Systems Thinker:

Jay Wright Forrester

Presented by:

Mahsa H. Sadi

Department of Computer Science

- Electrical Engineer
- Systems scientist
 - Hard systems view point in Systems Thinking

- Research assistant in MIT from 1939; working on feedback control systems
- Developing control systems for radar antennas and guns during world-war II

- After world-war II, he began to **build aircraft flight simulators** for the Air Force
- Forrester continued research in Electrical Engineering until 1956.

- Then he moved to MIT Sloan School of Management, where he is currently a professor.
- Born in 1918. (He is 95 years old)

 He brought his background in electrical engineering and his hard systems view point to the field of management and human systems.

- Founder of system dynamics
 - Human systems need flight simulators
 - Human systems can be predicted and controlled
 - Defining mathematical relationships between elements of human systems
 - Simulating the interaction of objects in dynamic systems

- Applying feedback control system ideas to management
 - Positive feedbacks, negative feedbacks
 - Stocks (Capacitors), and flows (electrical currents)

Donella Meadow

John Sterman

Dennis Meadow

Alinaghi Mashayekhi

Jay W. Forrester

Industrial Dynamics

WORLD DYNAMICS

lay W. Furrenter

Jay W. Forrester

Urban Dynamics

Foreword by John F. Collins

▶ PEGASUS

World Dynamics

Figure 2-1 Complete diagram of the world model interrelating the five level variables — population, natural resources, capital investment, capital-investment-in-agriculture fraction, and pollution.

 System Dynamics, Climate Change and Intergovernmental Panel on Climate Change

System Dynamics and Simulation

- Well-Adopted in hard systems areas:
 - Energy systems
 - Economics
 - Supply chains

How human systems can be solve by differential equations?

Even simulation is impossible

- Weak in Soft systems
 - Unpredictable
 - Complex and complicated

