
1

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Lecture 22:
Software Measurement

➜ Basics of software measurement
�metrics
� predictive models
� validity

➜ Some example models
� COCOMO (for effort and time estimation)
� Function Points (for estimating software size)
� Reliability Models
� Cyclomatic Complexity

2

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Basics of Software Measurement
➜ Definitions

�Metric - a quantifiable characteristic of software
�Measurement - the process of mapping from real world attributes to a

mathematical representation
�Model - a mathematical relationship between metrics

� e.g. between quality factors and available metrics

� Validity - Does the metric accurately measure what it purports to measure
� Prediction system - a set of metrics and a model that can be used to

predict some attribute of a future entity.
� Deterministic predictions give the same result for the same inputs
� Stochastic predictions provide a window of error around the actual value

➜ Difficulties with software measurement
�We are not measuring repeatable, objective phenomena
� Software development is so complex that all models are weak approximations

� models that work for one project or team don’t work for others
� local contingency factors may be more important than the metrics in the model

Source: Adapted from Pfleeger 1998, p465-470

3

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Example model: COCOMO
➜ COnstructive COst Model (COCOMO)

� Used to predict cost of a project from a measure of size (lines of code)
� Basic model is:

E = aLb

➜ Modeling process
� Establish type of project (organic, semidetached, embedded)

� this gives sets of values for a and b
� Identify the component modules, and estimate L for each module
� Adjust L according to how much is reused

� COCOMO has a model for adjusting according to how much design, code and
integration data is reused

� Compute effort for each module using E = aLb

� Adjust E according to difficulty of the project
� COCOMO identifies 15 effort multipliers to take into account
� Product attributes: eg required reliability, complexity, database size
� Computer attributes: eg execution time constraints, storage constraints, etc.
� Personnel attributes: eg capability & experience of analysts and programmers,
� Project attributes: eg use of CASE tools, programming language, schedule

� Compute time using T = cEd
� c and d provided for different project types like a and b were

effort

lines of code

project specific factors

Source: Adapted from van Vliet, 1999, section 7.3.2

4

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Example model: Function Points
➜ Function Points

� used to caculate size of software from a statement of the problem
� tries to address variability in lines of code estimates used in models such as

COCOMO
� e.g. because SLOC varies with different languages

�Originally for information systems, although other variants exist
� Basic model is:

FP = a1I + a2O + a3E + a4L + a5F

➜ Example
� Sets of weightings (ai) provided for different types of project
�Measure properties of the problem statement:

� I = number of user inputs (data entry)
� O = number of user outputs (reports, screens, error messages)
� E = number of user queries
� L = number of files
� F = number of external interfaces (to other devices, systems)

� Example calculation:
� FP = 4I + 5O + 4E + 10L + 7F

weighting factor for this metric

metric from problem statement

Source: Adapted from van Vliet, 1999, section 7.3.5

5

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Example model: Reliability growth
➜ Motorola’s Zero-failure testing model

� Predicts how much more testing is needed to establish a given reliability goal
� basic model:

failures = ae-b(t)

➜ Reliability estimation process
� Inputs needed:

� fd = target failure density (e.g. 0.03 failures per 1000 LOC)
� tf = total test failures observed so far
� th = total testing hours up to the last failure

� Calculate number of further test hours needed using:
ln(fd/(0.5 + fd)) x th
ln((0.5 + fd)/(tf + fd))

� Result gives the number of further failure free hours of testing needed to
establish the desired failure density
� if a failure is detected in this time, you stop the clock and recalculate

�Note: this model ignores operational profiles!

empirical constants

testing time

Source: Adapted from Pfleeger 1998, p359

test time

fa
ilu

re
s

6

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Example model: Cyclomatic Complexity
➜ McCabes’ complexity measure

� This is a measurement model, not a predictive model
� It measures complexity as a function of the number of paths through a

program
� Basic model is:

CV = e - n + p + 2

➜ Application
� Draw each module as flowchart
� Convert each flowchart to a graph

� nodes show statements, edges show control paths
� branches (IF, WHILE, etc) have multiple edges coming out of them

� Count edges and nodes in each graph
� CV also corresponds to the number of linearly independent paths in the

graph
� CV > 10 is usually taken as an indicator that a module is overly complex
� But the validity of this measure is hotly disputed!

Source: Adapted from van Vliet, 1999, pp308-311

“cyclomatic complexity”
number of nodes

number of edges

number of graphs (procedures)

7

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

But software measurement is hard
➜ Key problems for software measurement:

�Most attributes of interest cannot be measured directly
�Most metrics are very hard to validate
�Most models are at best vague approximations

� The validity of each of the models described is disputed
� Models usually have to be adapted to a particular organization
� Need to collect data over a long period to validate and adapt the models

� The technology keeps changing
� parameters for these models are derived from past projects which might be

unlike future projects

➜ Predictive models can be self-fulfilling
� Predictive model is used to generate effort and time estimates

� …which are used to generate a project plan
� …which is used by managers to manage the project to
� …so the project ends up having to conform to the estimate!

➜ But you cannot control it if you cannot measure it
� poor models may be better than no models at all
� predictions will need to be continuously revised as the project proceeds

8

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

References
van Vliet, H. “Software Engineering: Principles and Practice (2nd
Edition)” Wiley, 1999.

Chapter 6 has some introductory comments about measurement of various
different things in software engineering, especially with respect to any
attempt to measure software quality. Various metrics are introduced
throughout the book, at appropriate places. For example, cost estimation
(COCOMO, Function Point Analysis, etc) is in chapter 7; measurement of
design complexity (Halstead, McCabe, …) is in chapter 11; measurement of
testing (test coverage, test adequacy criteria) is in chapter 13; and reliability
estimation is in chapter 18. This is of course appropriate – measurement
should be an integrated part of software engineering, not something you bolt
on afterwards!

Pfleeger, S. L. “Software Engineering: Theory and Practice”
Prentice Hall, 1998.

Pfleeger’s research area is software measurement, so she gives it a very
strong treatment throughout her book.

