Basic physical equations

1904: Vilhelm Bjerknes identified the "primitive equations" These capture the flow of mass and energy in the atmosphere; Sets out a manifesto for practical forecasting

Zonal (East-West) Wind:

$$\frac{\partial u}{\partial t} = \eta v - \frac{\partial \Phi}{\partial x} - c_p \theta \frac{\partial \pi}{\partial x} - z \frac{\partial u}{\partial \sigma} - \frac{\partial (\frac{u^2 + v^2}{2})}{\partial x}$$

Meridional (North-South) Wind:

$$\frac{\partial v}{\partial t} = -\eta \frac{u}{v} - \frac{\partial \Phi}{\partial y} - c_p \theta \frac{\partial \pi}{\partial y} - z \frac{\partial v}{\partial \sigma} - \frac{\partial (\frac{u^2 + v^2}{2})}{\partial y}$$

Temperature:
$$\frac{\delta T}{\partial t} = \frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z}$$

Precipitable Water:

$$\frac{\delta W}{\partial t} = u \frac{\partial W}{\partial x} + v \frac{\partial W}{\partial y} + w \frac{\partial W}{\partial z}$$

Air pressure:
$$\frac{\partial}{\partial t}\frac{\partial p}{\partial \sigma} = u\frac{\partial}{\partial x}x\frac{\partial p}{\partial \sigma} + v\frac{\partial}{\partial y}y\frac{\partial p}{\partial \sigma} + w\frac{\partial}{\partial z}z\frac{\partial p}{\partial \sigma}$$

Towards Numerical Forecasts

1910s: Lewis Fry Richardson performs the first numerical weather forecast, imagines a giant computer to do this regularly;

First plan for massively parallel computation

Image Source: Lynch, P. (2008). The origins of computer weather prediction and climate modeling.

(What a forecast factory actually looks like)

The Yellowstone supercomputer at the NCAR Wyoming Supercomputing Center, Cheyenne

First Computer Model of Weather

1950s: John Von Neumann develops a killer app for the first programmable electronic computer ENIAC: weather forecasting Imagines uses in weather control, geo-engineering, etc.

Image Source: Lynch, P. (2008). The ENIAC Forecasts: A Recreation. Bulletin of the American Meteorological Society

Forecasting Weather and Climate

Bauer, P., Thorpe, A., & Brunet, G. (2015). The quiet revolution of numerical weather prediction. Nature, 525(7567), 47–55.

Global Precipitation in CCSM CAM3

Source: http://www.vets.ucar.edu/vg/T341/index.shtml

The discovery of Chaos

•1950s: Edward Lorenz discovers non-linear effects in weather forecasting, develops Chaos Theory;

·Basis for understanding what is predictable and what isn't

$$\frac{dx}{dt} = \sigma(y-x)$$

$$\frac{dy}{dt} = x(\rho-z) - y$$

$$\frac{dz}{dt} = xy - \beta z$$

Chaos Theory

- Chaos is not the same as randomness
- Simple rules can create chaotic patterns
- Chaos Game:

https://trinket.io/python/7922fc9d9c

Lorenz's Example:

$$\mathbf{x'} = \mathbf{x}^2 - \mathbf{C}$$

The logistic equation

Key concepts

- Non-linear Dynamical Systems
 - Inputs are not proportional to outputs
 - Determinism: Can you work out future states?
- Sensitivity to Initial Conditions
 - The "butterfly effect"
 - E.g. <u>The Lorenz Attractor</u>
- Denseness
- Attractors (Simple and Strange)
- Criticality and Tipping Points
- Self-similarity and Fractals

Non-Linear Dynamical Systems

Bifurcation Diagram for x' = rx(1-x)

Weather Forecasting:

Climate Prediction:

For Next Week

- Draft of Assignment 1 is due
- Bring a paper copy of your draft to class
 - We'll do a peer review exercise
 - You get to re-submit within 1 week
- Read any 2 articles from Climate Central Blog
 - http://www.climatecentral.org/news
 - Think about how they're written