Creating beautiful presentations

Ryan Johnson

With special thanks to: Natassa Ailamaki, CMU CALCM lab, Markus Püschel

Counter-example

Creating Beautiful Presentations Ryan Johnson

With special thanks to: Natassa Ailamaki, CMU CALCM lab, Markus Püschel

Does this stuff really make a difference?

Engin

Why do we Care about Presentations?

- In contrast to a paper or other technical writing, you present your work and yourself
- People remember good presentations:
 - Good content
 - Well presented
 - Well-designed slides
- Many of my colleagues and I put a lot of effort into each presentation, and at the beginning of a career it's even more important

What's wrong here?

This slide (and all others with red headings) by Markus Püschel

Why do we Care about Presentations?

In contrast to a paper or other technical writing, you present your work and yourself
 People remember good presentations:

 Good content
 Well presented
 Well-designed slides

 Many of my colleagues and I put a lot of effort into each presentation, and at the beginning of a career it's even more important
 Contrast should be improved

What's wrong here?

Looks messy

Presentations Are Very Important

You present your work and yourself

People remember good presentations:

Why do we Care about Presentations?

- In contrast to a paper or other technical writing, you present your work and yourself
- People *remember* good presentations:
 - Good content
 - Well presented
 - Well-designed slides
- Many of my colleagues and I put a lot of effort into each presentation, and at the beginning of a career it's even more important
- Presentations are very important

What's wrong here?

Too much text + only text Conflicts with you talking (more later)

Carnegie Mellon

Presentations Are Very Important

You present your work and yourself

People remember good presentations:

University of Toronto

An effective talk is beautiful

Perspective

Achieving beauty requires skill and effort

Architecture and craftsmanship matter

Which kind of talk do you want to give?

ENGINEERING

Designing a beautiful talk

- What is beauty?
- Architecture (= functionality)
 - Know what you want to transmit
 - Floor planning an effective talk
 - Know your audience (and your enemy)
- Craftmanship (= sparkle)

Technical Content

- Communicate:
 - Motivation
 - Problem statement
 - Main idea
 - Main result
- Do not (try to) communicate:
 - Every detail of your work
- Why?
 - Because people cannot digest much information that quickly
 - You are lucky if they remember anything from your talk
- How to get across?

University of Toronto

Floor planning a 30 minute talk

Too many slides = death. Be ruthless.

University of Toronto

Know your audience

- Conference talk?
 - Transmit "the juice" of your talk
 - Convince them to read your paper
- Job talk or potential collaborator?
 - Tailor-made "story" is key
 - Prove your work is relevant to their interests
- Keynote?
 - General audience (avoid hairy details)
 - Open their eyes to broad trends and implications

University of Toronto

Slide titles are prime real estate

- Space is limited. Get right to the point!
- Use slide content to prove your point
 - Graphs, figures, equations, etc.
 - Span multiple slides as needed
- Punch line underscores implications
 - Tell the audience why they should care
 - Lead audience into the next slide
- Common pitfall: put claim in punchline

Bonus: helps build strong story line

Carnegie Mellon

Detrical & Computer
ENGINEERING

Know Your Enemy

15

You can't read and listen at the same time

Every aspect of talk must reflect this one fact

University of Toronto

Designing a beautiful talk

- What is beauty?
- Architecture (= functionality)
- Craftmanship (= sparkle)
 - Slides
 - Figures
 - Equations
 - Graphs
 - Tables

What belongs in the talk slides?

Good slides = self-propelled talk

19

Carnegie Mellon

() Decrical & Computer
ENGINEERING

Colors

Carnegie Mellon

Warm Colors Dominate, Cool Colors Recede

- That's why in text red works better than blue
- But for boxes it is the other way round

Hurts a bit, no?

- For areas/boxes: try desaturated bright (= pastel) colors
- An outline in the same color, but darker, can look good
- But also dark boxes (again, desaturated) can make sense

Carnegie Mellon

Colors: Basics

Use color

Pick a few colors and stick with them (consistency)

Carnegie Mellon

() Electrical & Corrouter
ENGINEERING

The Looks (The Design)

- As important as content
- Design includes
 - Basic layout
 - Fonts
 - Colors
 - Graphics
 - Data presentation: Viewgraphs, tables

Basic layout

- Keep it simple (don't clutter with logos etc.)
- Be consistent
- Black text on white background, or
- Bright text on dark background

Fonts

Basics:

- Serif font: ergonomic for large text blocks (books)
- Sans-serif: better readability for short text blocks

M serif M sans serif

Use a sans-serif font

- Powerpoint: use Calibri (this talk)
- Arial is less attractive
- Arial Narrow is less attractive
- For code Courier bold is best
- Don't use this font for technical talks
- Use only one or two fonts and be consistent

Lorem ipsum don the content of the c

Basic Tips

- Use Office 2007, it's worth it
- Use Slide Master to set basic appearance
 - View → Slide Master
- Set "Snap objects to grid:" simplifies placement
 - Home → Arrange → Align → Grid Settings
- Use ruler to align text with bullets
 - View → Ruler, then pull tab stops
 - Avoids things like
 - This is some text inside a bullet and badly aligned
- Shift-enter for line break without new bullet

Carnegie Mellon

() Electrical & Computer
ENGINEERING

Don't just talk about it

... show it!

Carnegie Mellon

Decrical & Computer
ENGINEERING

Visualization in Biology

Complex process:

Combinatorial signaling pathways involved in maintaining mouse ESC pluripotency.

Copyright © 2005 Nature Publishing Grou

Source: Nature Reviews Molecular Cell Biology vol. 6, no. 11, pp. 872-881, 2005

() Electrical & Computer ENGINEERING

Simple Examples

■ Process: Block diagram

System: Block diagram

Carnegie Mellon

Carnegie Mellon

Carnegie Mellon

ENGINEERING

Carnegie Mellon

How to Present a Viewgraph: Example

Start like this:

- We compare the performance of Spiral and IPP
- The x-axis shows, the y-axis shows
- This means higher is better (or vice-versa)
- For example, this datapoint means that
- Now you can explain more
- Then conclude
- But this plot is rather mediocre ...

Example I: Good Viewgraph

Carnegie Mellon () theorical & Computer ENGINEERING

Example II: Good Viewgraph

Example I: Good Viewgraph

ENGINEERING

University of Toronto

Graphs should aid interpretation

rieMellon

Which One Looks Better?

signal processing concept	algebraic concept (coordinate free)	in coordinates
filter	$h \in A$ (algebra)	$\phi(h) \in \mathbb{C}^{I \times I}$
signal	$s = \sum s_i b_i \in M$ (A-module)	$\mathbf{s} = (s_i)_{i \in I} \in \mathbb{C}^I$
filtering	$h \cdot s$	$\phi(h) \cdot \mathbf{s}$
impulse	base vector $b_i \in M$	$\mathbf{b}_i = (\dots, 0, 1, 0 \dots)^T \in \mathbb{C}^I$
impulse response of $h \in A$	$h \cdot b_i \in M$	$\phi(h) \cdot \mathbf{b}_i = (\dots, h_{-1}, h_0, h_1, \dots)^T \in \mathbb{C}^I$
Fourier transform	$\Delta : M \rightarrow \bigoplus_{\omega \in W} M_{\omega}$	$\mathcal{F} : \mathbb{C}^I \to \bigoplus_{\omega \in W} \mathbb{C}^{d_\omega}$
spectrum of signal frequency response of $h \in A$	$\Delta(s) = (s_\omega)_{\omega \in W} = \omega \mapsto s_\omega$	$\Leftrightarrow \phi \rightarrow \bigoplus_{\omega \in W} \phi_{\omega}$ $\mathcal{F}(\mathbf{s}) = (\mathbf{s}_{\omega})_{\omega \in W} = \omega \mapsto \mathbf{s}_{\omega}$ $(\phi_{\omega}(h))_{\omega \in W} = \omega \mapsto \phi_{\omega}(h)$

signal processing concept	algebraic concept (coordinate free)	in coordinates
filter	$h \in A$ (algebra)	$\phi(h) \in \mathbb{C}^{I \times I}$
signal	$s = \sum s_i b_i \in M$ (,A-module)	$s = (s_i)_{i \in I} \in \mathbb{C}^I$
filtering	h · s	$\phi(h) \cdot s$
impulse	base vector $b_i \in M$	$\mathbf{b}_{i} = (, 0, 1, 0,)^{T} \in \mathbb{C}^{I}$
impulse response of $h \in A$	$h \cdot b_i \in M$	$\phi(h) \cdot \mathbf{b}_{i} = (, h_{-1}, h_{0}, h_{1},)^{T} \in \mathbb{C}^{I}$
Fourier transform	$\Delta : M \rightarrow \bigoplus_{\omega \in W} M_{\omega}$	$F : \mathbb{C}^{I} \rightarrow \bigoplus_{\omega \in W} \mathbb{C}^{d_{\omega}} \Leftrightarrow \phi \rightarrow \bigoplus_{\omega \in W} \phi_{\omega}$
spectrum of signal	$\Delta(s) = (s_{\omega})_{\omega \in W} = \omega \mapsto s_{\omega}$	$\mathcal{F}(\mathbf{s}) = (\mathbf{s}_{\omega})_{\omega \in W} = \omega \mapsto \mathbf{s}_{\omega}$
frequency response of $h \in A$	n.a.	$(\phi_{\omega}(h))_{\omega \in W} = \omega \mapsto \phi_{\omega}(h)$

Easy decision, isn't it?

Most Important Guidelines for Making Tables

- Avoid vertical lines
- Avoid "boxing up" cells, usually 3 horizontal lines are enough: above, below, and after heading (see examples in this guide)
- Avoid double horizontal lines
- Enough space between rows
- If in doubt, align left

University of Toronto

Equations can be deadly

Work sharing performance model:

$$\begin{split} x(M,n) &= min \Biggl(\frac{1}{p_{max}}, \frac{n}{\displaystyle\sum_{k < \phi} p_k + p_\phi(M) + \sum_{m \in M \atop k > \phi} p_{k_m}} \Biggr) \\ \text{Symbols and terms} \end{split}$$

No time for proper explanation

Masks big picture

Performance depends on two factors:

$$Throughput = f\left(\frac{1}{TotalWork}, \frac{1}{CriticalPath}\right)$$

$$Improved by Worsened by work sharing work sharing$$

All terms useful and understandable

> Presentation highlights point

Be nice to your audience: parsimony is key

ENGINEERING

Books That Influenced This Talk

- Cliff Atkinson, Beyond Bullet Points, Microsoft Press, 2005
- Nancy Duarte, Slide:ology, O'Reilly, 2008
- Stephen Few, Show Me the Numbers, Analytics Press, 2004
- Edward Tufte, Beautiful Evidence, Graphics Press, 2006
- Edward Tufte, The Visual Display of Quantitative Information, 2nd edition, Graphics Press, 2006
- Garr Reynolds, Presentation Zen, New Riders, 2008
- Dan Roam, The Back of the Napkin, Portfolio, 2008
- Robin Williams, The Non-Designer's Design & Type Books, Peachpit Press,
- http://pages.cs.wisc.edu/~markhill/conference-talk.html

Principles for a beautiful talk

- Presenting well is *very* important
 - Only one chance to make a first impression
 - Gives you a real edge over all those bad presentations
- Understand the enemy
 - Bored audiences tune out
 - Overloaded audiences tune out
 - Excessive text/detail = overloaded and bored audience
- Parsimony:
 - Everything in the talk drives some point
 - Eliminate extraneous details

University of Toronto

Acknowledgments

- Slides with red backgrounds © Markus Püschel
 - His guides have vastly improved my talks
 - Small guide to giving presentations (http://www.ece.cmu.edu/~pueschel/teaching/guides/guide-presentations.pdf)
 - Small guide to designing tables
 - I have modified slightly some of his slides
- Natassa Ailamaki
 - Taught me what to (and not to) put in a talk
 - Taught me to put claims at the top of the slide
- CMU CALCM lab
 - Masters of the powerful intro
 - Patiently shredded my talks until I learned to do them right