attached to the state ON RETURNED STACK noting “librarian B’s
description does not include a returned stack”.

Assumptions - these are like comments but allow the user to note where a description
appears to make some unstated assumption. These often arise when two descriptions
are compared, and the comparison reveals issues that have been neglected in either
description. Example: An assumption may be attached to the comment above, to note
that “librarian B’s model assumes that books waiting to be shelved can be located for
loan”.

Issues - these are points that need to be addressed. There are many circumstances under
which issues arise, but often comments and assumptions will result in an issue.
Example: the assumption above might lead to the issue: “How can books that have been
returned but not shelved be traced?”.

Justifications - These are added to support a particular viewpoint or proposal. Often these
will be added in response to assumptions and comments to provide a rationale for the
original item. They will also be added in the next two phases of the process, to relate
solution components to issues.

Several of the examples in the previous section showed how issues arise during the comparison of
descriptions. Typically, issues are prompted by the creation of a correspondence, and the
supporting tools prompt the user to note any assumptions or issues that arise when creating a
correspondence. Assumptions have an issue attached automatically, questioning whether the
assumption is reasonable, to ensure that the assumption is discussed when the issues are
considered later in the process.

6.3.3 Agreeing Resolution Criteria

The final part of the exploration phase is the establishment of criteria by which to judge possible
resolutions. Fisher & Ury [1981] suggest that objective criteria should be agreed before any
resolutions are generated, to ensure that an agreement can be reached. This is to prevent
participants moving the goal posts to get their personal preference accepted. However, it is often
not clear before any solutions are proposed what the criteria should be. It is an open question as to
how the prior agreement of criteria affects the generation of a resolution.

Our model treats the establishment of criteria as part of the exploratory phase, as it involves
elicitation of further information from the participants. The criteria allow potential resolutions to be
judged and compared. As the measures by which participants evaluate their satisfaction, they
represent the participants’ goals for the resolution process. As such, these are the final part of the
picture of the conflict built up by the exploration process. Issues represent the key points in the
conflict; criteria show how the participants feel about these key points.

In our model, every issue has a related criterion describing desirable outcomes for that issue. In the
simplest case, the issue asks a question, and the criteria attached to it provides an answer (often
approximately), by reference to the participants’ concerns. Effectively we treat issues as points that
the original viewpoints left unclear, and the criteria as the clarification of these points. In most
cases, the participants will agree on the criteria for an issue with little difficulty, reserving
disagreements for the order of priority among criteria. However, there are issues on which
participants will define opposing criteria, and in this case, both are recorded, and the dispute added
to the list of items in conflict.

- 100 -

Figure 6.5: A screen snapshot from Synoptic 1.0, showing the form to be filled in when a
conflict is detected. The system keeps track of the resolution process automatically.

Criteria can be used by participants to object to an issue. Issues are elicited in response to conflicts,
and so will usually be agreed as being valid, if only because they are important enough to disagree
over. However, occasionally, participants will object to an issue on the grounds that it is not really
an issue, or is irrelevant. In this case, they can attach a null criteria, effectively stating “this issue
can be ignored (in my opinion)”. Normally a null criteria will have either an assumption or a
justification attached, explaining why. For example, a participant may object to the issue “There
must be a way of locating unshelved books” because books can be assumed to be unavailable until
shelved.

6.3.4 Functionality of the Exploration Tools

Synoptic is an extension of the Analyser system described in chapter 5. It retains all of the
functionality of the viewpoint manipulation tools, with the exception of the blackboard system
described in section 5.4. This is replaced with a set of tools to support the conflict resolution
model. A single menu selects which phase of the model is in operation, and within each phase a
palate of tools is available.

Conflicts between viewpoints can be noted by filling in a conflict form, as shown in figure 6.5.
When a difference between viewpoints needs to be resolved, the conflict resolution process is
invoked by selecting the exploration phase from the conflict menu. The same menu is used to move
from one phase to the next, and to move back to a previous phase if necessary. The display of this
menu is modified to show the current state: completed phases are marked with a tick, while phases
beyond the next are shaded to show they are unavailable (see figure 6.6).

- 101 -

Figure 6.6: A screen snapshot from Synoptic 1.0, showing the window created to compare
two descriptions, and the tool palate (down the left hand side). The “Conflicts” menu, which
allows the user to move between phases is also shown.

When noting a conflict, the user is asked to select those items in the viewpoint descriptions which
are in conflict. In the exploration phase, these items, together with their immediate context are
displayed side by side in a ‘synoptic’ window. A palate of tools is attached to this window to allow
the following operations:

Selector (arrow icon) - for selecting items within the displayed descriptions, for some
subsequent action, such as attaching a note. The selected items are displayed in grey.

Mover (hand icon) - for moving a displayed description around. As items can be added or
removed from the displayed descriptions, it may become necessary to adjust their
relative positions within the synoptic window.

Extend description (explode icon) - This tool extends descriptions in the synoptic window
by adding more items from the source viewpoints. For any selected item in the synoptic
window, all immediately connected items in the viewpoint description that are not
already displayed in the synoptic window are added.

Trim description (implode icon) - This tool allows the user to trim items from the
descriptions displayed in the synoptic window. Items that are listed as part of the
conflict on the conflict form cannot be trimmed.

Conflict form (form icon) - This displays the conflict form.

Attach note (exclamation mark icon) - This tool allows the user to attach a note to any item
or link. The user will be asked to select the type of note to attach (see §6.3.2). Each
type of note has a form to fill in. In the case of issues and assumptions, the form has

- 102 -

slots for criteria and justifications. for any type of note the user is prompted for a brief
title by which the note can be referred.

Create correspondence (link icon) - A correspondence is created between the selected items.
The user will be asked whether the correspondence is exact or approximate, and will be
prompted for any issues to attach.

Find correspondence (link-question icon) - Displays any correspondences involving the
selected items.

These tools allow the basic actions for the exploration stage. Note that Synoptic only plays a
supporting role in this phase; the emphasis is on the human participants recognising and discussing
correspondences. However, the tools perform clerical duties such as recording correspondences.
Guidance is provided in that the system keeps track of task completion. For example, the system
checks that all forms are filled in fully before allowing the user to move on to the next phase.

6.4 Generative Phase

The result of the exploration phase is a “map” of the conflict, which can be used to guide the search
for possible resolutions. The second phase is concerned with generating these resolutions, and is
essentially a design process. The aim is to propose solutions which overcome the limitations of the
original viewpoints, and respond to the issues identified in the exploration phase. At this stage, the
options are not evaluated, nor are they checked against the issues. This prevents the creative
process being stifled by pragmatic considerations [Stefik et. al. 1987]. The options might be
generated in a variety of ways, from directly combining elements of existing viewpoints to
techniques such as lateral thinking and brainstorming.

The result of the generative phase is a list of options for resolution. These options are not intended
to be complete resolutions, but might be combined in various ways to arrive at one. It is also
possible that some of the options will be incompatible with one another: the evaluation phase will
examine how the options can be combined.

6.4.1 Types of Conflict

Before the generative process gets underway, it is useful to characterise the type of each
component of the conflict revealed by the exploration process. This will help to decide what form
the generative phase will take, and what a possible resolution might consist of. We can identify
three broad categories of conflict that might arise in systems analysis, as follows:

Conflicting interpretations - descriptions of the current situation or the current requirements
do not match, usually because different perspectives interpret things differently. This
category corresponds to the category Beliefs (or “how things are”), as described by
Deutsch [1973].

Conflicting designs - suggestions (or partial designs) for how the system should be do not
match. This roughly corresponds to the Deutsch’s category Values, or “How things
should be”. While a requirements specification would not normally be expected to
contain design information, participants are likely to express some of their requirements
as partial designs, representing their preconceptions of the system.

Conflicting terminologies - the terms in which things are described do not match. This
covers the communication problems suggested by Robbins [1989] as being a major
cause of conflict.

- 103 -

a)

O
ur

 s
at

is
fa

ct
io

n

Other party’s satisfaction

A

BA and B
combined

b)

O
ur

 s
at

is
fa

ct
io

n

Other party’s satisfaction

A

B

A and B
combined

c)

O
ur

 s
at

is
fa

ct
io

n

Other party’s satisfaction

A

B

A and B
combined

d)

O
ur

 s
at

is
fa

ct
io

n

Other party’s satisfaction

A

B

Figure 6.7: These diagrams show conflicts of different severity. In (a) the viewpoints are mutually
exclusive, as their combination satisfies neither party (the combination might not even be possible).
In (b) the viewpoints can be combined, but with some loss of optimality for each party, and in (c)
the viewpoints are non-interfering and can be directly combined. A variant of the non-interfering
type is shown in (d), where one of the viewpoints already satisfies the other’s concerns.

In addition to these three categories of conflict, a scale for the severity of the conflict is used. This
ranges from non-interference at one end to mutual exclusion at the other. The former implies the
items in conflict can be combined directly without compromising either, whilst the latter indicates
that each totally negates the other, and only one can be used (Figure 6.7).

Using this schema, conflicts identified as non-interfering can be eliminated from further resolution
work, as the direct combination of the two viewpoints provides an instant resolution. Where the
two viewpoints provide alternative views or alternative terms, the circumstances under which each
should be used still needs to be examined. For the remaining conflict types, there is plenty of scope
for the design of novel resolutions which circumvent the conflict, by satisfying the underlying
issues in other ways.

Table 6.1 describes typical examples of each of the categories and levels of severity, together with
examples from the library books conflict. The examples are from the list of specific
correspondences and differences discovered in the exploration phase. Some of the examples are
phrased in a way that suggests possible resolutions; consideration of where these conflicts should
appear in the table helped identify potential solutions. Note that these individual options are not
exhaustive, and may obscure other possibilities. For example, exploration of this particular conflict
revealed that one viewpoint was concerned with the physical whereabouts of a book, while the
other is describing accessibility: it might make sense to retain both viewpoints entirely, and record
for each book both its physical whereabouts and its loan status.

6.4.2 Generating Resolution Options

The model does not prescribe a particular method of generating resolutions. As already noted, this
is a design problem, and design methods are already well documented elsewhere (e.g. Finkelstein
& Finkelstein [1983]). A range such methods might be usefully employed for generating options,
depending on the components of the conflict, and the form of resolution required. Consideration of
the category of the conflict components, as described in the previous section, may immediately
provide one or more resolution options.

The categorisation of conflicts helps to determine what form a resolution should take. For example,
conflicts in terminology, once detected, can be resolved fairly simply. Participants can be prompted
for distinguishing terms if the same terms have been used for different concepts. Each such
suggestion is a possible resolution, to be evaluated in the same way as other proposals. Where
different terms have been used for the same concept, it is likely that both will be useful, and
proposals will include circumstances under which a particular term might be favoured. In many
cases, negotiating terminological differences is a waste of time, and participants should agree to

- 104 -

Interpretations are not wholly
consistent, and if both are to be

used, some resolution is required.
Example: The “shelve” action is not
wholly consistent with the second
viewpoint as “available” does not
quite correspond to “on shelf”.

Either interpretation can be used
without affecting the other (need to
find out which to use when).
Example: the possibility of books
going missing has been omitted from
the first viewpoint, and could be
added directly if necessary.

The design can be directly combined
without compromising either.
Example: The recall facility, which is
assumed to be a design suggestion,
could be added directly to the first
viewpoint

Different terms have been used for
the same concept (need to find out
which to use when).
Example: “borrow” and “issue”
apply to the same action. A borrower
is more likley to use the former term,
and a librarian the latter.

Designs can be combined but
interfere, and the direct combination
may not be the ideal resolution.
Example: A reserve collection could
be added to the first viewpoint by
splitting the “on shelf” state to
indicate the type of shelf.

The same labels have been used for
similar concepts. The differences
need to be resolved.
Example: “Out of circulation” and
“At binders”. The latter is more
specific, and implies that these books
will eventually return.

Interpretations totally contradict one
another, and cannot be used in
conjunction.
Example: There is no “return” action
for recalled books in the second
viewpoint, contradicting the notion
of a returned book stack.

Designs are completely incompatible,
or tend to negate one another when
combined.

The same labels have been used for
different concepts, and some
distinguishing terms are needed.
Example: The “return” from “at
binders” is indistinguishable from the
“return” from “lent”. These might be
completely different actions.

Conflicting
Interpretations

Conflicting
Designs

Conflicting
Terminology

non-
interfering

partially
interfering

mutually
exclusive

Table 6.1: Different types and severities of conflict, and for each a description of the kind of
situation covered, and an example from the library books conflict.

differ, or make the effort to translate. It may be sufficient just for the participants to be aware of
such conflicts.

Conflicting interpretations are slightly harder to resolve. Sometimes these will be based on
incorrect information, which can be investigated. More often, they will arise from alternative ways
of looking at things. Both interpretations might be useful, and proposals can be made which
attempt to combine them, or which suggest circumstances under which one or other might be used.
Proposals might also recommend that one interpretation should be discarded, in which case the
issues raised by the discarded description need to be satisfied in other ways.

Conflicting designs involve a higher level of uncertainty. Often the conflict will be the result of
conflicts not tackled at earlier stages, and the issues arising out of conflicting designs will indicate
the concerns that lead to them. As the exploration stage has broken down the original conflict into
its specific components, the designs can be examined more closely. Possible resolutions include
combining the requirements underlying the designs, adapting one design to incorporate issues
raised by another, or creating a totally new design which addresses the issues in new ways.

The result of this phase is a set of options for resolution. These will vary from the very specific
(such as a particular change to a description), to entire viewpoints. Where an option is only
applicable under certain conditions, these are also described as part of the option. Note that the
original viewpoints could be considered as possible resolutions: one or other could be accepted
unaltered, if it turns out to be a satisfactory resolution. In addition, some proposals will be
candidates for combination to produce a more complete resolution, while others will be
combinations which might need to be dismantled, if only a part is needed. At this stage, the
proposals have not been evaluated or compared in any way.

6.4.3 Support for the Generative Phase

As the model does not prescribe any particular generative method, support for this phase is
minimal. The system allows users to record resolution options as either free text, or replacement

- 105 -

descriptions, or partial descriptions, annotated with justifications. Each recorded option has a space
to record any conditions which might apply. Also, the user is prompted for a brief title by which
the option can be referred.

Two tools are provided to assist in the process of generating these options. These represent the two
main sources of resolution: consideration of the category and severity of each of the conflict
components, and consideration of how each of the conflict issues might be satisfied. These tools
are relatively simple, in that they cycle through the conflict components, and the issues,
encouraging the user to fill in the appropriate information, prompting for suggestions. Each
suggestion is then recorded as a potential resolution. The tools do not enforce any particular
ordering on this process, and the user may even move to the next phase without completing either
of these tasks – in this case a warning message is displayed.

The support provided by Synoptic for the generative phase is relatively limited, and there are a
number of ways in which this support could be improved. For example, information about the
various ways in which particular types of conflict might be resolved needs to be encoded into
Synoptic. This would allow the system to suggest possible resolutions and to ask leading
questions to guide the user through the generation process.

6.5 Evaluation Phase

The final phase, evaluation, consists of taking the options for resolutions and relating them both to
the map of the conflict generated in the exploration phase, and to each other. The aim is to find the
option or combination of options that best resolves the issues involved in the conflict. The
approach is similar to that of the exploratory phase, and consists of linking items together and
eliciting extra information to supplement the links.

The evaluation phase begins once a sufficient number of options has been generated. In fact, there
is no distinct end to the generative phase. When participants feel that a good range of options has
been generated, the evaluation phase can be initiated. The generative phase and the evaluative phase
are kept deliberately separate, to prevent premature evaluation of the options from stifling
generation of new suggestions. However, it is possible that the evaluation phase will also lead to
new options, causing a cycling of these two phases.

6.5.1 Relating Options to Issues

The first task is to relate the suggested resolutions to the issues underlying the conflict. This may
be done by taking each option in turn, and selecting the issues that it satisfies, or by taking each
issue in turn, and deciding which options would satisfy it. Both approaches have merit, in that
either may reveal additional links missed in the other. Satisfaction of issues is measured using the
criteria attached to them.

The links between options and issues vary in the extent to which the option satisfies the criteria.
Also, the relationship may be either positive or negative, where the former indicates the option
contributes to the satisfaction of the issue, and the latter indicates it frustrates the issue.
Unfortunately, the complex relationship between options and issues cannot be satisfactorily
expressed using a simple numeric scale. Instead, a qualitative scale is used, along with explanatory
notes. Participants may attach one of five values to each combination of option and issue. The
values are: fully satisfies; partially satisfies; no effect; partially frustrates; and totally frustrates. The
value “no effect” is the default. If the satisfaction of frustration is partial, an explanatory note is
attached. These values will later be used to compare the options which contribute towards each
issue.

- 106 -

6.5.2 Relating Options to One Another

The individual resolution options may interact in interesting ways. Some might usefully be
combined to produce a resolution which satisfies more issues than either individually: for example,
the suggestion of adding a “missing” state to the first viewpoint, and the suggestion of renaming
the arrow from both this state and the “at binders” state to “restock” might be combined to give a
more complete solution. For other options, combination will negate some of the benefits: for
example the suggestion of adding a reserve collection to the first viewpoint is not compatible with
the suggestion of maintaining two types of state information, whereabouts and loan status. The
range of interactions between options is analogous to the possible interactions between the parts of
the original viewpoints, as shown in figure 6.7, which were evaluated using a scale of severity.

Where two or more options can be combined, the combination is recorded as a new option. In
creating the combination, the way in which the combination satisfies the issues may need to be
reconsidered. In most cases the combination will satisfy all the issues that the individual options
satisfied. However, this is not always the case, and in particular, it is not clear how options with
differing strength links with an issue might be combined. This information need to be elicited from
the participants. Additionally, the combination might only be possible under certain circumstances,
which need to be recorded as conditions for the new combined option.

6.5.3 Choosing a Resolution

Once the options have been linked to the issues and to each other, the only remaining problem is to
select the best option or combination of options as a final resolution. In many cases, an agreed
resolution will have emerged during the process, making much of the evaluation phase redundant.
However, in cases where there is no obvious resolution, the options need to be compared. If there
is an option (or combination) which satisfies all the issues, then this is a likely candidate. If any
participants are unhappy with such a resolution, their reasons need to be elicited: these are likely to
indicate issues that were missed in the exploration phase.

To a certain extent, if there is still no clear resolution at this stage, this can be seen as a failure of
the negotiation process. The aim of the entire process is to explore the conflict and educate
participants about each other’s viewpoint: if this is successful, a resolution should emerge from the
process, or the conflict should disappear. In the last resort, the participants might either agree some
decision making procedure, or agree to leave the conflict unresolved. In the case of the former, the
procedure will depend on the perceived importance of the conflict. An unimportant conflict might
be resolved by an arbitrary method, while a more important conflict may require a process of
ranking the issues, to select the option that best satisfies the most important issues.

The chosen resolution is represented as a new viewpoint which can be used instead of the original
conflicting descriptions. Where the conflict involved only a part of the original viewpoints, the
viewpoints can now inherit the relevant section from the resolution viewpoint. The original
descriptions are retained as part of the record of the resolution process. The conflict map is
recorded as a rationale for the resolution viewpoint, so that it is available for later re-examination if
necessary.

6.5.4 Support for the Evaluation Phase

Linking issues to options is a straightforward interactive activity. Two approaches can be used: an
option is displayed and the user asked to select those issues which it addresses, or an issue is
displayed and the user asked to select the options which address it. The user can switch between
these two approaches. In either case the procedure is the same: the option (or issue) is displayed
alongside a list of the titles of the issues (or options) to which it may be linked. The full details for
any title can be displayed by clicking on it. The user selects the relevant titles, and for each is
prompted for the strength of the link, which is then indicated by flagging the title with one of the

- 107 -

symbols: ++, +, -, --, representing totally satisfies, partially satisfies, partially frustrates, and
totally frustrates respectively. The links can have explanatory notes attached to them.

For the process of linking options to one another, the user may select a group of options to link
together from a list, or may ask Synoptic to suggest a possible combination. In the latter case,
combinations are chosen to maximise the number of issues satisfied, and may not always be
sensible. The chosen combination is recorded as a new option, for which the process of linking to
issues is repeated, as described above, with the links already filled in where possible. Where the
link cannot be calculated automatically, for instance because one of the combination frustrates an
issue which another satisfies, a question mark is displayed to remind the user to fill in the
information.

Support for the final stage, selecting a resolution, is limited for the reasons set out in the previous
section. An option is available to attach a numerical importance to each issue, so that the system
can calculate a numerical score for each resolution option. The mechanics of this are very simple:
the user is presented with each issue in turn and asked to select an importance value. These values
are then combined with the values on the links between options and issues to generate a score for
each option. The system does not allow for disagreement between participants over the importance
measures. No attempt is made to support any other type of decision procedure.

6.6 Summary

This chapter has described a model of conflict resolution which can be used to integrate conflicting
domain descriptions. This forms a part of the multiple perspectives model introduced in chapter 4.
In recognition of the fact that carefully managed conflict can help eliminate errors and improve the
quality of the requirements specification, the multiple perspectives model encourages the
expression of conflict by allowing participants to describe their viewpoints separately. Expression
of conflict needs to be balanced with productive resolution methods, to encourage collaboration
and to ensure that conflicts do not become counter-productive. The model described in this chapter
was designed with this aim in mind.

The model consists of three phases: exploration of the participants’ perspectives; the generation of
suggestions for resolving the conflict, and the evaluation of these suggestions. During the
exploration phase, the initial conflict is broken down into its components, represented as specific
correspondences and differences between items in the viewpoint descriptions. These are annotated
with comments describing any assumptions they make and issues they raise. These links and
annotations act as a map of the conflict to guide the later stages. Resolution takes the form of
designing novel ways of satisfying the issues. In the final phase, the ideas generated are then
compared with one another and measured against the issues to determine the level of satisfaction.
The option or combination of options which best satisfies the issues is chosen as a resolution.

The model combines the two most co-operative methods of conflict resolution: education and
negotiation. Emphasis is placed on the exploratory phase in which participants learn about other
viewpoints by comparing them to their own. Participants are encouraged to compare their
viewpoint descriptions with others, and this comparison facilitates the elicitation of additional
information, such as hidden assumptions. In fact, the final resolution is not necessarily the most
important product of the negotiation process – the extra information elicited during the process, and
the participants new understanding of one another’s viewpoints may be far more valuable.

The entire process is highly interactive, and acts to structure the elicitation of additional information
concerning the conflict. Rather than imposing a strict methodology on the participants, the various
activities can be freely interleaved, so as to support discussion and exploration. Where an
agreement is not reached, the arguments and understanding that have been built up aid judicial
arbitration.

- 108 -

The model does have limitations. One of the weaknesses of the model is in the generative phase,
where no guidance is offered regarding techniques for generating resolutions. More research is
needed to determine which design techniques are appropriate for which types of conflict, so that
guidance can be provided. Another weakness is that there is no way of ensuring that all relevant
viewpoints participate in the conflict resolution. When a difference between particular viewpoints
becomes important enough to attempt to resolve, there may be other viewpoints which contain
extra information relevant for the resolution. It is not clear how these relevant viewpoints can be
detected, especially in the presence of the mismatches in terminology and style discussed in section
6.1.1. If other viewpoints conflict with the generated resolution, then the resolution process may
have to be repeated.

It is tempting to assume the model provides a general framework for conflict resolution. However,
the model was designed to fill a specific need, that of comparing and merging previously elicited
viewpoint descriptions. The analyst would carry out most of the work, usually over a period of
time, involving the viewpoint originators when necessary. The model is not intended provide a
form of meeting support, such as that provided in CoLab [Stefik et. al. 1987], nor is it intended to
be a problem exploration tool, such as gIBIS [Conklin 1989], although it shares some features of
these systems. It is possible, however, that the model could be adapted for use in these situations.

The support system, Synoptic, which was built to demonstrate the working of the model is a
prototype. It demonstrates the basic processes of the model, but the support it provides is often
minimal. Its main deficiency is that it requires the user to do much of the work. By incorporating
more knowledge about the conflict resolution process, the system would provide much more
guidance. For example, by comparing the issues which resolution options satisfy, the system
might generate the most likely combinations of options, and use them to prompt the user for more
information. Such a technique was used successfully in the knowledge acquisition system KSS0
[Shaw & Gaines 1987]. Another, major shortcoming of Synoptic is that it only allows two
viewpoints to be compared at once.

Despite these shortcomings, Synoptic provides a solution to the problems raised in the previous
chapter, of comparing viewpoints and resolving conflicts between them. We have demonstrated
how example conflicts might be resolved using the system. Additional advantages include the
ability to mix representations, and the elicitation of additional information. The former is important
as it is notoriously difficult to compare knowledge represented in different ways. Synoptic
provides a means to explore correspondences between different representations. In using the
comparison of existing descriptions as a basis for exploration, the system is able to elicit
underlying assumptions which might otherwise have remained hidden. Furthermore, the
comparison process draws out the issues that the descriptions address.

- 109 -

7 Conclusions and Further Work

This thesis has presented a model for requirements elicitation from multiple perspectives. The
model was inspired, in part, by the observation that negotiation forms a vital part of the
requirements engineering process, but has not been addressed in existing software engineering
methodologies. Using the model, the analyst develops a set of viewpoint descriptions to represent
perspectives. These descriptions may be compared when necessary, and conflicts between them
resolved. The conflict resolution process emphasises the need for exploration, as issues underlying
the apparent disparities need to be elicited.

This chapter presents conclusions from the thesis. Section 7.1 provides a summary: it reviews the
problems of requirements engineering that motivated the thesis, restates the objectives, and
summarizes the model, showing how it meets the objectives. Section 7.2 is a critical review of the
model, while section 7.3 describes areas of further research.

7.1 Summary

This section summarizes the central argument of the thesis. We identified a number of difficulties
in requirements engineering, which are accentuated by the importance of the specification (§7.1.1).
In addressing these difficulties, we argued that a model of requirements engineering is needed and
set out a number of objectives for such a model (§7.1.2). Finally, we proceeded to develop a
model which meets these objectives, based on the notion of capturing and representing multiple
perspectives (§7.1.3).

7.1.1 Problem Domain

In order to produce software which more closely matches the needs of an organisation, greater
attention must be given to requirements engineering. The requirements specification plays an
important role in the software development process, as a communication channel between the
clients and the software development team. The specification must describe the requirements
precisely and unambiguously. Furthermore, it should be representative of the many different
people whose needs it describes. In order to validate it, these people should be able to identify with
the specification, and preferably will have been involved in its development.

Requirements engineering is difficult because it involves elicitation of knowledge from many
different sources and requires use of many different areas of knowledge. A great deal of
negotiation is needed, for example to decide the scope of the requirements and to resolve
competing needs. If this negotiation is neglected, the participation of the clients is hard to maintain,
resulting in a specification that is hard for the clients to identify with and validate.

There is a danger that the specification will represent only a single perspective: the analyst’s.
Information gathered during requirements elicitation is used to build upon the analyst’s
preconception of what is required. It is clear, however, that there are many concerns which need to
be taken into consideration, often conflicting with one another. It is also clear that conventional
software engineering methods not address the identification and integration of these concerns, but
rather are geared towards developing and maintaining a single consistent description.

- 110 -

7.1.2 Objectives

Although requirements engineering is unlikely to be completely automated, better support can be
provided. The analyst needs a model to guide her expertise, but which is not overly restrictive.
This model must facilitate and encourage the collaborative aspect of requirements engineering.
Such a model would then lead to the development of tools which assist with gathering and
organising requirements knowledge. This would ease the burden of knowledge management.

Chapter 2 set out a number of objectives for a model: the model should encourage the participation
of the people whose requirements are being described; it should facilitate an exploratory approach,
in which discussion plays an important role; it should allow the analyst to take into account many
concerns; and it should support negotiation and conflict resolution. These objectives help ensure
that the specification is representative and accessible, reflecting its role as a communication channel
between the clients and the development team.

Additionally, tool support for the model should enable the analyst to handle inconsistent and
incomplete information. As validation is of prime importance, tool support should provide
assistance here too; for example by assisting with the presentation of elicited information back to
the originators in a form they are familiar with. The tools should also provide traceability: this
implies that all decisions need to be recorded, together with their rationale.

7.1.3 Solution

The model presented in this thesis meets these objectives. It is based on the capture of perspectives
as self-consistent descriptions of areas of knowledge. Perspectives do not necessarily correspond
to people, as one person may use several perspectives, and a perspective might be shared by
several people. A perspective can be thought of as a view of the world from the context of a
particular role. Perspectives are represented using viewpoints, which are formatted descriptions in
some appropriate representation scheme.

The model concentrates on two key areas of requirements engineering: elicitation of requirements
knowledge and integration of (possibly conflicting) perspectives. Elicitation is based on the capture
of perspectives, and involves two main areas of difficulty: identifying perspectives and building the
viewpoint descriptions. Integration is based on a model of computer-supported negotiation, and
again introduces two key problems: comparing viewpoints and resolving differences.

The part of the model concerned with capturing perspectives was described in chapter 5, along
with a system called Analyser, which was developed to support this part of the model. The
problem of identifying perspectives is tackled by splitting viewpoints when distinctions between
perspectives are discovered. The split viewpoints form an inheritance hierarchy, so that shared
knowledge is inherited from a common ancestor. Descendant viewpoints represent specific areas
over which perspectives disagree. The viewpoints themselves are restricted to represent only that
which their originators have explicitly stated. This ensures that they remain accurate models of
elicited knowledge. Any additional commentary added by the analyst is represented in the analyst’s
viewpoint.

The negotiation model was described in chapter 6. As conflicting viewpoints may co-exist in the
model, there is no compulsion to resolve conflicts until a resolution becomes necessary or
desirable. The resolution process itself involves three phases, of which the initial, exploratory
phase is the most important. In this phase, participants compare the conflicting viewpoints, and
identify points of correspondence and disparity between them. Issues underlying these
correspondences and conflicts are elicited, in order to come to a better understanding of the
conflict. During this process, some of the conflicts may disappear. In the second phase, a number
of resolution options are generated, according to the types of conflict involved. The final phase

- 111 -

involves comparing these options to one another and to the underlying issues, in order to choose
the combination which best satisfies the participants.

7.2 Critical Review

The previous section summarized the objectives of the thesis, and the model developed to meet
those objectives. We now examine the strengths and weaknesses of the model, and its support
tools. Section 7.2.1 sets the scene by describing the scope of the model and its derivation from
diverse fields of research. Section 7.2.2 sets out the principle advantages of the model, while
section 7.2.3 describes the remaining problems.

7.2.1 Rationale

The multiple perspectives model provides a framework for requirements engineering. This covers a
broad range of activities from the initial elicitation and formulation of requirements, through to the
construction and validation of a specification. Some of the activities encompassed in this range are
not explicitly addressed by the model; rather the model provides the general structure, within which
existing tools and techniques might be applied to individual tasks. On the other hand, the model
makes particular activities explicit, such as the exploration of conflict, and in these cases, the model
has been used to guide the development of new tools.

The thesis draws together diverse threads from the literature, applying them to the requirements
process. Some of the difficulties of requirements engineering are similar to those of knowledge
acquisition, and some parts of the model, for example the processing of transcripts and incremental
construction of knowledge bases, are based on existing work in knowledge acquisition. The
application of models of group interaction, negotiation and decision making to the requirements
process is an important feature of this thesis, and, with the exception of Robinson [1990] has not
been attempted before. The thesis also draws in ideas from hypertext and distributed artificial
intelligence, to create an environment of interlinked knowledge bases.

This appeal to the literature was driven by an identified set of needs, as summarised in section
7.1.2. In particular, existing methods provide little support for the processes of negotiating
requirements with the clients, and integrating many competing perspectives.

The model meets this need by using the capture of perspectives as a driving principle. This
approach modularises elicited knowledge into recognisable chunks, each of which is associated
with an originator. These chunks provide context for each of the statements within them. The
ability to represent conflicting perspectives encourages negotiation without stifling exploration.
Furthermore, the integration of perspectives is explicitly supported, so that the decisions involved
can be recorded and validated.

7.2.2 Advantages

The model achieves the objectives set out at the beginning of the thesis. In addition, the model has
a number of advantages. Some of these are a direct consequence of the objectives; for example, the
model facilitates reconstruction of the negotiation process by explicitly recording the decision
process. This section describes some additional advantages which may not be readily apparent.

The requirements process is normally a team effort. If the process requires a single consistent
specification to be maintained, then team working is difficult: careful co-ordination is needed for
any changes to the specification. However, by dividing the task up into the elicitation of separate
perspectives, the task can be shared. Each viewpoint is constructed independently of the others.
The model does not prescribe any particular ordering on the elicitation and discussion process, as it
allows consequences of statements to be ignored, and resolution of conflicts to be delayed.

- 112 -

Another advantage is that the analyst does not need to consider the reliability of each new piece of
information as it is gathered. In many cases the analyst will know whether elicited information can
be treated as undisputed fact, generally agreed principle, or contentious opinion, although there
will be cases where this is not clear. All such information provides valuable background, and
needs to be recorded. The multiple perspectives model facilitates this by removing the need to
consider the reliability of statements added to viewpoint descriptions. In addition, policy and
preference can be represented by attributing them to particular perspectives. Information about the
reliability and importance of knowledge emerges in the comparison process.

One of the major strengths of the model is in the elicitation arising from comparison of viewpoints.
The comparison allows implicit knowledge about the underlying assumptions and goals to be
elicited. It gives the participants a chance to explain the rationale underlying their descriptions. It
also allows the analyst to gauge the level of agreement between participants over the various
elements of the descriptions.

It is important to note that the thesis describes more than just a model of requirements engineering.
The model has be used to develop tools to support the requirements process, and these tools have
been demonstrated on a number of examples. One major criticism of software engineering
methodologies has been the amount of organisational change necessary for them to adopted by
existing institutions. The multiple perspectives model does not suffer this problem. As no
restrictions are placed on the form of interaction between analyst and client, nor on the
representations used, the model can be integrated with existing practices. Parts of the model can be
used and adapted for different circumstances. In particular, many of the tools could be used
separately to provide assistance with specific tasks.

7.2.3 Remaining Problems

Requirements engineering encompasses a wide set of activities, and this thesis has not been able to
tackle all of these in depth. There remain a number of problems with particular aspects of the
model, and a number of activities which the model does not really address. The latter are generally
ignored on the basis that they are activities which analysts routinely perform already, and hence
existing techniques may be applied. An example is the formulation of requirements knowledge into
an appropriate representation scheme: Analyser provides the ability to link items in the
representation to the original source material where it is available, but gives no guidance for the
formulation itself.

One area in which there is a problem with the model is in distinguishing between perspectives. The
only criteria used for identifying perspectives is presence of inconsistencies. Whilst conflicts are a
major source of inconsistency, it is not clear that inconsistencies can be equated with conflicts, nor
is it clear that detecting inconsistencies using a theorem prover is tractable. In fact, the approach
used in Analyser is slightly more flexible: a set of rules are provided for detecting conflicts in each
representation scheme used. However, the development of such rules is not a trivial task, and more
work is needed to examine how conflicts can be detected. An approach which can take into account
information about the roles, motivations and goals associated with perspectives might be fruitful.

A related problem is that of recognising differences in terminology. At present the support tools
rely on the user to spot these, typically during the exploration phase of the conflict resolution
process. Assistance might be provided for this problem by comparing the structures of the
descriptions for isomorphism.

The use of viewpoint hierarchies solves a number of problems including representing shared
information and isolating areas of detail over which there is disagreement. However, the
hierarchies may cause problems when handling large quantities of knowledge. In particular, when
there are a large number of viewpoints, the inheritance structures may become unwieldy, and need
to be reorganised by the participants. Presenting the structure to the users in these cases will be

- 113 -

difficult. A further problem arises when the resolution viewpoints generated by Synoptic are
added. The original conflicting viewpoints need to be stored as part of the development history of
the resolution, and in some cases the resolution will not replace the original viewpoints, but will
simply provide another perspective. It is not clear how the new viewpoints fit into the inheritance
structure.

Finally there is a problem in ensuring that all relevant viewpoints take part in the resolution
process. At present Synoptic only supports the comparison of two viewpoints. This limitation
could be removed fairly easily, but this would not solve the problem of recognising which
viewpoints should participate. When a conflict is detected between two or more viewpoints there
may be additional viewpoints which have useful information to add to the resolution process, and
might even provide a ready-made resolution. Unfortunately, this may go unnoticed due to
differences of terminology.

7.3 Future Work

Several aspects of the model require further work. The above discussion of remaining problems
addressed some of these. One further area not covered above is the provision of guidance, which is
tackled in a rather ad hoc basis in the existing tools. For example, Analyser allows the analyst to
associate “to do” notes with any viewpoint, but does not do anything particularly useful with these.
Synoptic checks that various forms have been completed when the user attempts to move to the
next phase, but does not prevent the user from doing so. Ideally, the tools should allow the analyst
to plan activities and record and monitor progress, without unnecessary restrictions.

The work in this thesis opens up many exciting new research areas. For example, the model of
computer-supported negotiation was developed explicitly for the requirement process, but has
other potential applications in software engineering, and in knowledge acquisition. The success of
the model in prompting for underlying assumptions and in exploring the issues involved in a
conflict suggest it may have applications in the design process.

In order to explore potential applications in other areas, the limits of the model need to be tested.
For example, the model is geared towards handling formatted descriptions, and may not cope with
highly formalized descriptions, nor with more informal descriptions such as free text. Similarly,
the model is suited to one-to-one discussions, typically the analyst and one participant, or two
participants with the analyst observing, and may not adapt to use in larger groups. Empirical
investigation is needed to establish the scope of the model.

The occurrence of conflict in requirements engineering needs to be studied further. An examination
of the types of conflict that occur may lead to the development of a set of heuristics to guide the
generation of resolutions. The role that conflict plays also needs to be examined: it is clear that
conflicts can reveal important disagreements between participants, but it is not clear how to tell
which conflicts are likely to be productive and which are counter-productive. It is not even clear
how to measure the productiveness of a conflict. The relation of conflict to the level of
communication between participants, the level of abstraction of descriptions, and the degree to
which the task is focussed all need to be studied and may yield important results for the handling of
conflict.

We have mentioned that the model allows different representations to be used and compared, but
have not discussed the wider issues of multiple representations. Translating between
representations can be a difficult task, and the multiple perspectives model offers one possible
approach. Translating into an intermediate representation [Diederich 1987] may provide further
assistance in comparing perspectives. The ability to mix representation schemes also suggests that
mediating representations (see §3.2.3) might help in the validation process, as a bridge between the

- 114 -

informal language of the participants and the formal languages used for specification. The
applicability of particular representation schemes in the requirements process needs to be explored.

Finally, this thesis has barely skimmed the surface of the problems of validation. One of the
concerns of the model was to ease the validation process; this was achieved through the use of
viewpoints to represent individuals contributions, together with a higher level of involvement in the
requirements process. However, the actual mechanics of validation have not been addressed, and
the model needs to be extended to provide guidance for validating both individual viewpoints and
resolutions generated from the negotiation process.

7.4 Summary

We have presented and demonstrated a model of requirement engineering based on capturing
multiple perspectives. The model was developed in response to the observation that the
requirements specification plays an important role in software engineering, and that constructing
this document is a difficult task. A set of objectives for a model of requirements engineering were
described, which emphasised the need for support for exploration and negotiation. The multiple
perspectives model meets these objectives by addressing the elicitation and comparison of
viewpoint descriptions. The model was used to develop support tools for these activities.

In developing the model, many diverse threads from other fields were brought together, including
models of negotiation and decision-making. The application of these models to the requirements
process is novel, and opens up an exciting new area of research.

- 115 -

8 References

Addis, T. R., 1985, “Designing Knowledge Based Systems”, London: Prentice Hall.

Addis, T. R., 1989, “Knowledge for Design”, Proceedings, Fourth AAAI Knowledge Acquisition
For Knowledge-Based Systems Workshop, Banff, October 1989.

Adelson, B., and Soloway, E., 1985, “The Role of Domain Experience in Software Design”,
IEEE Transactions on Software Engineering, Vol SE-11, No 11, p1351-1360.

Adelson, B., and Soloway, E., 1986, “A Model of Software Design”, International Journal of
Intelligent Systems, Vol 1, p195-213.

Alford, M. W., 1977, “A Requirements Engineering Methodology for Real-Time Processing
Requirements”, IEEE Transactions on Software Engineering, Vol SE-3, No 1, p60-69.

Anderson, J. S., and Fickas, S., 1989, “A Proposed Perspective Shift: Viewing Specification
Design as a Planning Problem”, Proceedings, Fifth IEEE International Workshop on Software
Specification and Design, Pittsburg, Penn.

Appelt, D. E., 1980, “A Planner for Reasoning about Knowledge and Action”, Proceedings, First
AAAI National Conference on Artificial Intelligence, p131-133.

Arrow, K. J., 1967, “Public and Private Values”, in Hook, S., (ed) “Human Values and
Economic Policy”, New York University Press, p3-31.

Axelrod, R., 1984, “The Evolution of Co-operation”, Basic Books Inc, NY.

Balzer, R., 1985, “A 15 Year Perspective on Automatic Programming”, IEEE Transactions on
Software Engineering, Vol SE-11, No 11.

Balzer, R., and Goldman, N., 1979, “Principles of Good Software Specification and their
Implications for Specification Languages”, in Gehani, N., and McGettrick, A. D., (eds) 1986,
“Software Specification Techniques”, Addison Wesley.

Balzer, R., Goldman, N., and Wile, D., 1978, “Informality in Program Specifications”, IEEE
Transactions on Software Engineering, Vol SE-4, No 2, p94-102. Reprinted in Rich, C., and
Waters, R. C., 1986, “Readings in Artificial Intelligence and Software Engineering”, Morgan
Kaufmann.

Barstow, D., 1984, “A Perspective on Automatic Programming”, The AI Magazine, Spring 1984.
Reprinted in Rich, C., and Waters, R. C., 1986, “Readings in Artificial Intelligence and
Software Engineering”, Morgan Kaufmann.

Barstow, D., 1987, “Artificial Intelligence and Software Engineering”, Proceedings, Ninth
International Conference on Software Engineering, p200.

Bell, D. E., Keeney, R. L., and Raiffa, H., (eds), 1977, “Conflicting Objectives in Decisions”, J.
Wiley & Sons, NY.

Bjorner, D., 1987, “On the Use of Formal Methods in Software Development”, Proceedings,
Ninth International Conference on Software Engineering.

Blamey, S., 1986, “Partial Logic”, in Gabbay, D., and Guenthner, F., (eds) 1986, “Handbook of
Philosophical Logic, Volume III: Alternatives to Classical Logic”, D. Reidel Publishing Co.

Blum, B. I., 1985, “On How We Get Invalid Systems”, Proceedings, Third IEEE International
Workshop on Software Specification and Design, London, p20-21.

- 116 -

Boehm, B. W., 1981, “Software Engineering Economics”, Prentice-Hall, Englewood Cliffs, NJ.

Boose, J. H., 1986, “Expertise Transfer for Expert System Design”, Elsevier, Amsterdam.

Boose, J. H., 1989, “A Survey of Knowledge Acquisition Techniques and Tools for Knowledge-
Based Systems”, Knowledge Acquisition: an International Journal, Vol 1, No 1.

Boose, J. H., 1990, “Knowledge Acquisition Tools, Methods, and Mediating Representations”, in
Motoda, H., Mizoguki, R., Boose, J. H., and Gaines, B. R., (eds) 1990, “Knowledge
Acquisition for Knowledge Based Systems (Proceedings of the First Japanese Knowledge
Acquisition for Knowledge-Based Systems Workshop, JKAW-90)”, Tokyo: IOS Press.

Borgida, A., Greenspan, S., and Mylopoulos, J., 1985, “Knowledge Representations as the Basis
for Requirements Specifications”, IEEE Computer, April 1985, p82-90. Reprinted in Rich, C.,
and Waters, R. C., 1986, “Readings in Artificial Intelligence and Software Engineering”,
Morgan Kaufmann.

Brooks, F. P., 1975, “The Mythical Man-Month: Essays on Software Engineering”, Reading MA:
Addison-Wesley.

Brown, R., 1988, “Group Processes: Dynamics within and between Groups”, Oxford: Basil
Blackwell Ltd.

Burstall, R. M., and Goguen, J. A., 1981, “An Informal Introduction to Specifications Using
CLEAR”, in Gehani, N., and McGettrick, A. D., (eds) 1986, “Software Specification
Techniques”, Addison Wesley.

Burton, M., and Shadbolt, N., 1987, “Knowledge Engineering”, Tech Report No 87-2-1, Dept of
Psychology, University of Nottingham.

Carbonell, J. G., 1985, “Derivational Analogy: A Theory of Reconstructive Problem Solving and
Expertise Acquisition”, Technical Report No. CMU-CS-85-115 Dept of Computer Science,
Carnegie-Mellon University, Pittsburgh, PA.

Carter, R., Martin, J., Mayblin, B., and Munday, M., 1984, “Systems, Management and Change:
A Graphic Guide”, Harper and Row, London.

Cleaves, D. A., 1987, “Cognitive Biases and Corrective Techniques: Proposals for Improving
Elicitation Procedures for Knowledge-Based Systems”, in Gaines, B. R., and Boose, J. H.,
(eds) 1988, “Knowledge Acquisition for Knowledge Based Systems, Vol 1”, Academic Press.

Compton, P., and Jansen, R., 1989, “A Philosophical Basis for Knowledge Acquisition”,
Proceedings, Third European Workshop on Knowledge Acquisition for Knowledge Based
Systems (EKAW-89), Paris, July 1989.

Conklin, J., 1986, “A Theory and Tool for Co-ordination of Design Conversations”, Tech. Report
No. STP-236-86, Micro-electronics and Computer Technology Corporation (MCC), Austin,
Texas.

Conklin, J., 1987, “A Survey of Hypertext”, Tech. Report No STP-356-86, Micro-electronics and
Computer Technology Corporation (MCC), Austin, Texas. Reprinted in Greif, I., (ed) 1988,
“Computer-Supported Co-operative Work: A Book of Readings”, Morgan Kaufmann, San
Mateo, CA.

Conklin, J., 1989, “Design Rationale and Maintainability”, Proceedings of the Twenty-Second
Annual IEEE International Conference on System Sciences, Vol 2, Hawaii.

Conklin, J., and Richter, C., 1985, “Support for Exploratory Design”, Proceedings, AIAA
Conference on Computers in Aerospace (also available as Tech. Report No. STP-117-85
Micro-electronics and Computer Technology Corporation (MCC), Austin, Texas).

Cordingley, E. S., 1989, “Knowledge Elicitation Techniques for Knowledge-Based Systems”, in
Diaper, D., (ed) 1989, “Knowledge Elicitation: Principles, Techniques and Applications”, Ellis
Horwood.

- 117 -

Cunningham, R. J., Finkelstein, A. C. W., Goldsack, S., Maibaum, T. S. E., and Potts, C.,
1985, “Formal Requirements Specification - The FOREST Project ”, Proceedings, Third IEEE
International Workshop on Software Specification and Design, London.

Curtis, B., Krasner, H., and Iscoe, N., 1988, “A Field Study of the Software Design Process for
Large Systems”, Communications of the ACM, Vol 31, No 11.

Davis, R., 1979, “Interactive Transfer of Expertise: Acquisition of New Inference Rules”,
Artificial Intelligence 12, p121-157.

De Bono, E., 1985, “Conflicts: A Better Way to Resolve Them”, Penguin Books.

DeKleer, J., 1986, “An Assumption-based TMS”, Artificial Intelligence, Vol 28, No 2, p127-162.

DeMillo, R. A., Lipton, R. J., and Perlis, A. J., 1977, “Social Processes and Proofs of Theorems
and Programs”, Proceedings, 4th International Conference on Principles of Programming
Languages. Reprinted in Communications of the ACM, Vol 22, No 5, p271-280.

Deutsch, M., 1973, “The Resolution of Conflict”, Yale University Press, New Haven.

Diederich, J., 1987, “Knowledge-Based Knowledge Elicitation”, Proceedings, Tenth International
Joint Conference on Artificial Intelligence (IJCAI-87), p201-204.

Dietterich, T. G., and Michalski, R. S., 1983, “A comparative Review of Selected Methods for
Learning from Examples”, in Michalski, R. S., Carbonell, J. G., and Mitchell, T. M., (eds)
1983, “Machine Learning: An Artificial Intelligence Approach”, Morgan Kaufmann Publishers
Inc., Los Altos, CA.

Dreyfus, H. L., and Dreyfus, S. E., 1986, “Mind Over Machine: The Power of Human Intuition
and Expertise in the Era of the Computer”, Macmillan Inc., New York.

Dubois, E., 1989, “A logic of Action for Supporting Goal-Oriented Elaborations of
Requirements”, Proceedings, Fifth IEEE International Workshop on Software Specification
and Design, Pittsburg, Penn.

Dubois, E., and Hagelstein, J., 1987, “Reasoning on Formal Requirements: A Lift Control
System”, Proceedings, Fourth IEEE International Workshop on Software Specification and
Design, Monterey, CA., April 3-4,1987.

Durfee, E. H., and Lesser, V. R., 1986, “Incremental Planning to Control a Blackboard-based
Problem Solver”, Proceedings, Fifth AAAI National Conference on AI, p58-64.

Durfee, E. H., Lesser, V. R., and Corkill, D. D., 1987, “Co-operation through communication in
a Distributed Problem-Solving Network”, in Huhns, M. N., (ed) 1987, “Distributed Artificial
Intelligence”, Morgan Kaufmann Publishers Inc, Los Altos CA.

Dyer, M. G., 1983, “In-Depth Understanding”, The MIT Press, Cambridge, Mass.

Easterbrook, S. M., 1989, “Distributed Knowledge Acquisition as a Model for Requirements
Elicitation”, Proceedings, Third European Workshop on Knowledge Acquisition for
Knowledge Based Systems (EKAW-89), Paris, July 1989.

Easterbrook, S. M., 1990, “What is Hypertext?”, in Gillman, P., (ed), “Text Retrieval: The State
of the Art”, Taylor Graham, London.

Easterbrook, S. M., 1991, “Handling Conflict Between Domain Descriptions With Computer-
Supported Negotiation”, To appear, Knowledge Acquisition: An International Journal.

Engelbart, D. C., 1963, “A Conceptual Framework for the Augmentation of Man’s Intellect”, in P.
Howerton (ed) “Vistas in Information Handling”, Vol 1, Spartan Books. Reprinted in Greif,
I., (ed) 1988, “Computer-Supported Co-operative Work: A Book of Readings”, Morgan
Kaufmann, San Mateo, CA.

- 118 -

Erman, L. D., and Lesser, V. R., 1975, “A Multi-Level Organization for Problem Solving using
Many Diverse, Co-operating Sources of Knowledge”, Proceedings, Fourth International Joint
Conference on AI, p483-489.

Feather, M. S., 1987, “The Evolution of Composite System Specifications”, Proceedings, Fourth
IEEE International Workshop on Software Specification and Design, Monterey, CA., April 3-
4,1987.

Feather, M. S., 1989a, “Constructing Specifications by Combining Parallel Elaborations”, IEEE
Transactions on Software Engineering, Vol 15, No 2, Feb 1989, p198-208.

Feather, M. S., 1989b, “Detecting Interference when Merging Specification Evolutions”,
Proceedings, Fifth IEEE International Workshop on Software Specification and Design,
Pittsburg, Penn.

Fetzer, J., 1988, “Program Verification: The Very Idea”, Communications of the ACM, Vol 31,
No 9.

Fickas, S., 1987a, “Automating the Specification Process”, Technical Report No. CIS-TR-87-05,
Dept of Computer and Information Science, University of Oregon, Eugene, OR.

Fickas, S., 1987b, “Automating the Analysis Process: An Example”, Proceedings, Fourth IEEE
International Workshop on Software Specification and Design, Monterey, CA., April 3-
4,1987.

Fickas, S., and Nagarajan, P., 1988, “Being Suspicious: Critiquing Problem Specifications”,
Proceedings, Seventh AAAI National Conference on AI, p19-24.

Fickas, S., Collins, S., and Olivier, S., 1987, “Problem Acquisition in Software Analysis: A
Preliminary Study”, Technical Report No CIS-TR-87-04, Dept of Computer and Information
Science, University of Oregon, Eugene, OR.

Finkelstein, A. C. W., 1987, “Reuse of Formatted Specifications”, IEE Software Engineering
Journal, September 1987, pp186-197.

Finkelstein, A. C. W., and Fuks H., 1989, “Multi-Party Specification”, Proceedings, Fifth IEEE
International Workshop on Software Specification and Design, pp185-195.

Finkelstein, A. C. W., and Potts, C., 1985, “Evaluation of Existing Requirements Extraction
Strategies”, FOREST Project Report R1, Dept of Computing, Imperial College of Science and
Technology, 180 Queens Gate, London SW7 2AZ.

Finkelstein, A. C. W., and Potts, C., 1987, “Building Formal Specifications Using Structured
Common Sense”, Proceedings, Fourth IEEE International Workshop on Software
Specification and Design, Monterey, CA., April 3-4, 1987.

Finkelstein, A. C. W., Finkelstein, L. and Maibaum, T. S. E., 1990, “Engineering-In-The-Large:
Software Engineering and Instrumentation”, Proceedings, UK IT '90, pp 1-8, Peter
Peregrinus.

Finkelstein, A. C. W., Fuks, H., Niskier, C., and Sadler, M., 1987, “A Dialogue Framework for
Software Development”, Research Report No 87/15, Dept of Computing, Imperial College of
Science and Technology, 180 Queensgate, London SW7.

Finkelstein, A. C. W., Goedicke, M., Kramer, J., and Niskier, C., 1989, “ViewPoint Oriented
Software Development: Methods and Viewpoints in Requirements Engineering”, Proceedings,
Second Meteor Workshop on Methods for Formal Specification, Springer-Verlag, LNCS.

Finkelstein, L., and Finkelstein, A. C. W., 1983, “Review of Design Methodology”, IEE
Proceedings, Vol 130, Pt A, No 4, June 1983.

Fisher, R., and Ury, W., 1981, “Getting to Yes: Negotiating Agreement Without Giving in”,
Hutchinson.

- 119 -

Gaines, B. R., 1987, “An Overview of Knowledge Acquisition and Transfer”, in Gaines, B. R.,
and Boose, J. H., (eds) 1988, “Knowledge Acquisition for Knowledge Based Systems, Vol
1”, Academic Press.

Gaines, B. R., 1989, “Design Requirements for Knowledge Support Systems”, Proceedings,
Fourth AAAI Knowledge Acquisition For Knowledge-Based Systems Workshop, Banff,
October 1989.

Galbraith, J. R., 1977, “Organizational Design”, Addison-Wesley, MA.

Gehani, N. H., 1982, “Specifications: Formal and Informal - A Case Study”, Software Practice
and Experience, Vol 12, p433-444. Reprinted in Gehani, N., and McGettrick, A. D., (eds)
1986, “Software Specification Techniques”, Addison Wesley.

Giddings, R. V., 1984, “Accommodating Uncertainty in Software Design”, Communications of
the ACM, Vol 27, No 5, p428-434.

Ginsberg, M. L., 1987, “Decision Procedures”, in Huhns, M. N., (ed) 1987, “Distributed
Artificial Intelligence”, Morgan Kaufmann Publishers Inc, Los Altos CA.

Goguen, J. A., 1981, “More Thoughts on Specification and Verification”, ACM SIGSOFT, Vol
6, No 3, p38-41. Reprinted in Gehani, N., and McGettrick, A. D., (eds) 1986, “Software
Specification Techniques”, Addison Wesley.

Goldman, N., 1982, “Three Dimensions of Design”, Proceedings, Second AAAI National
Conference on AI.

Goldstein, I. P., and Bobrow, D. G., 1984, “A Layered Approach to Software Design”, in D.
Barstow, H. Shrobe, and E. Sandewall, (eds) “Interactive Programming Environments”,
McGraw-Hill, p387-413.

Green, C., Luckham, D., Balzer, R., Cheatham, T., and Rich, C., 1983, “Report on a
Knowledge-Based Software Assistant”, Tech. Report No RADC-TR-83-195, Rome Air
Development Centre. Reprinted in Rich, C., and Waters, R. C., 1986, “Readings in Artificial
Intelligence and Software Engineering”, Morgan Kaufmann.

Greenberg, S., 1989, “A Survey of Computer Supported Cooperative Work”, Draft Report,
Alberta Research Council, Calgary, Canada.

Gross, N., McEachern, A. W., and Mason, W. S., 1958, “Role Conflict and its Resolution”,
reprinted in B. J. Biddle and E. J. Thomas (eds) “Role Theory: Concepts and Research”,
1966, J. Wiley & Sons.

Halpern, J. Y., and Moses, Y., 1984, “Knowledge and Common Knowledge in a Distributed
Environment”, Proceedings, Third ACM Symposium on Principles of Distributed Computing,
p50-61.

Harrison, W., 1987, “RPDE3: A Framework for Integrating Tool Fragments”, IEEE Software,
Nov 1987.

Hayes-Roth, B., and Hewett, M., 1985, “Learning Control Heuristics in BB1”, Technical Report
No. STAN-CS-85-1036, Dept of Computer Science, Stanford University, Stanford, CA.

Huhns, M. N., (ed) 1987, “Distributed Artificial Intelligence”, Morgan Kaufmann Publishers Inc,
Los Altos CA.

Johnson, N. E., 1989, “Mediating Representations in Knowledge Elicitation”, in Diaper, D., (ed)
1989, “Knowledge Elicitation: Principles, Techniques and Applications”, Ellis Horwood.

Johnson, P., Johnson, H., and Russell, F., 1988, “Collecting and Generalising Knowledge
Descriptions from Task Analysis Data”, ICL Technical Journal, Vol 6, No 1, May 1988, p137-
155.

- 120 -

Jones, W. P., 1989, “Bringing Corporate Knowledge into Focus with CAMEO”, Proceedings,
Fourth AAAI Knowledge Acquisition For Knowledge-Based Systems Workshop, Banff,
October 1989.

Kaplan, S. M., 1989, “COED: Conversation-Oriented Software Environments”, (University of
Ilinois at Urbana-Champaign).

Keeney, R. L., and Raiffa, H., 1976, “Decisions with Multiple Objectives: Preferences and Value
Tradeoffs”, J. Wiley & Sons, NY.

Kerth, N. L., 1987, “The Use of Multiple Specification Methodologies on a Single System”,
Proceedings, Fourth IEEE International Workshop on Software Specification and Design,
Monterey, CA., April 3-4,1987.

Kidd, A., and Sharpe, W., 1987, “Goals for Expert Systems Research: An Analysis of Tasks and
Domains”, Proceedings, Expert Systems 1987, Brighton.

Kolodner, J. L., 1984, “Towards Understanding of the Role of Experience in the Evolution from
Novice to Expert”, in Coombs (ed) “Developments in Expert Systems”, Academic Press,
Computers and People Series.

Konolige, K., and Nilsson, N. J., 1980, “Multi-Agent Planning Systems”, Proceedings, First
AAAI National Conference on Artificial Intelligence, p138-142.

Kramer, J., Ng, K., Potts, C., and Whitehead, K., 1987, “Tool Support for Requirements
Analysis”, Tech. Report No DoC 87/3, Dept of Computing, Imperial College of Science and
Technology, 180 Queensgate, London SW7.

Kramer, J., Ng, K., Potts, C., Finkelstein, A. C. W., Khan, B., Whitehead, K., Chinnick, S.,
Brown, G., and Galley, D., 1987, “TARA: Tool Assisted Requirements Analysis”, Tech.
Report No DoC 87/18, Dept of Computing, Imperial College of Science and Technology, 180
Queens Gate, London SW7 2AZ.

Lehman, M. M., 1980, “Programs, Life Cycles, and Laws of Software Evolution”, Proceeding of
the IEEE, Vol 68, No 9, p1060-1076.

Lehman, M. M., 1987, “Process Models, Process Programs, Programming Support”,
Proceedings, Ninth International Conference on Software Engineering.

Lehman, M. M., 1990, “Uncertainty in Computer Application is Certain (Software Engineering as
a Control)”, Draft Report, Dept of Computing, Imperial College London. Extracts appear in
Communications of the ACM, May 1990, p584-586.

Leishman, D., 1988, “An Annotated Bibliography of Works on Analogy”, Research Report No
R/88/03/03, Computer Science Dept., University of Calgary, Alberta, Canada.

Leishman, D., 1989, “A Principled Analogical Tool, Based on Evaluations of Partial
Correspondences Over Conceptual Graphs”, (MSc Thesis) Research Report No. 89/355/17,
Computer Science Dept., University of Calgary, Alberta, Canada.

Lenat, D. B., 1975, “Beings: Knowledge as Interacting Experts”, Proceedings, Fourth
International Joint Conference on AI, p126-133.

Lenat, D. B., Guha, R. V., Pittman, K., Pratt, D., and Shepherd, M., 1990, “Cyc: Towards
Programs with Common Sense”, Communications of the ACM, Vol 33, No 8, Aug 1990,
p30-49.

Levinson, S. C., 1983, “Pragmatics”, Cambridge University Press.

Littman, D. C., 1987, “Modeling Human Expertise in Knowledge Engineering: Some Preliminary
Observations”, in Gaines, B. R., and Boose, J. H., (eds) 1988, “Knowledge Acquisition for
Knowledge Based Systems, Vol 1”, Academic Press.

- 121 -

London, P. E., and Feather, M. S., 1982, “Implementing Specification Freedoms”, in Rich, C.,
and Waters, R. C., 1986, “Readings in Artificial Intelligence and Software Engineering”,
Morgan Kaufmann.

Lowe, D. G., 1985, “Co-operative Structuring of Information: The Representation of Reasoning
and Debate”, International Journal of Man-Machine Studies, Vol 23, p97-111.

Lubars, M. D., 1987, “Schematic Techniques for High-Level Support of Software Specification
and Design”, Proceedings, Fourth IEEE International Workshop on Software Specification and
Design, Monterey, CA., April 3-4,1987.

Luce, D. L., and Raiffa, H., 1957, “Games and Decisions: Introduction and Critical Survey”, J.
Wiley & Sons, NY.

Maarek, Y. S., and Berry, D. M., 1989, “The use of Lexical Affinities in Requirements
Extraction”, Proceedings, Fifth IEEE International Workshop on Software Specification and
Design, Pittsburg, Penn.

Maibaum, T. S. E., 1986, “A logic for the Formal Requirements Specification of Real-time /
Embedded Systems”, Alvey FOREST Project Deliverable Report No 3, GEC Research Labs,
Marconi Research Centre, Great Baddow, Chelmsford.

Marcus, S., 1987, “Taking Backtracking With a Grain of SALT”, International Journal of Man-
Machine Studies, Vol 26, No 4, p383-398.

Meyer, M. A., and Booker, J. M., 1989, “A Practical Program for Handling Bias in Knowledge
Acquisition”, Proceedings, Fourth Knowledge Acquisition For Knowledge-Based Systems
Workshop, Banff, October 1989.

Michalski, R. S., 1986, “Understanding the Nature of Learning: Issues and Research Directions”,
in Michalski, R. S., Carbonell, J. G., and Mitchell, T. M., (eds) 1986, “Machine Learning:
An Artificial Intelligence Approach, Volume II”, Morgan Kaufmann Publishers Inc., Los
Altos, CA.

Michalski, R. S., and Baskin, A. B., 1983, “Integrating Knowledge Representations and Learning
Capabilities in an Expert System: The ADVISE system”, Proceedings, Eighth International
Joint Conference on Artificial Intelligence, p256-258.

Michalski, R. S., and Chilausky, R. L., 1980, “Knowledge Acquisition by Encoding Rules vs.
Induction from Examples”, International Journal of Man-Machine Studies, Vol 12, No 1.

Michie, D., 1982, “Experiments on the Mechanisation of Game Learning 2: Rule Based Learning
and the Human Window”, BCS Computer Journal, Vol 25, No 1, p105-113.

Miller, M. S., and Drexler, K. E., 1988, “Comparative Ecology: A Computational Perspective”, in
Huberman, B. A., (ed) 1988, “The Ecology of Computation”, North Holland.

Moore, C. M., 1987, “Group Techniques for Idea Building”, Newbury Park, CA: Sage.

Mostow, J., 1985, “Towards Better Models of the Design Process”, The AI Magazine, Vol 6 No
1, Spring 1985.

Mostow, J., 1986, “Why are Design Derivations Hard to Replay?”, in Mitchell et. al. (eds),
“Machine Learning - A Guide to the Current Research”, Kluwer Academic Publishers.

Mostow, J., and Voigt, K., 1987, “Explicit Integration of Goals in Heuristic Algorithm Design”,
Proceedings, Tenth International Joint Conference on Artificial Intelligence (IJCAI-87), p1090-
1096.

Neighbors, J. M., 1984 , “The Draco Approach to Constructing Software from Re-usable
Components”, IEEE Transactions on Software Engineering, Vol 10, No 5, p564-574.
Reprinted in Rich, C., and Waters, R. C., 1986, “Readings in Artificial Intelligence and
Software Engineering”, Morgan Kaufmann.

- 122 -

Nii, H. P., 1986a, “Blackboard Systems (part 1): The Blackboard Model of Problem Solving and
the Evolution of Blackboard Architectures”, The AI Magazine, Summer 1986.

Nii, H. P., 1986b, “Blackboard Systems (part 2): Blackboard Application Systems, Blackboard
Systems from a Knowledge Engineering Perspective”, The AI Magazine, Conference 1986.

Norman, D. A., 1986, “Cognitive Engineering”, in Norman, D. A., and Draper, S. W., 1986,
“User Centered System Design: New Perspectives on Human-Computer Interaction”,
Lawrence Erlbaum Associates.

Osterweil, L., 1987, “Software Processes are Software too”, Proceedings, Ninth International
Conference on Software Engineering.

Partridge, D., 1978, “A Philosophy of 'Wicked' Problem Implementation”, Proceedings,
AISB/GI Conference on Artificial Intelligence, Hamburg.

Patchen, M., 1970, “Models of Co-operation and Conflict: A Critical Review”, Journal of Conflict
Resolution, Vol 14, No 3, Sept 1970.

Petre, M., and Winder, R., 1988, “Issues Governing the Suitability of Programming Languages
for Programming Tasks”, in D. M. Jones and R. Winder, (eds) “People and Computers IV
(Proceedings of the Fourth Conference of the BCS Human-Computer Interaction Specialist
Group)”, Cambridge University Press.

Rapoport, A., (ed) 1974a, “Game Theory as a Theory of Conflict Resolution”, D. Reidel Publ.
Co., Dordrecht, Holland.

Rapoport, A., 1974b, “Prisoner’s Dilemma - Recollections and Observations”, in Rapoport, A.,
(ed) 1974, “Game Theory as a Theory of Conflict Resolution”, D. Reidel Publ. Co.,
Dordrecht, Holland.

Regoczei, S., and Hirst, G., 1989, “Sortal Analysis with SORTAL, a Software Assistant for
Knowledge Acquisition”, Proceedings, Fourth AAAI Knowledge Acquisition For Knowledge-
Based Systems Workshop, Banff, October 1989.

Reubenstein, H. B., 1990, “Automated Acquisition of Evolving Informal Descriptions”, Ph.D.
Thesis, Tech. Report No AI-TR 1205, MIT Artificial Intelligence Laboratory, Cambridge,
MA.

Reubenstein, H. B., and Waters, R. C., 1989, “The Requirements Apprentice: An Initial
Scenario”, Proceedings, Fifth IEEE International Workshop on Software Specification and
Design, Pittsburg, Penn.

Rich, C., 1985, “The Layered Architecture of a System for Reasoning About Programs”,
Proceedings, Ninth International Joint Conference on Artificial Intelligence (IJCAI-85).

Rich, C., Waters, R. C., and Reubenstein, H. B., 1987, “Towards a Requirements Apprentice”,
Proceedings, Fourth IEEE International Workshop on Software Specification and Design,
Monterey, CA., April 3-4,1987.

Robbins, S. P., 1974, “Managing Organizational Conflict: A Nontraditional Approach”, Prentice
Hall, NJ.

Robbins, S. P., 1989, “Organizational Behaviour: Concepts, Controversies, and Applications”,
(fourth edition) Prentice Hall, NJ.

Robinson, W. N., 1989, “Integrating Multiple Specifications Using Domain Goals”, Proceedings,
Fifth IEEE International Workshop on Software Specification and Design, Pittsburg, Penn.

Robinson, W. N., 1990, “Negotiation Behaviour During Multiple Agent Specification: A Need for
Automated Conflict Resolution”, To appear, ICSE-90.

- 123 -

Rosenschein, J. S., 1985, “Rational Interaction: Co-operation Among Intelligent Agents”, Ph.d.
Thesis, Report No STAN-CS-85-1081, Dept of Computer Science, Stanford University,
Stanford, CA.

Rosenschein, J. S., and Genesereth, M. R., 1985, “Deals Among Rational Agents”, Proceedings,
Ninth International Joint Conference on Artificial Intelligence, p91-99.

Rychener, M. D., 1980, “Approaches to Knowledge Acquisition: The Instructable Production
System Project”, Proceedings, First AAAI National Conference on Artificial Intelligence,
p228-230.

Schoenmakers, W. J., 1986, “A problem in Knowledge Acquisition”, SIGART Newsletter No
95, p56-57.

Schuler, D., 1988, “AI and Hypertext in Support of Negotiation”, in Bernstein, M., (ed) 1988,
“Proceedings, AAAI-88 Workshop on AI and Hypertext: Issues and Directions”.

Scott, B., 1988, “Negotiating: Constructive and Competitive Negotiations”, Paradigm Publishing,
London.

Searle, J. R., 1969, “Speech Acts: An essay in the Philosophy of Language”, Cambridge
University Press.

Shalin, V. L., Wisniewski, E. J., Levi, K. R., and Scott, P. D., 1990, “A Formal Analysis of
Machine Learning Systems for Knowledge Acquisition”, in Gaines, B. R., and Boose, J. H.,
(eds) 1990, “Machine Learning and Uncertain Reasoning (Knowledge Based Systems Vol 3)”,
Academic Press.

Shaw, M. L. G., and Gaines, B. R., 1987, “Techniques for Knowledge Acquisition and
Transfer”, International Journal of Man-Machine Studies, Vol 27, p251-280

Shaw, M. L. G., and Gaines, B. R., 1988, “A Methodology for Recognising Consensus,
Correspondence, Conflict, and Contrast in a Knowledge Acquisition System”, Proceedings,
Third Knowledge Acquisition For Knowledge-Based Systems Workshop, Banff, November
1988.

Shaw, M. L. G., and Gaines, B. R., 1989, “Knowledge Acquisition: Some Foundation, Manual
Methods and Future Trends”, Proceedings, Third European Workshop on Knowledge
Acquisition for Knowledge Based Systems (EKAW-89), Paris.

Shaw, M. L. G., and Woodward, J. B., 1989, “Mental Models in the Knowledge Acquisition
Process”, Proceedings, Fourth Knowledge Acquisition For Knowledge-Based Systems
Workshop, Banff, October 1989.

Simon, H. A., 1983, “Why Should Machines Learn?”, in Michalski, R. S., Carbonell, J. G., and
Mitchell, T. M., (eds) 1983, “Machine Learning: An Artificial Intelligence Approach”, Morgan
Kaufmann Publishers Inc., Los Altos, CA.

Sloman, A., 1985, “Why We Need Many Knowledge Representation Formalisms”, in Bramer, M.
A., (ed) 1985, “Research and Development in Expert Systems (Proceedings, 4th Technical
Conference of the BCS specialist group on Expert Systems, 1984)”, Cambridge University
Press.

Sloman, M. S., and Moffett, J. D., 1988, “Management Domains”, Draft Report, Dept of
Computing, Imperial College of Science and Technology, 180 Queens Gate, London SW7
2AZ.

Sommerville, I., 1989, “Software Engineering”, Third Edition, Addison Wesley.

Stamper, R., Althans, K., and Backhouse, J., 1988, “MEASUR: Method for Eliciting, Analysing
and Specifying User Requirements”, Proceedings, IFIP WG 8.1 Conference on Computerized
Assistance During the Information Systems Life Cycle, North Holland.

- 124 -

Stefik, M., Foster, G., Bobrow, D. G., Kahn, K., Lanning, S., and Suchman, L., 1987,
“Beyond the Chalkboard: Computer Support for Collaboration and Problem Solving in
Meetings”, Communications of the ACM, Vol 30, No 1. Reprinted in Greif, I., (ed) 1988,
“Computer-Supported Co-operative Work: A Book of Readings”, Morgan Kaufmann, San
Mateo, CA.

Strauss, A., 1978, “Negotiations: Varieties, Contexts, Processes and Social Order”, Jossey-Bass
Publishers, San Francisco, CA.

Swartout, W., and Balzer, R., 1982, “On the Inevitable Intertwining of Specification and
Implementation”, Communications of the ACM, Vol 25, No 7, p438-440. Reprinted in
Gehani, N., and McGettrick, A. D., (eds) 1986, “Software Specification Techniques”,
Addison Wesley.

Sycara, K. P., 1988, “Resolving Goal Conflicts via Negotiation”, Proceedings, Seventh AAAI
National Conference on AI, p245-250.

Systems Designers, 1985, “CORE: the Method”, CORE manual issue 1.0, Systems Designers
Scientific, Pembroke House, Camberley, Surrey, UK.

Thimbleby, H. W., 1988, “Delaying Commitments”, IEEE Software, May 1988.

Thomas, K., 1976, “Conflict and Conflict Management”, in Dunnette (ed), “Handbook of
Industrial and Organizational Psychology”, Rand McNally College Publ. Co.

Turski, W. M., and Maibaum, T. S. E, 1987, “The Specification of Computer Programs”,
Addison-Wesley.

Welbank, M., 1983, “A Review of Knowledge Acquisition Techniques for Expert Systems”,
Technical Report, Martlesham Consultancy Services, British Telecom Research Labs, Ipswich.

Wielinga, B. J., and Breuker, J. A., 1984, “Interpretation of Verbal Data for Knowledge
Acquisition”, Memo 27 of the Esprit Research Project “The Acquisition of Expertise”, Dept. of
Social Science Informatics, Univ. of Amsterdam, Weesperplein 8, 1018 XA, Amsterdam.

Wile, D., 1982, “Program Developments: Formal Explanations of Implementations”,
Communications of the ACM, Vol 26 No 11, p902-911.

Winograd, T., and Flores, F., 1986, “Understanding Computers and Cognition: A New
Foundation for Design”, Addison-Wesley, NY.

Woodward, J. B., 1988, “Knowledge Engineering at the Front-End: Defining the Domain”,
Proceedings, Third AAAI Knowledge Acquisition for Knowledge-Based Systems Workshop,
Banff, Canada, Nov 1988.

Yue, K., 1987, “What Does It Mean To Say That a Specification Is Complete?”, Proceedings,
Fourth IEEE International Workshop on Software Specification and Design, Monterey, CA.,
April 3-4,1987.

Zave, P., 1982, “An Operational Approach to Requirements Specification for Embedded
Systems”, IEEE Transactions on Software Engineering, Vol SE-8, No 3, p250-269. Reprinted
in Gehani, N., and McGettrick, A. D., (eds) 1986, “Software Specification Techniques”,
Addison Wesley.

Zeleny, M., 1982, “Multiple Criteria Decision Making”, McGraw-Hill Book Co., NY.

- 125 -

9 Appendix

1 Algorithm for splitting agents

In the Analyser system, each new statement added to a viewpoint is tested for inconsistencies, and
if there are any, the viewpoint is split. The following algorithm is used:

1) Test for inconsistencies when new statement (A) is added to a viewpoint. This is likely to
result in a number of inferences (the supposition set) being drawn from the union of A with the
viewpoint. However, neither A nor any of the supposition set are added to the viewpoint yet.

2) If there are no inconsistencies then add A to the viewpoint, and add the supposition set to the
viewpoint’s list of suppositions.

3) If there is an inconsistency, then:

i) Create a sub-viewpoint to contain A. This is the motivating statement for this
sub-viewpoint.

ii) Create another (empty) sub-viewpoint. Any previous sub-viewpoints of the
original viewpoint now become descendants of this second sub-viewpoint.

iii) If not(A) is in the original viewpoint, then move it to the second sub-viewpoint

Otherwise add not(A) as a supposition in the second sub-viewpoint. This is
the motivating statement for this sub-viewpoint.

iii) For each sub-viewpoint, if any statements in the original viewpoint are
inconsistent with a sub-viewpoint, move them to the other sub-viewpoint.

2 Rules for creating new sub-viewpoints

The algorithm given above does not adequately handle the some situations where the viewpoint to
which the new statement is added already has some sub-viewpoints. In this case, the following
rules are used:

1) If no sub-viewpoint exists, the above algorithm is used (Fig A.1: a & b).

2) If the statement is inconsistent with the viewpoint, then it follows that it is inconsistent with all
descendants. In this case, the two new viewpoints described in the algorithm above, and any
sub-viewoints of the original viewpoint now become descendents of the second new sub-
viewpoint (Fig A.1: c).

3) If the statement is consistent with the viewoint, it is still possible that it is inconsistent with
some of the descendents. For each family of sub-viewpoints, test whether the new statement is
consistent with each descendant. The following situations are possible:

i) The new statement is consistent for all descendants of the original viewpoint –
in this case it can be added directly to the original viewpoint (Fig A.1: d).

ii) The new statement is inconsistent with all descendents of the original viewpoint
– in this case the same solution as used in rule (2) above applies (Fig A.1: c)

- 126 -

iii) The new statement is consistent with some descendants and not with others – if
there is only one sub-viewpoint in each pair with which the new statement is
inconsistent, it is placed in the alternative to this sub-viewpoint (Fig A.1: e & f).
Otherwise, the two new sub-viewpoints are created as in rule 2 above. Any pairs which
are both consistent with the new statement become descendents of the first new sub-
viewpoint; any that are both inconsistent become descendents of the second (Fig A.1:
g).

The possibilities are shown in figure A1. Note that none of these rules generates a family of
viewpoints like that shown as the starting point in figures A1(f-h). This situation can only be
created by the user re-organising the families of viewpoints. The arrangement is useful where the
motivating statements over which the splits occured are entirely orthogonal. Having several splits
from the same viewpoint is a shorthand for creating all possible combinations of those splits.
Effectively, each sub-viewpoint inherits not just the contents of the original viewpoint, but any
other splits it might have (Fig A.2). Given this, it is important to note that when a new statement is
added to one sub-viewpoint, it is incorrect to add it to any other families too, as they automatically
inherit the split which contains the new addition (Fig A.1: h).

a)
A

B

C

D

A

B

C assert(D) e)
A

B

¬ D
¬ E E

A
B

¬ D
¬ E E

D

assert(D)

b)
A

B

¬ D A

B

¬ DD

assert(D)
f)

assert(D)
A

B

¬ C Z ¬ ZC
¬ D¬ D ¬ D

A

B

¬ C Z ¬ ZC
¬ D¬ D ¬ D D

c) A
B

¬ D

Z ¬ Z

A
B

¬ D D

Z ¬ Z

assert(D)
g)

assert(D)
A

B

¬ C Z ¬ ZC
¬ D¬ D

A

B

¬ C Z ¬ ZC

¬ D D

d)
A

B

Z ¬ Z

A
B

D

Z ¬ Z

assert(D)
h)

A

B

¬ C Z ¬ ZC
¬ D

A

B

D¬ C Z ¬ ZC
¬ D

assert(D)

Figure A1: Possible divisions of viewpoints

