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Week 7

➜Bifurcations and Chaos Theory
➜The Logistic Equation
➜Strange Attractors
➜Sensitivity to Initial Conditions
➜Application to Weather Forecasting

➜Self-Similarity
➜Fractals
➜Power Laws

➜Complex System Theory
➜Cellular Automata
➜Self-Organized Criticality

Note: many of these slides are adapted from 
http://csmgeo.csm.jmu.edu/geollab/complexevolutionarysystems/Index.html
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First Experiment

➜Try one of these fire simulations:
Ähttp://www.shodor.org/interactivate/activities/Fire/
Ähttp://www.shodor.org/interactivate/activities/ABetterFire/

➜Experiments:
ÄWhere is the threshold between burning only a few trees and burning most of 

the forest?
ÄHow consistent is the fire behaviour near this threshold?
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Population Growth – e.g fish tank
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Xnext
Next year’s population

= r X
rate of growth

this year’s population
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Population Growth

Xnext
Next years population

= r X
rate of growth

this years population

Human 
population 
growth curve
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Xnext = r X (1-X)
Positive

feedback
Negative
feedback

The logistic function or logistic curve models the
S-curve of growth of some set P. The initial stage
of growth is approximately exponential; then, as
competition arises, the growth slows, and at
maturity, growth stops.

Equilibrium state
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X next = r X (1-X)
Logistic – population ranges between 0 (extinction) and 1
(highest conceivable population)

Iterated – algorithm is calculated over and over

Recursive – the output of the last calculation is used as the
basis of the next calculation.

Deterministic Complexity

9
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Bifurcation Diagram for x’ = rx(1-x)
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Bifurcation Diagram for x’ = rx(1-x)

15
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1st

Bifurcation

2nd

Bifurcation

Population Size
3rd

Bifurcation

Very
Complex
Behavior

Very
Complex
BehaviorVery Simple

Behavior

A Bifurcation is 
a change in 
basic behavior 
of a system

Engineered systems:
Cars, planes, computers

Complex systems:
Weather, 

stock markets
ecosystems,

human behaviour
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Bifurcation – Summary

➜Complex dynamical systems are hard to predict
ÄThe only way to know the outcome is to do the iterative calculation
ÄComputational models are key tools for understanding

➜Deterministic Systems can be chaotic
ÄBifurcation = phases changes with different behaviours
ÄSensitivity to Initial Conditions

➜Chaotic does not mean random
ÄDistinct patterns of behavior
ÄShape of the attractor is easier to predict than individual states

17
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Part 2: Observing Attractors
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https://www.myphysicslab.com/pendulum/double-pendulum-en.html
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Rossby Waves…
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Observation of chaotic processes
1950s: David Fulz observes non-linear patterns in dishpan experiments

Identifies vacillation and bifurcation

21
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Current Conditions (Feb 25, 2020)

See: https://earth.nullschool.net/#current/wind/surface/level/
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Calculating the weather…

Zonal (East-West) Wind:

Meridional (North-South) Wind:

Temperature:

Precipitable Water:

Air pressure:

1904: Vilhelm Bjerknes identified the “primitive equations” 
These capture the flow of mass and energy in the atmosphere;

Sets out a manifesto for practical forecasting
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Towards Numerical Forecasts
1910s: Lewis Fry Richardson performs the first numerical weather forecast, 

imagines a giant computer to do this regularly;

First plan for massively parallel computation

25
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First Numerical Simulation of Weather
1950s: John Von Neumann develops a killer app for the first programmable 

electronic computer ENIAC: weather forecasting

Imagines uses in weather control, geo-engineering, etc.
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Global Precipitation in CCSM CAM3
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The discovery of Chaos
1950s: Edward Lorenz discovers non-linear effects in weather forecasting, 

develops Chaos Theory;

Basis for understanding what is predictable and what isn’t

29

http://www.vets.ucar.edu/vg/T341/index.shtml


15

University of  Toronto Department of Computer Science

© 2020 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 30

Example of the butterfly effect

Source: https://www.youtube.com/watch?v=FYE4JKAXSfY
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The Three Body Problem

For simulation: https://faraday.physics.utoronto.ca/GeneralInterest/Harrison/Flash/Chaos/ThreeBody/ThreeBody.html
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Poincaré’s recurrence plots

Regular patterns eventually repeat, so the 
Poincaré map will be a closed shape

Chaotic patterns never repeat, so the 
Poincaré map is an open shape
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Sensitivity to Initial Conditions

Analysis

Initial condition 
uncertainty

Climatology

Forecast uncertainty

Deterministic 
forecast

Time
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Initial 
condition 
uncertainty Days

Decades  to 
centuries

Boundary
conditions

Weather 
forecast

Overall climate

Current
weather

Weather Forecasting:

Climate Prediction:
Boundary conditions

Decades  to 
centuries
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Point Attractor

Strange Attractors
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Strange Attractors - Turbulence

37
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Eckmann Recurrence Plots

➜For time series data, plot pairs (i,j) of times when the 
function has a similar value

White Noise:
Harmonic
Oscillation

Chaotic data
w. linear trend

Auto-regressive
process
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Part 3: Fractals

39
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Stretched and
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2

win dow open s on  
m a gn ifica t ion

Red box in 2
Stretched and
Enlarged in 3

3

win dow open s on  
     m agn ifica t io n

41
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Red box in 3
Stretched and
Enlarged in 4

3

win dow open s on  
     m agn ifica t io n

sm a ll r ed  box is en la r ged  on  a n o t h er  
pa ge , a n d  o pen s an o t h er  win dow

4
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Red box in 4
Stretched and
Enlarged here.

sm a ll r ed  box is en la r ged  on  a n o t h er  
pa ge , a n d  o pen s an o t h er  win dow

4

Patterns within patterns within patterns

43
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1. Begin with a line
2. Divide line into thirds
3. Remove middle portion
4. Add  two lines to form a       
triangle in middle third of 
original line

E.g the Koch Curve, generated by 4 steps, which are then
iterated indefinitely

Koch Curve

Repeat Steps 1 - 4

Generated by iteration

Fractals
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2nd Iteration

3rd Iteration

4th Iteration

5th Iteration

Make your own: http://www.shodor.org/MASTER/fractal/software/Snowflake.html

Koch Curve

45
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Koch Curve Fractal Dimensions

D =
Log N (number of new pieces)

Log M (Magnification: factor of finer resolution)

1

2 3

4

Log 4

Log 3

1 2 3
.602

.477

Koch's Curve has a dimension of 1.2618595071429
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Fractal Geometry in the The Mandelbrot Set

Take a point on the complex number plane, place its value into the Mandelbrot equation and iterate it 1000 times.

If the result settles down to a single value, color the pixel black. If the number enlarges towards infinity then color
it something else: fast expanding numbers red, slightly slower ones magenta, very slow ones blue, and so on.

A sequence of pixels side by side of different colors means each value expands toward infinity at a different rate in
the iterated equation.
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Mandelbrot Equation

Z = Z 2 + C

C is a constant, one point on 
the complex plain.  Z starts out 
as zero, but with each iteration
a new Z forms that is equal to 
the old Z squared plus the 
constant C .

Geometrical Self Similarity
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Mandelbrot Set Cascade
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Mandelbrot Set Cascade

49
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Mandelbrot Set Cascade
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Mandelbrot Set Cascade

51
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Fractal Organization – Dow Jones Average

patterns, within patterns, within patterns
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20,000 Year Recordzoomed to . . 20,000 Year Record1,000 Year Record
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20,000 Year Recordzoomed to . . 

450,000 Year Record
20,000 Year Record

54

University of  Toronto Department of Computer Science

© 2020 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 55

Example: The ice ages

➜Milankovitch cycles:
Ä26,000 yr cycle in the earth’s precession (axis rotation)
Ä41,000 yr cycle in the earth’s obliquity (axis tilt)
Ä100,000 yr cycle in the earth’s orbital inclination & eccentricity

55
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patterns, within patterns, within patterns
Fractal Organization – Landscapes
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Self-Similarity

➜Similar patters recur at different scales, all generated 
by the same iterative processes

➜Observe systems at multiple scales to see the full 
patterns
ÄWhat you can measure depends on the size and resolution of your ruler
ÄTrends apparent at one level are just part of a pattern at the next level

➜There is no “right” scale at which to observe a system
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