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Lecture 22:
Software Measurement

➜ Basics of software measurement
�metrics
� predictive models
� validity

➜ Some example models
� COCOMO (for effort and time estimation)
� Function Points (for estimating software size)
� Reliability Models
� Cyclomatic Complexity
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Basics of Software Measurement
➜ Definitions

�Metric - a quantifiable characteristic of software
�Measurement - the process of mapping from real world attributes to a 

mathematical representation
�Model - a mathematical relationship between metrics

� e.g. between quality factors and available metrics

� Validity - Does the metric accurately measure what it purports to measure
� Prediction system - a set of metrics and a model that can be used to 

predict some attribute of a future entity.
� Deterministic predictions give the same result for the same inputs
� Stochastic predictions provide a window of error around the actual value

➜ Difficulties with software measurement
�We are not measuring repeatable, objective phenomena
� Software development is so complex that all models are weak approximations

� models that work for one project or team don’t work for others
� local contingency factors may be more important than the metrics in the model

Source: Adapted from Pfleeger 1998, p465-470
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Example model: COCOMO
➜ COnstructive COst Model (COCOMO)

� Used to predict cost of a project from a measure of size (lines of code)
� Basic model is:

E = aLb

➜ Modeling process
� Establish type of project (organic, semidetached, embedded)

� this gives sets of values for a and b
� Identify the component modules, and estimate L for each module
� Adjust L according to how much is reused

� COCOMO has a model for adjusting according to how much design, code and 
integration data is reused

� Compute effort for each module using E = aLb

� Adjust E according to difficulty of the project
� COCOMO identifies 15 effort multipliers to take into account
� Product attributes: eg required reliability, complexity, database size
� Computer attributes: eg execution time constraints, storage constraints, etc.
� Personnel attributes: eg capability & experience of analysts and programmers, 
� Project attributes: eg use of CASE tools, programming language, schedule

� Compute time using T = cEd
� c and d provided for different project types like a and b were

effort

lines of code

project specific factors

Source: Adapted from van Vliet, 1999, section 7.3.2
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Example model: Function Points
➜ Function Points

� used to caculate size of software from a statement of the problem
� tries to address variability in lines of code estimates used in models such as 

COCOMO
� e.g. because SLOC varies with different languages

�Originally for information systems, although other variants exist
� Basic model is:

FP = a1I + a2O + a3E + a4L + a5F

➜ Example
� Sets of weightings (ai) provided for different types of project
�Measure properties of the problem statement:

� I = number of user inputs (data entry)
� O = number of user outputs (reports, screens, error messages)
� E = number of user queries
� L = number of files
� F = number of external interfaces (to other devices, systems)

� Example calculation:
� FP = 4I + 5O + 4E + 10L + 7F

weighting factor for this metric

metric from problem statement

Source: Adapted from van Vliet, 1999, section 7.3.5
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Example model: Reliability growth
➜ Motorola’s Zero-failure testing model

� Predicts how much more testing is needed to establish a given reliability goal
� basic model:

failures = ae-b(t)

➜ Reliability estimation process
� Inputs needed:

� fd = target failure density (e.g. 0.03 failures per 1000 LOC)
� tf = total test failures observed so far
� th = total testing hours up to the last failure

� Calculate number of further test hours needed using:
ln(fd/(0.5 + fd)) x th
ln((0.5 + fd)/(tf + fd))

� Result gives the number of further failure free hours of testing needed to 
establish the desired failure density
� if a failure is detected in this time, you stop the clock and recalculate

�Note: this model ignores operational profiles!

empirical constants

testing time

Source: Adapted from Pfleeger 1998, p359
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Example model: Cyclomatic Complexity
➜ McCabes’ complexity measure

� This is a measurement model, not a predictive model
� It measures complexity as a function of the number of paths through a 

program
� Basic model is:

CV = e - n + p + 2

➜ Application
� Draw each module as flowchart
� Convert each flowchart to a graph

� nodes show statements, edges show control paths
� branches (IF, WHILE, etc) have multiple edges coming out of them

� Count edges and nodes in each graph
� CV also corresponds to the number of linearly independent paths in the 

graph
� CV > 10 is usually taken as an indicator that a module is overly complex
� But the validity of this measure is hotly disputed!

Source: Adapted from van Vliet, 1999, pp308-311

“cyclomatic complexity”
number of nodes

number of edges

number of graphs (procedures)
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But software measurement is hard
➜ Key problems for software measurement:

�Most attributes of interest cannot be measured directly
�Most metrics are very hard to validate
�Most models are at best vague approximations

� The validity of each of the models described is disputed
� Models usually have to be adapted to a particular organization
� Need to collect data over a long period to validate and adapt the models

� The technology keeps changing
� parameters for these models are derived from past projects which might be 

unlike future projects

➜ Predictive models can be self-fulfilling
� Predictive model is used to generate effort and time estimates

� …which are used to generate a project plan
� …which is used by managers to manage the project to
� …so the project ends up having to conform to the estimate!

➜ But you cannot control it if you cannot measure it
� poor models may be better than no models at all
� predictions will need to be continuously revised as the project proceeds
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