
1

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Lecture 7:
Data Abstractions

➜ Abstract Data Types

➜ Data Abstractions
�How to define them
� Implementation issues
� Abstraction functions and invariants
� Adequacy (and some requirements analysis)

➜ Towards Object Orientation
� differences between object oriented programming and data abstraction

2

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Motivating Example
➜ Imagine we want to hold information

about dates
� E.g. year, month, day, hours, minutes, seconds,

day of week, etc.
� Could use an integer arrays: int date [3];
� and write some support functions for computing day

of week, comparing dates,…

� But suppose we then decide years need 4 digits
rather than 2 (i.e. 2001 instead of 01)

� we have to change every part of the program that
uses dates

int today[3];
int lecture1_time[3];
…
today[0] = 01;
today[1] = 10;
today[2] = 01;
lecture1_time[0] = 9;
lecture1_time[1] = 0;
lecture1_time[2] = 0;

int today[3];
int lecture1_time[3];
…
today[0] = 01;
today[1] = 10;
today[2] = 01;
lecture1_time[0] = 9;
lecture1_time[1] = 0;
lecture1_time[2] = 0;

� Encapsulation
� we really want to distinguish the abstract notion of a ‘date’ from it’s

concrete representation
� we want to hide all the details about how dates are represented
� Benefits:

� modifiability, testability, readability, reduced complexity, [Y2K compliance(!?)]

e.g. if we used arrays
of int for date & time:

3

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Abstract Data Types (ADTs)
➜ Programming languages provide:

� Some concrete data types
� integers, characters, arrays,…

� Some abstract data types
� floating point, lists, tables, two dimensional arrays, records,…

� Abstract data types are implemented using concrete datatypes
� (but you don’t need to know this to use them)

➜ Operations are provided for each datatype
� e.g. creation, assignment, etc.
� … but you cannot muck around with the internal representations

� e.g. float is represented in two parts, but you cannot access these directly

� But: some languages do allow you access to the internal representations
� e.g. in C, you can use pointers to access the internals of arrays
� this removes the distinction between the abstraction and the implementation
� it destroys most of the benefits of abstraction
� it causes confusion and error

4

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Home-made abstract data types
➜ Encapsulation is improved if you create your own data

abstractions
� choice of what abstractions to create depends on the application

� choice of operations depends on how you want to manipulate the data
� e.g. bank accounts: open, close, make a deposit, make a withdrawal, check the

balance, …
� e.g. graphs: initialize, add nodes, remove nodes, check whether there is an edge

between two nodes, get the label for a node,…

➜ Most languages support creation of new datatypes
� … but they might not force you to specify the data abstraction
� … and they might not enforce information hiding

Application Useful data abstractions
Compiler writing tables, stacks, …
Banking accounts, customers, …
Mathematical computing matrices, sets, polynomials, …
Graph Editing graphs, nodes, edges, positions …

Source: Liskov & Guttag 2000, p77-78

5

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Operations on Data Abstractions
➜ Four groups of operators:

� Creators
� create new objects of the datatype

� Producers
� take existing objects of the datatype and

build new ones

�Mutators
� modify existing objects of the datatype

�Observers
� tell you information about existing objects

of the datatype (without changing them)

➜ Immutable datatypes…
� …don’t have mutators

� they can be created and destroyed, but not
modified

� once you’ve created an object you cannot
change it

Example: sets
Creators:

create a new empty set,…
Producers:

set union,
set intersection,…

mutators:
add an element,
remove an element,…

observers:
set size,
set membership,
set equality,
test for empty set,…

Example: sets
Creators:

create a new empty set,…
Producers:

set union,
set intersection,…

mutators:
add an element,
remove an element,…

observers:
set size,
set membership,
set equality,
test for empty set,…

Source: Liskov & Guttag 2000, p117-118

6

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Defining Data Abstractions
➜The abstraction
should:
� name the data type
� list its operations
� describe the data

abstraction in English
� say whether it’s

mutable or not

� give a procedural
abstraction for each
operation
� the abstraction only

lists the “public”
operations

� there may be other
“private” procedures
hidden inside…

/*
datatype set has operators create, insert, delete,

member, size, union, intersection.
overview:

sets are unbounded mathematical sets of integers.
They are mutable: insert and delete are the
mutation operations.

operations:
procedure create () returns set
effects: x is a new empty set

procedure insert (set s, int x) returns null
effects: adds x to the set s such that s’ = s {x}

procedure delete (set s, int x) returns null
requires: x s
effects: s’ = s - {x}

… (etc) … */

/*
datatype set has operators create, insert, delete,

member, size, union, intersection.
overview:

sets are unbounded mathematical sets of integers.
They are mutable: insert and delete are the
mutation operations.

operations:
procedure create () returns set
effects: x is a new empty set

procedure insert (set s, int x) returns null
effects: adds x to the set s such that s’ = s {x}

procedure delete (set s, int x) returns null
requires: x s
effects: s’ = s - {x}

… (etc) … */

Source: Liskov & Guttag 2000, section 5.1

7

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Java Example
public class IntSet {
//Overview: IntSets are mutable, unbounded sets of integers. A
typical IntSet is {x1, …xn}

//Creators
public IntSet ()
//effects: Initializes this to be the empty set

//Mutators
public void insert (int x)
//effects: adds x to the set this such that this’ = this {x}

public void delete (int x)
//requires: x this

//effects: this’ = this - {x}

//Observers
public boolean member (int x)
//effects: returns true if x this, false otherwise

//Producers
public IntSet intersection (IntSet a)
//effects: returns a new set representing a this

}

public class IntSet {
//Overview: IntSets are mutable, unbounded sets of integers. A
typical IntSet is {x1, …xn}

//Creators
public IntSet ()
//effects: Initializes this to be the empty set

//Mutators
public void insert (int x)
//effects: adds x to the set this such that this’ = this {x}

public void delete (int x)
//requires: x this

//effects: this’ = this - {x}

//Observers
public boolean member (int x)
//effects: returns true if x this, false otherwise

//Producers
public IntSet intersection (IntSet a)
//effects: returns a new set representing a this

}

Source: adapted from Liskov & Guttag 2000, p81

8

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Implementing Data Abstractions
➜ Choose a representation that:

� permits all operations to be implemented easily (and reasonably efficiently)
� permits frequent operations to run faster

➜ Example: sets
� an unsorted array with repeated elements

� insert is very fast, union is fast, intersection and member are slow, delete is
very slow

� a sorted array
� insert is very slow, member is very fast, intersection is fast, union is slow

� a linked list
� insert is fast, delete is fast, union is slow, takes more memory

➜ Choose a programming mechanism
� Package

� hides ‘private’ code, package has to be ‘imported’ (e.g. Ada, C, Modula)
�Object

� provides inheritance, operations called by message passing (e.g. C++, Java)
� Abstract datatype

� provides strong type checking, object becomes part of the language (e.g. C, ML)

Source: Liskov & Guttag 2000, section 5.3

9

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Abstraction vs. Implementation
➜ There is a mapping between abstract objects and

their representations
� several rep objects might map to the same abstraction object
� some rep objects might be invalid
� every abstract object must have a rep object

{ }
{ 1, 2, 3 }

{ 7 }

1

2

3

1

3

2

7 7

7

invalid

rep objects

abstract objects

Source: Liskov & Guttag 2000, p99-100

10

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Adequacy
➜ A data abstraction is adequate if…

� …it provides all the operations the ‘users’ (e.g. other programmers!) will
need

➜ Choices, choices, choices…
� e.g. for sets, member(s,x) isn’t strictly necessary:

� …could do intersection(s,create_set(x)) and test if the result is empty
� …could do delete(s,x) and see if we get an error message
� but member(s,x) is much more convenient.

� Such choices affect functionality, convenience & efficiency
� functionality: make sure all required operations are possible
� convenience: make sure that typical/frequent operations are simple to use
� efficiency: make frequent operations cheaper (usually by choosing an appropriate

rep type - this should not affect the choice of abstraction)

➜ Some requirements analysis is needed
�What data objects will be needed?
�What operations will need to be performed on them?
�What usage patterns are typical?

� “use cases” / “scenarios” are helpful here

Source: Liskov & Guttag 2000, p118-9

11

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Object Orientation
➜ Object Orientation extends data abstraction

� Data abstraction becomes the main structuring mechanism for programs
� No fixed control structure

�Object Oriented programming languages have:
� Abstraction
� Encapsulation - methods and objects are bundled together
� Polymorphism - same name can be used for different objects’ methods
� Dynamic binding - don’t know which method/object is referred to until runtime
� Inheritance - can extend existing data abstractions to create new ones

➜ Use OO design principles in any programming language
�Write data abstractions for all complex data structures

� Hide the implementations using ADTs or packages
� Only access the data abstractions through their defined operations (’methods’)

� Some OOP mechanisms are less important
� Polymorphism & dynamic binding are not relevant at the design level (these are

programming tricks that make programs more complex)
� Inheritance can be done manually

Source: van der Linden, 1996, chp2, and Blum, 1992, pp313-329

12

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Summary
➜ Data Abstractions lead to good program design

� They help with encapsulation (information hiding)
� They help reduce the complexity of software interfaces
� They make programs more modifiable

➜ Need some analysis to choose good data abstractions
� Adequacy: have you included all the operations that users need
� can switch between implementations to improve efficiency

➜ Data abstraction abstract data types
� ADTs are one way to implement data abstraction
� can also use packages, objects,…

➜ Data abstraction object-oriented programming
� data abstraction is really a design technique (the basis of OOD)
� can use it in any programming language
� some programming languages provide more support than others

13

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

References
Liskov, B. and Guttag, J., “Program Development in Java: Abstraction,

Specification and Object-Oriented Design”, 2000, Addison-Wesley.
� Chapter 5 provides a thorough coverage of data abstractions.

Blum, B. “Software Engineering: A Holistic View”. Oxford University
Press, 1992
� see especially section 4.2 for comments on data abstraction and object oriented design. (historical

note: Java is conspicuously absent from Blum’s list of object oriented languages. The technology has
changed dramatically in eight years! However, the principles are the same)

van der Linden, P. “Just Java”. 1996, Sunsoft Press
� A rare book on object oriented programming in Java written by someone that can explain it properly.

van Vliet, H. “Software Engineering: Principles and Practice (2nd Edition)”
Wiley, 1999.
� mentions data abstraction only in passing in section 11.1. Chapter 15 gives a much more formal

coverage of specifying data abstractions via algebraic specs (15.3), and via formal pre- and post-
conditions (15.4). This is more formal than I expect to use on this course, but worth a read to see
where some of the ideas came from.

