
 1

A Compliance Notation for Verifying Concurrent Systems
D. M. Atiya

Research area: Verification of concurrent high-integrity systems.

1. Introduction

Over the last four decades, growing research efforts have been dedicated to the verification of
software programs. The common thread between these efforts is bringing some sort of formalism
to the development process, e.g. capturing the error early in the development process by writing
a formal specification, verifying that a program complies with its specific ation through
mathematical proofs, or constructing a (correct) program by mathematically manipulating the
specification. Clearly, adding formality to the system development process has the great benefit
of ensuring higher degrees of safety and reliability. However, formal proofs and formal
verification of development steps impose their own cost on the software development process; at
least the cost for learning the associated mathematical notation and techniques, if nothing else.
This created a large contro versy in the computer science community about the importance of
formal development of software, perhaps the most notable example of which is the question of
whether conducting proofs about program correctness is better than testing the program for
errors. More recently [2], researchers began to realise that the important question is not about
whether the system should be formally developed or not. Rather, it is about “what degree of
formality” is needed for the development process. This recent view advocates an overall
development process in which both formal and informal techniques can be used hand-in-hand
with each other. Typically, the degree of formality used would depend on the critical aspects of
the system concerned, e.g. security and safety.

The compliance notation [8] provides such a unified framework where both formal and
informal techniques can be employed in software development. The notation has been designed
to give software designers and programmers a means to show, formally and/or informally, that a
certain program complies with its specification. To achieve this goal, the notation employs:

1. A high-level specification language, Z [9], which allows for a formal specification of the
system without worrying about details of its implementation.

2. The SPARK [1] programming language, which is a safe subset of Ada designed for use in
high-integrity applications. The use of SPARK not only increases the chance of writing
trustworthy programs, but also facilitates the program verification process.

3. Knuth's Literate Programming technique [3], which allows computer programs to be
presented in an order more suited to human comprehension rather than the order
demanded by the language compiler.

4. Morgan's Refinement Calculus [5], which allows the formality present in the program
specification to be continued all the way to code.

The appealing feature of the compliance notation is that, with just one tool [4] supporting the

whole notation, all the different levels of the development process can be achieved, starting from
system specification in Z and ending up with a verified SPARK code. Moreover, not only are the
different levels of system development accomplished within the same framework, but also a

 2

great deal of freedom is offered for choosing the appropriate degree of formality associated with
the development process. Typically, informal arguments (in the style of Knuth's literate
programming) are used to reason about the correctness of the non-critical parts of the system at
hand. On the other hand, formal arguments (in the style of Morgan's refinement calculus) are
used only to justify the implementation of the system's critical parts. This way, the compliance
notation can be used to provide a development process that falls anywhere between strictly
formal and totally informal. This polymorphic characteristic of the notation makes it appealing to
a wide range of industrial applications, from those applications that do not require formal
treatment at all to high-integrity systems where formal development is a typical requirement.

2. Compliance Notation and Verification of Concurrent System

Recently, there has been growing evidence about the merit of the notation as a successful tool for
system verification. The notation has been successfully applied in industrial projects, see [6].
Also, an evaluation of the notation and its tool by Praxis1 stated they believe that the present tool
satisfies the requirements of the UK's defence standard (DefStan 00-55) for safety-critical
systems [6]. However, the notation is currently limited to sequential systems with virtually no
support for verifying concurrent systems – our research aims to fill this gap (see section 4).

The specification language adopted by the compliance notation, Z, has shown a great deal of
success in describing the functional or data aspects of systems, but it fails to capture the
communication aspects of concurrent systems. Also, the programming language, SPARK,
currently contains no support for tasking. Finally, concurrent systems themselves have their own
intrinsic aspects that add to the challenge of the verification process. For example, the presence
of multiple threads of control in concurrent systems can lead to subtle and often unanticipated
interactions between the running processes; in particular, issues such as interference, race
conditions, deadlock, and livelock are peculiar to concurrent programming. Also, many
concurrent systems, e.g. distributed databases, are reactive, meaning that they are designed to
engage in an ongoing series of interactions with their environments. Thus, unlike traditional
sequential programs, reactive systems should not terminate. Consequently, traditional notions of
correctness and program semantics that rely on relating inputs to expected outputs upon
termination (like currently adopted in the compliance notation) are no longer valid for verifying
reactive systems.

3. Verification of Concurrent Systems: a look back

Techniques based on refinement, state exploration, and model checking are effective means for
program verification, and much research work has already been pursued in these areas. However,
refinement techniques usually involve large number of small steps, with the possibility of proof
obligations to be discharged at each step. This might turn out to be a tedious and error-prone job
to do, particularly if the formal treatment is not really required for constructing all the various
parts of the program at hand. Also, traditional refinement, based on pre- and postconditions as its
semantic framework, may not be applicable to the construction of concurrent programs. State
exploration techniques, on the other hand, are limited to finite-state programs. Thus, many real
life examples of concurrent systems that are not finite-state cannot be verified using state
exploration methods. Model checking can be applied to finite state programs and other infinite-

1 Praxis Critical Systems: http://www.praxis-cs.co.uk

 3

state programs that have special forms. However, because the number of states in the model may
grow exponentially with the number of concurrently executing components, even finite-state
programs may suffer combinatorial explosion problems, which limits the use of model checking
algorithms or makes them inapplicable at all.

4. Our Goal
In this work, we claim that the compliance notation can be extended so as to incorporate
appropriate support for concurrent systems. Although the notation is currently limited to the Z
specification language and SPARK programming language, our conjecture relies on the fact that
the philosophy behind the compliance notation is general and there is no reason why it could not
be developed for other specification/programming languages. Thus, this research will attempt to
extend the compliance notation and incorporate it with:

1. A specification language that captures the communication aspects of concurrent systems,
2. A concurrent programming language, and
3. A semantic framework that relates the programming language constructs to their

specification.

If successful, the resulting system will avoid the tedium of the traditional refinement
techniques, since both formal and informal arguments are used in the verification process. Also,
unlike state exploration and model checking, the resulting notation will have the capability of
addressing both finite-state and infinite-state systems, without the possibility of state-explosion
problems. However, the three choices mentioned above are restricted by certain limitations, and
careful decisions have to be made regarding the languages adopted or the semantics proposed.
For example, not only should the specification language be suitable for specifying concurrent
systems but also it should be amenable for refinement. The programming language, on the other
hand, should exhibit typical design properties such as simplicity of formal description and
verifiability, especially if this language is to be used in safety-critical applications. Finally,
lessons learnt from research work on concurrency theory suggest that the current semantic
framework of the compliance notation, based on weakest preconditions, is not suitable for
concurrent systems development. Rather, the new semantic framework should be based on the
invariant behaviour of the concurrent system under development.

5. The Research and its Evaluation

We start by determining the specification/programming language to be incorporated into the new
notation. Our choice for the specification language is influenced by the work of J. Woodcock and
A. Cavalcanti on the “Circus” language [10] for specifying concurrent systems. The language
presents a combination of Z and CSP [7], and hence it is capable of representing both the state
and concurrent aspects of concurrent systems. The key distinguishing feature of Circus, however,
is that it is supported with a theo ry of refinement. Our choice for the programming language, on
the other hand, is influenced by industry. Ada has proved a very successful language in industry,
especially in the area of high-integrity systems. However, concurrency in Ada is hard to reason
about and is not addressed yet by existing verification systems. Currently there is ongoing
research at the University of York for introducing a reduced tasking model of Ada
(RavenSPARK). RavenSPARK is intended to be a safe concurrent language, like SPARK for
sequential programs, through which we can gain more confidence about the written code.

 4

Having decided on both the specification and the programming language, the next step would

be to provide the semantic framework linking the two languages together. This semantics would
form the basis for generating the verification conditions (VCs) justifying the refinement steps
from the program specification to the corresponding implementation. Finally, as we also aim for
an automatic verification process, various algorithms have to be constructed so as to generate the
VCs incurred at any refinement step within the notation. The following items represent the
different stages we are going to pursue, so as to eventually reach our targets:

1. Understanding the Compliance Tool: This stage of work is already underway and aims
for understanding how Z is embedded into the compliance tool and how the VCs, relating
Z and SPARK, are generated. This work will give us a guide for how to embed Circus
into the tool, and how to construct the algorithms for generating the VCs relating Circus
paragraphs to RavenSPARK code.

2. Relating CSP to Ada Tasking : The tasking model supported by Ada is different from
that provided by Circus, due to the differences between CSP processes and Ada tasks. To
tackle this issue, we plan for a theoretical study of both languages as well as experiments
with some small case studies. The experiments with case studies shall be used as a test of
whatever theoretical result we produce, as well as a guide for further investigation to the
problem.

3. Extending the Compliance Notation: Following the previous two stages, we come to
the point of incorporating the new languages constructs into compliance notation. After
getting the compliance tool to accept the new notation, we shall write the algorithms for
generating the VCs incurred at the various possible refinement steps. Typically, these
algorithms would ensure that the semantics of the program code is equivalent to (or at
least implies) the semantics of the specification. More test cases, of larger complexities,
would be required at this stage to affirm the work done.

4. Evaluation: This activity expands over all stages of work. In the early stages, small and
simple test cases shall be used to investigate the relationships between Ada tasks and
Circus processes. Then, larger test cases shall be used to test the algorithms generating
the VCs. Eventually, in order to show the viability of the new compliance notation, we
shall use realistic case studies of Flight Control Systems (FCS), which are known to be
safety-critical applications. The FCS case studies will be provided by QinetiQ2 and our
work will be subject to a close review by their experts at all various stages. Finally, for
the research community, credible evidence of our results will be provided through a
series of publications in key conferences and/or journals.

6. Contributions and Related Work
Extending the compliance notation in the way presented above will provide a tractable and cost-
effective way for verifying concurrent systems. Bearing in mind the wide acceptance of Ada in
safety-critical systems, our work is expected to contribute to the industry of this important area
of applications. In fact, our work is already of special interest to QinetiQ and intended to be used
for verifying their applications on FCS.

2 Previously ‘Defence Evaluation and Research Agency’ (DERA); URL: http://www.qinetiq.com

 5

Related to our work is [10], where the authors aim at the calculational refinement of Circus

specification to programs written in languages similar to occam or Handel-C. Unlike the work in
[10], we are not interested in introducing a refinement calculus to derive programs from their
specifications. Rather, following the general approach of the compliance notation, our emphasis
would be on setting out the rules for calculating the VCs from the program and the specification.
This approach provides a direct way of calculating the VCs, which removes some of the
overhead involved with the refinement process. Also, using a mix of formal and informal
techniques, our framework is more applicable where the strict refinement approach is not viable
(e.g. in justifying nonfunctional requirements) or too costly (e.g. in justifying informal parts of
the system).

7. Conclusions
The strength of the compliance notation in verifying computer systems lies in its ability to
employ both formal and informal techniques at the same time. However, the use of compliance
notation is currently restricted to sequential programs. Extending the compliance notation to
verifying concurrent systems is both feasible and beneficial: feasible since the notation itself is
not limited to a particular specification/programming language, and beneficial since the literature
still lacks a tractable way of verifying concurrent systems. In this work, we aim to incorporate
the specification language Circus and the programming language RavenSPARK (both languages
support concurrency) into the compliance notation. Real life FCS applications will be used as
case studies for examining the merits of the new notation. Results from these case studies should
provide credible evidence of how successful the new system is in verifying concurrent systems.

References
[1] J. Barnes. High Integrity Ada: The SPARK Approach, Addison Wesley, 1997.
[2] J. Bowen, A. Fett, and M. Hinchey (eds). ZUM'98: the Z Formal Specification Notation,

SpringerVerlag, 1998.
[3] D. E. Knuth, Literate programming, The Computer Journal, Vol. 27, No. 2, pp. 97-111,

1984.
[4] Lemma 1 Ltd, ProofPower Compliance Tool: User Guide, 2000.
[5] C. C. Morgan. Programming from Specifications, 2nd ed., Prentice Hall International,

1994.
[6] C. M. O'Halloran and A. Smith. Don't Verify, Abstract!, in Proceedings of ASE98, pp. 53-

62, 1998.
[7] S. Schneider, Concurrent and Real-time Systems: The CSP Approach, John Wiley, 2000.
[8] C. T. Sennett. Demonstrating the compliance of Ada programs with Z specifications, in

Proceedings of the 5th Refinement Workshop, C. B. Jones, R. C. Shaw and B. T. Denvir
(eds), BCS-FACS, Springer Verlag, 1992.

[9] J. C. P. Woodcock and J. Davies. Using Z: Specification, Refinement and Proof, Prentice
Hall, 1996.

[10] J. C. P. Woodcock and A. L. C. Cavalcanti. A Concurrent Language for Refinement, in
5th Irish Workshop on Formal Methods, 2001.

[11] J. C. P. Woodcock and A. L. C. Cavalcanti. Circus: a concurrent refinement language,
draft, June 2001.

