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Lecture 7:
Data Abstractions

➜ Abstract Data Types

➜ Data Abstractions
�How to define them
� Implementation issues
� Abstraction functions and invariants
� Adequacy (and some requirements analysis)

➜ Towards Object Orientation
� differences between object oriented programming and data abstraction
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Motivating Example
➜ Imagine we want to hold information 

about dates
� E.g. year, month, day, hours, minutes, seconds, 

day of week, etc.
� Could use an integer arrays: int date [3];
� and write some support functions for computing day 

of week, comparing dates,…

� But suppose we then decide years need 4 digits 
rather than 2 (i.e. 2001 instead of 01)

� we have to change every part of the program that 
uses dates

int today[3];
int lecture1_time[3];
…
today[0] = 01;
today[1] = 10;
today[2] = 01;
lecture1_time[0] = 9;
lecture1_time[1] = 0;
lecture1_time[2] = 0;

int today[3];
int lecture1_time[3];
…
today[0] = 01;
today[1] = 10;
today[2] = 01;
lecture1_time[0] = 9;
lecture1_time[1] = 0;
lecture1_time[2] = 0;

� Encapsulation
� we really want to distinguish the abstract notion of a ‘date’ from it’s 

concrete representation
� we want to hide all the details about how dates are represented
� Benefits:

� modifiability, testability, readability, reduced complexity, [Y2K compliance(!?)]

e.g. if we used arrays 
of int for date & time:
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Abstract Data Types (ADTs)
➜ Programming languages provide:

� Some concrete data types
� integers, characters, arrays,… 

� Some abstract data types
� floating point, lists, tables, two dimensional arrays, records,…

� Abstract data types are implemented using concrete datatypes
� (but you don’t need to know this to use them)

➜ Operations are provided for each datatype
� e.g. creation, assignment, etc.
� … but you cannot muck around with the internal representations

� e.g. float is represented in two parts, but you cannot access these directly

� But: some languages do allow you access to the internal representations
� e.g. in C, you can use pointers to access the internals of arrays
� this removes the distinction between the abstraction and the implementation
� it destroys most of the benefits of abstraction
� it causes confusion and error
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Home-made abstract data types
➜ Encapsulation is improved if you create your own data 

abstractions
� choice of what abstractions to create depends on the application

� choice of operations depends on how you want to manipulate the data
� e.g. bank accounts: open, close, make a deposit, make a withdrawal, check the 

balance, … 
� e.g. graphs: initialize, add nodes, remove nodes, check whether there is an edge 

between two nodes, get the label for a node,… 

➜ Most languages support creation of new datatypes
� … but they might not force you to specify the data abstraction
� … and they might not enforce information hiding 

Application Useful data abstractions 
Compiler writing tables, stacks, … 
Banking accounts, customers, … 
Mathematical computing matrices, sets, polynomials, … 
Graph Editing graphs, nodes, edges, positions … 

 

 

Source: Liskov & Guttag 2000, p77-78 
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Operations on Data Abstractions
➜ Four groups of operators:

� Creators
� create new objects of the datatype

� Producers
� take existing objects of the datatype and 

build new ones

�Mutators
� modify existing objects of the datatype

�Observers
� tell you information about existing objects 

of the datatype (without changing them)

➜ Immutable datatypes…
� …don’t have mutators

� they can be created and destroyed, but not 
modified

� once you’ve created an object you cannot 
change it

Example: sets
Creators:

create a new empty set,…
Producers:

set union,
set intersection,…

mutators:
add an element,
remove an element,…

observers:
set size,
set membership,
set equality,
test for empty set,…

Example: sets
Creators:

create a new empty set,…
Producers:

set union,
set intersection,…

mutators:
add an element,
remove an element,…

observers:
set size,
set membership,
set equality,
test for empty set,…

Source: Liskov & Guttag 2000, p117-118 

6

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Defining Data Abstractions
➜The abstraction 
should:
� name the data type
� list its operations
� describe the data 

abstraction in English
� say whether it’s 

mutable or not

� give a procedural 
abstraction for each 
operation
� the abstraction only 

lists the “public”
operations

� there may be other 
“private” procedures 
hidden inside…

/*
datatype set has operators create, insert, delete, 

member, size, union, intersection.
overview:

sets are unbounded mathematical sets of integers. 
They are mutable: insert and delete are the 
mutation operations.

operations:
procedure create () returns set
effects: x is a new empty set

procedure insert (set s, int x) returns null
effects: adds x to the set s such that s’ = s {x}

procedure delete (set s, int x) returns null
requires: x s
effects: s’ = s - {x}

… (etc) … */

/*
datatype set has operators create, insert, delete, 

member, size, union, intersection.
overview:

sets are unbounded mathematical sets of integers. 
They are mutable: insert and delete are the 
mutation operations.

operations:
procedure create () returns set
effects: x is a new empty set

procedure insert (set s, int x) returns null
effects: adds x to the set s such that s’ = s {x}

procedure delete (set s, int x) returns null
requires: x s
effects: s’ = s - {x}

… (etc) … */

Source: Liskov & Guttag 2000, section 5.1 
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Java Example
public class IntSet {
//Overview: IntSets are mutable, unbounded sets of integers. A
typical IntSet is {x1, …xn}

//Creators
public IntSet ()
//effects: Initializes this to be the empty set

//Mutators
public void insert (int x)
//effects: adds x to the set this such that this’ = this {x}

public void delete (int x)
//requires: x this

//effects: this’ = this - {x}

//Observers
public boolean member (int x)
//effects: returns true if x this, false otherwise

//Producers
public IntSet intersection (IntSet a)
//effects: returns a new set representing a this

}

public class IntSet {
//Overview: IntSets are mutable, unbounded sets of integers. A
typical IntSet is {x1, …xn}

//Creators
public IntSet ()
//effects: Initializes this to be the empty set

//Mutators
public void insert (int x)
//effects: adds x to the set this such that this’ = this {x}

public void delete (int x)
//requires: x this

//effects: this’ = this - {x}

//Observers
public boolean member (int x)
//effects: returns true if x this, false otherwise

//Producers
public IntSet intersection (IntSet a)
//effects: returns a new set representing a this

}

Source: adapted from Liskov & Guttag 2000, p81 
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Implementing Data Abstractions
➜ Choose a representation that:

� permits all operations to be implemented easily (and reasonably efficiently)
� permits frequent operations to run faster

➜ Example: sets
� an unsorted array with repeated elements

� insert is very fast, union is fast, intersection and member are slow, delete is 
very slow

� a sorted array
� insert is very slow, member is very fast, intersection is fast, union is slow

� a linked list
� insert is fast, delete is fast, union is slow, takes more memory

➜ Choose a programming mechanism
� Package

� hides ‘private’ code, package has to be ‘imported’ (e.g. Ada, C, Modula)
�Object

� provides inheritance, operations called by message passing (e.g. C++, Java)
� Abstract datatype

� provides strong type checking, object becomes part of the language (e.g. C, ML)

Source: Liskov & Guttag 2000, section 5.3 
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Abstraction vs. Implementation
➜ There is a mapping between abstract objects and 

their representations
� several rep objects might map to the same abstraction object
� some rep objects might be invalid
� every abstract object must have a rep object

{ }
{ 1, 2, 3 }

{ 7 }

1

2

3

1

3

2

7 7

7

invalid

rep objects

abstract objects

Source: Liskov & Guttag 2000, p99-100
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Adequacy
➜ A data abstraction is adequate if…

� …it provides all the operations the ‘users’ (e.g. other programmers!) will 
need

➜ Choices, choices, choices…
� e.g. for sets, member(s,x) isn’t strictly necessary:

� …could do intersection(s,create_set(x)) and test if the result is empty
� …could do delete(s,x) and see if we get an error message
� but member(s,x) is much more convenient.

� Such choices affect functionality, convenience & efficiency
� functionality: make sure all required operations are possible
� convenience: make sure that typical/frequent operations are simple to use
� efficiency: make frequent operations cheaper (usually by choosing an appropriate 

rep type - this should not affect the choice of abstraction)

➜ Some requirements analysis is needed
�What data objects will be needed?
�What operations will need to be performed on them?
�What usage patterns are typical?

� “use cases” / “scenarios” are helpful here

Source: Liskov & Guttag 2000, p118-9 
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Object Orientation
➜ Object Orientation extends data abstraction

� Data abstraction becomes the main structuring mechanism for programs
� No fixed control structure

�Object Oriented programming languages have:
� Abstraction
� Encapsulation - methods and objects are bundled together
� Polymorphism - same name can be used for different objects’ methods
� Dynamic binding - don’t know which method/object is referred to until runtime
� Inheritance - can extend existing data abstractions to create new ones

➜ Use OO design principles in any programming language
�Write data abstractions for all complex data structures

� Hide the implementations using ADTs or packages
� Only access the data abstractions through their defined operations ( ’methods’)

� Some OOP mechanisms are less important
� Polymorphism & dynamic binding are not relevant at the design level (these are 

programming tricks that make programs more complex)
� Inheritance can be done manually

Source: van der Linden, 1996, chp2, and Blum, 1992, pp313-329
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Summary
➜ Data Abstractions lead to good program design

� They help with encapsulation (information hiding)
� They help reduce the complexity of software interfaces
� They make programs more modifiable

➜ Need some analysis to choose good data abstractions
� Adequacy: have you included all the operations that users need
� can switch between implementations to improve efficiency

➜ Data abstraction abstract data types
� ADTs are one way to implement data abstraction
� can also use packages, objects,…

➜ Data abstraction object-oriented programming
� data abstraction is really a design technique (the basis of OOD)
� can use it in any programming language
� some programming languages provide more support than others
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