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A Compliance Notation for Verifying Concurrent Systems 
D. M. Atiya 

Research area: Verification of concurrent high-integrity systems. 
 
1. Introduction 

Over the last four decades, growing research efforts have been dedicated to the verification of 
software programs. The common thread between these efforts is bringing some sort of formalism 
to the development process, e.g. capturing the error early in the development process by writing 
a formal specification, verifying that a program complies with its specific ation through 
mathematical proofs, or constructing a (correct) program by mathematically manipulating the 
specification. Clearly, adding formality to the system development process has the great benefit 
of ensuring higher degrees of safety and reliability. However, formal proofs and formal 
verification of development steps impose their own cost on the software development process; at 
least the cost for learning the associated mathematical notation and techniques, if nothing else. 
This created a large contro versy in the computer science community about the importance of 
formal development of software, perhaps the most notable example of which is the question of 
whether conducting proofs about program correctness is better than testing the program for 
errors. More recently [2], researchers began to realise that the important question is not about 
whether the system should be formally developed or not. Rather, it is about “what degree of 
formality” is needed for the development process. This recent view advocates an overall 
development process in which both formal and informal techniques can be used hand-in-hand 
with each other. Typically, the degree of formality used would depend on the critical aspects of 
the system concerned, e.g. security and safety. 
 

The compliance notation [8] provides such a unified framework where both formal and 
informal techniques can be employed in software development. The notation has been designed 
to give software designers and programmers a means to show, formally and/or informally, that a 
certain program complies with its specification. To achieve this goal, the notation employs: 

1. A high-level specification language, Z [9], which allows for a formal specification of the 
system without worrying about details of its implementation. 

2. The SPARK [1] programming language, which is a safe subset of Ada designed for use in 
high-integrity applications. The use of SPARK not only increases the chance of writing 
trustworthy programs, but also facilitates the program verification process. 

3. Knuth's Literate Programming technique [3], which allows computer programs to be 
presented in an order more suited to human comprehension rather than the order 
demanded by the language compiler. 

4. Morgan's Refinement Calculus [5], which allows the formality present in the program 
specification to be continued all the way to code.  

 
The appealing feature of the compliance notation is that, with just one tool [4] supporting the 

whole notation, all the different levels of the development process can be achieved, starting from 
system specification in Z and ending up with a verified SPARK code. Moreover, not only are the 
different levels of system development accomplished within the same framework, but also a 
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great deal of freedom is offered for choosing the appropriate degree of formality associated with 
the development process. Typically, informal arguments (in the style of Knuth's literate 
programming) are used to reason about the correctness of the non-critical parts of the system at 
hand. On the other hand, formal arguments (in the style of Morgan's refinement calculus) are 
used only to justify the implementation of the system's critical parts. This way, the compliance 
notation can be used to provide a development process that falls anywhere between strictly 
formal and totally informal. This polymorphic characteristic of the notation makes it appealing to 
a wide range of industrial applications, from those applications that do not require formal 
treatment at all to high-integrity systems where formal development is a typical requirement. 
 
2. Compliance Notation and Verification of Concurrent System 

Recently, there has been growing evidence about the merit of the notation as a successful tool for 
system verification. The notation has been successfully applied in industrial projects, see [6]. 
Also, an evaluation of the notation and its tool by Praxis1 stated they believe that the present tool 
satisfies the requirements of the UK's defence standard (DefStan 00-55) for safety-critical 
systems [6]. However, the notation is currently limited to sequential systems with virtually no 
support for verifying concurrent systems – our research aims to fill this gap (see section 4). 
 

The specification language adopted by the compliance notation, Z, has shown a great deal of 
success in describing the functional or data aspects of systems, but it fails to capture the 
communication aspects of concurrent systems. Also, the programming language, SPARK, 
currently contains no support for tasking. Finally, concurrent systems themselves have their own 
intrinsic aspects that add to the challenge of the verification process. For example, the presence 
of multiple threads of control in concurrent systems can lead to subtle and often unanticipated 
interactions between the running processes; in particular, issues such as interference, race 
conditions, deadlock, and livelock are peculiar to concurrent programming. Also, many 
concurrent systems, e.g. distributed databases, are reactive, meaning that they are designed to 
engage in an ongoing series of interactions with their environments. Thus, unlike traditional 
sequential programs, reactive systems should not terminate. Consequently, traditional notions of 
correctness and program semantics that rely on relating inputs to expected outputs upon 
termination (like currently adopted in the compliance notation) are no longer valid for verifying 
reactive systems. 
 
3. Verification of Concurrent Systems: a look back 

Techniques based on refinement, state exploration, and model checking are effective means for 
program verification, and much research work has already been pursued in these areas. However, 
refinement techniques usually involve large number of small steps, with the possibility of proof 
obligations to be discharged at each step. This might turn out to be a tedious and error-prone job 
to do, particularly if the formal treatment is not really required for constructing all the various 
parts of the program at hand. Also, traditional refinement, based on pre- and postconditions as its 
semantic framework, may not be applicable to the construction of concurrent programs. State 
exploration techniques, on the other hand, are limited to finite-state programs. Thus, many real 
life examples of concurrent systems that are not finite-state cannot be verified using state 
exploration methods. Model checking can be applied to finite state programs and other infinite-
                                                 
1 Praxis Critical Systems: http://www.praxis-cs.co.uk 
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state programs that have special forms. However, because the number of states in the model may 
grow exponentially with the number of concurrently executing components, even finite-state 
programs may suffer combinatorial explosion problems, which limits the use of model checking 
algorithms or makes them inapplicable at all. 
 
4. Our Goal 
In this work, we claim that the compliance notation can be extended so as to incorporate 
appropriate support for concurrent systems. Although the notation is currently limited to the Z 
specification language and SPARK programming language, our conjecture relies on the fact that 
the philosophy behind the compliance notation is general and there is no reason why it could not 
be developed for other specification/programming languages. Thus, this research will attempt to 
extend the compliance notation and incorporate it with: 

1. A specification language that captures the communication aspects of concurrent systems, 
2. A concurrent programming language, and 
3. A semantic framework that relates the programming language constructs to their 

specification. 
 

If successful, the resulting system will avoid the tedium of the traditional refinement 
techniques, since both formal and informal arguments are used in the verification process. Also, 
unlike state exploration and model checking, the resulting notation will have the capability of 
addressing both finite-state and infinite-state systems, without the possibility of state-explosion 
problems. However, the three choices mentioned above are restricted by certain limitations, and 
careful decisions have to be made regarding the languages adopted or the semantics proposed. 
For example, not only should the specification language be suitable for specifying concurrent 
systems but also it should be amenable for refinement. The programming language, on the other 
hand, should exhibit typical design properties such as simplicity of formal description and 
verifiability, especially if this language is to be used in safety-critical applications. Finally, 
lessons learnt from research work on concurrency theory suggest that the current semantic 
framework of the compliance notation, based on weakest preconditions, is not suitable for 
concurrent systems development. Rather, the new semantic framework should be based on the 
invariant behaviour of the concurrent system under development. 
 
5. The Research and its Evaluation 

We start by determining the specification/programming language to be incorporated into the new 
notation. Our choice for the specification language is influenced by the work of J. Woodcock and 
A. Cavalcanti on the “Circus” language [10] for specifying concurrent systems. The language 
presents a combination of Z and CSP [7], and hence it is capable of representing both the state 
and concurrent aspects of concurrent systems. The key distinguishing feature of Circus, however, 
is that it is supported with a theo ry of refinement. Our choice for the programming language, on 
the other hand, is influenced by industry. Ada has proved a very successful language in industry, 
especially in the area of high-integrity systems. However, concurrency in Ada is hard to reason 
about and is not addressed yet by existing verification systems. Currently there is ongoing 
research at the University of York for introducing a reduced tasking model of Ada 
(RavenSPARK). RavenSPARK is intended to be a safe concurrent language, like SPARK for 
sequential programs, through which we can gain more confidence about the written code. 
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Having decided on both the specification and the programming language, the next step would 

be to provide the semantic framework linking the two languages together. This semantics would 
form the basis for generating the verification conditions (VCs) justifying the refinement steps 
from the program specification to the corresponding implementation. Finally, as we also aim for 
an automatic verification process, various algorithms have to be constructed so as to generate the 
VCs incurred at any refinement step within the notation. The following items represent the 
different stages we are going to pursue, so as to eventually reach our targets: 

1. Understanding the Compliance Tool: This stage of work is already underway and aims 
for understanding how Z is embedded into the compliance tool and how the VCs, relating 
Z and SPARK, are generated. This work will give us a guide for how to embed Circus 
into the tool, and how to construct the algorithms for generating the VCs relating Circus 
paragraphs to RavenSPARK code. 

2. Relating CSP to Ada Tasking : The tasking model supported by Ada is different from 
that provided by Circus, due to the differences between CSP processes and Ada tasks. To 
tackle this issue, we plan for a theoretical study of both languages as well as experiments 
with some small case studies. The experiments with case studies shall be used as a test of 
whatever theoretical result we produce, as well as a guide for further investigation to the 
problem.  

3. Extending the Compliance Notation: Following the previous two stages, we come to 
the point of incorporating the new languages constructs into compliance notation. After 
getting the compliance tool to accept the new notation,  we shall write the algorithms for 
generating the VCs incurred at the various possible refinement steps. Typically, these 
algorithms would ensure that the semantics of the program code is equivalent to (or at 
least implies) the semantics of the specification. More test cases, of larger complexities, 
would be required at this stage to affirm the work done.  

4. Evaluation: This activity expands over all stages of work. In the early stages, small and 
simple test cases shall be used to investigate the relationships between Ada tasks and 
Circus processes. Then, larger test cases shall be used to test the algorithms generating 
the VCs. Eventually, in order to show the viability of the new compliance notation, we 
shall use realistic case studies of Flight Control Systems (FCS), which are known to be 
safety-critical applications. The FCS case studies will be provided by QinetiQ2 and our 
work will be subject to a close review by their experts at all various stages. Finally, for 
the research community, credible evidence of our results will be provided through a 
series of publications in key conferences and/or journals. 

 
6. Contributions and Related Work 
Extending the compliance notation in the way presented above will provide a tractable and cost-
effective way for verifying concurrent systems. Bearing in mind the wide acceptance of Ada in 
safety-critical systems, our work is expected to contribute to the industry of this important area 
of applications. In fact, our work is already of special interest to QinetiQ and intended to be used 
for verifying their applications on FCS. 

                                                 
2 Previously ‘Defence Evaluation and Research Agency’ (DERA); URL: http://www.qinetiq.com 
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Related to our work is [10], where the authors aim at the calculational refinement of Circus 

specification to programs written in languages similar to occam  or Handel-C. Unlike the work in 
[10], we are not interested in introducing a refinement calculus to derive programs from their 
specifications. Rather, following the general approach of the compliance notation, our emphasis 
would be on setting out the rules for calculating the VCs from the program and the specification. 
This approach provides a direct way of calculating the VCs, which removes some of the 
overhead involved with the refinement process. Also, using a mix of formal and informal 
techniques, our framework is more applicable where the strict refinement approach is not viable 
(e.g. in justifying nonfunctional requirements) or too costly (e.g. in justifying informal parts of 
the system). 
 
7. Conclusions  
The strength of the compliance notation in verifying computer systems lies in its ability to 
employ both formal and informal techniques at the same time. However, the use of compliance 
notation is currently restricted to sequential programs. Extending the compliance notation to 
verifying concurrent systems is both feasible and beneficial: feasible since the notation itself is 
not limited to a particular specification/programming language, and beneficial since the literature 
still lacks a tractable way of verifying concurrent systems. In this work, we aim to incorporate 
the specification language Circus and the programming language RavenSPARK (both languages 
support concurrency) into the compliance notation. Real life FCS applications will be used as 
case studies for examining the merits of the new notation. Results from these case studies should 
provide credible evidence of how successful the new system is in verifying concurrent systems. 
 
References  
[1] J. Barnes. High Integrity Ada: The SPARK Approach, Addison Wesley, 1997. 
[2] J. Bowen, A. Fett, and M. Hinchey (eds). ZUM'98: the Z Formal Specification Notation, 

SpringerVerlag, 1998. 
[3] D. E. Knuth, Literate programming, The Computer Journal, Vol. 27, No. 2, pp. 97-111, 

1984.  
[4] Lemma 1 Ltd, ProofPower Compliance Tool: User Guide, 2000.  
[5] C. C. Morgan. Programming from Specifications, 2nd ed., Prentice Hall International, 

1994. 
[6] C. M. O'Halloran and A. Smith. Don't Verify, Abstract!, in Proceedings of ASE98, pp. 53-

62, 1998. 
[7] S. Schneider, Concurrent and Real-time Systems: The CSP Approach, John Wiley, 2000. 
[8] C. T. Sennett. Demonstrating the compliance of Ada programs with Z specifications, in 

Proceedings of the 5th Refinement Workshop, C. B. Jones, R. C. Shaw and B. T. Denvir 
(eds), BCS-FACS, Springer Verlag, 1992. 

[9] J. C. P. Woodcock and J. Davies. Using Z: Specification, Refinement and Proof, Prentice 
Hall, 1996. 

[10] J. C. P. Woodcock and A. L. C. Cavalcanti. A Concurrent Language for Refinement, in 
5th Irish Workshop on Formal Methods, 2001. 

[11] J. C. P. Woodcock and A. L. C. Cavalcanti. Circus: a concurrent refinement language, 
draft, June 2001. 


