
CSC444-2001-SRS-01A Page 1 12-Sep-2001

Software Requirements Specification
for the Graph Editor

Document # CSC444-2001-SRS-01A
Revision A

12th September 2001

CSC444-2001-SRS-01A Page 2 12-Sep-2001

Table of Contents
1 SCOPE.. 3

1.1 PURPOSE .. 3
1.2 DEFINITIONS, ACRONYMS AND ABBREVIATIONS... 3
1.3 REFERENCE DOCUMENTS.. 3
1.4 DOCUMENT OVERVIEW ... 3

2 OVERALL DESCRIPTION... 4

2.1 SYSTEM PERSPECTIVE ... 4
2.2 SYSTEM FUNCTIONS... 4
2.3 USER CHARACTERISTICS ... 5
2.4 CONSTRAINTS ... 5
2.5 ASSUMPTIONS AND DEPENDENCIES... 5

3 SPECIFIC REQUIREMENTS... 6

3.1 EXTERNAL INTERFACE REQUIREMENTS.. 6
3.1.1 User Interfaces .. 6
3.1.2 Hardware Interfaces ... 6
3.1.3 Software Interfaces.. 6
3.1.4 Communication Interfaces .. 6

3.2 FUNCTIONAL REQUIREMENTS .. 6
3.2.1 Graph Data Object CSCI (GDO).. 6
3.2.2 Graph Editing Interface CSCI (GEI) .. 8
3.2.3 Graph Layout Generator CSCI (GLG).. 10
3.2.4 Graph Save and Print CSCI (GSP) ... 10

3.3 PERFORMANCE REQUIREMENTS... 11
3.4 DESIGN CONSTRAINTS ... 11

3.4.1 Standards Compliance .. 11
3.5 SOFTWARE SYSTEM ATTRIBUTES... 11

3.5.1 Reliability .. 11
3.5.2 Availability .. 11
3.5.3 Security and Privacy ... 11
3.5.4 Maintainability.. 11
3.5.5 Portability ... 11
3.5.6 Safety... 12
3.5.7 Training-related Requirements ... 12
3.5.8 Packaging Requirements... 12
3.5.9 Legal Requirements... 12

3.6 OTHER REQUIREMENTS ... 12

CSC444-2001-SRS-01A Page 3 12-Sep-2001

1 Scope
This specification establishes the functional, performance, and development requirements for Release 1 of a software
application for displaying and editing graphs.

1.1 Purpose
The Graph Editor Software is an interactive application that allows the user to create, edit, layout, save and print
arbitrary graphs. It uses the GXL graph notation standard for storing graphs to files.

1.2 Definitions, Acronyms and Abbreviations
CSCI Computer Software Configuration Item
DTD Document Type Definition
GDO Graph Data Object CSCI
GEI Graph Editing Interface CSCI
GLG Graph Layout Generator CSCI
GSP Graph Save and Print CSCI
GUI Graphical User Interface
GXL Graph Exchange Language
SRS Software Requirements Specification
XML Extensible Markup Language

1.3 Reference Documents
The following standards apply

J-STD-016-1995 IEEE/EIA Standard for Information Technology, Software Lifecycle Processes, Software
Development, Acquirer-Supplier Agreement

IEEE-STD-P1063 IEEE Standard for Software User Documentation

The following documents describe the course in which this software is to be developed:

CSC444-HND-001 Course Orientation Handout
CSC444-HND-002 Notes on the Software Trading Game

The following documents describe aspects of file formats for graph storage:

http://www.gupro.de/GXL/ The Graph Exchange Language Standard and XML DTDs

http://www.w3.org/XML/1999/XML-in-10-points An introduction to XML

There are many papers available describing graph layout algorithms, and the aesthetic principles underlying them.
Try a websearch for phases such as “graph layout algorithm”. The following paper provides a detailed survey:

Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis Tollis, “Annotated Bibliography on Graph
Drawing Algorithms” Computational Geometry: Theory and Applications 4:235-282 (1994). Available on the web
at: http://www.cs.brown.edu/people/rt/papers/gdbiblio.pdf

1.4 Document Overview
Section 1 identifies the scope of this document, the purpose of the software, and lists the definitions, acronyms and
reference documents. Section 2 provides an overview of the system, and a description of the functional architecture.
Section 3 identifies the four main Computer Software Configuration Items (CSCIs) that comprise the system, and
gives the functional requirements and constraints for each CSCI. Section 3 also describes the quality requirements
for the software. There are no appendices.

CSC444-2001-SRS-01A Page 4 12-Sep-2001

2 Overall Description
2.1 System Perspective
Graphs are commonly used throughout software engineering and computer science to present structured information
in a form that is easy to read. Many forms of information can readily be presented as a graph, including structural
and behavioural views of a software system, such as call graphs, data flow diagrams, state machine models, etc.
Briefly, a graph is a collection of nodes and connected edges. The edges may be directed (in which case they are
usually shown using arrowheads) or undirected. For different applications, the nodes may be drawn as circles, dots,
boxes, etc, while the edges are nearly always drawn as straight lines or arcs. Nodes and/or edges may be labelled,
and for some applications, there are conventions for how the labels are presented.

The software described in this specification consists of an application for creating, viewing, editing, laying out,
saving and printing the kinds of graphs commonly used in software engineering. The application shall input graphs
created by other applications, represented in the standard graph language GXL. It shall also support the creation of
new graphs through the use of a graphical user interface. In either case, the application shall support automated
layout of graphs according to aesthetic principles such as minimizing the crossing of edges. It shall also allow the
user to manipulate an automatically generated layout, by moving nodes and edges interactively. The application shall
allow graphs to be saved in GXL format, and shall also support common imaging formats for outputing pictures of
graphs.

2.2 System Functions
There are essentially four main functional areas, which correspond to the four CSCIs specified in section 3:

• Graph Data Object (GDO): This CSCI shall provide a memory resident data structure to hold the current
graph, which shall be used by the other CSCIs. It initiates this data structure either by getting GSP to read in a
description of an existing graph from a GXL file, or by generating a new empty graph for the user to edit. This
CSCI shall provide functions to the other CSCIs to traverse and manipulate the graph, but shall not pass the
entire graph as a data structure to other CSCIs.

• Graph Editing Interface (GEI): This CSCI shall provide a Graphical User Interface (GUI), to allow the user
to view and edit graphs. If the graph to be displayed contains layout information, the GEI shall use this
information to arrange the graph on the screen; otherwise GEI shall call GLG to provide a new layout. The GUI
shall provide functions to the user to add or delete nodes and edges, move nodes, edit the labels on nodes and
edges, change the shape of nodes, change the size of nodes, and change the style of edges. It shall also provide
access to general commands such as opening a GXL file, creating a new graph, and saving a graph as GXL or as
an image. This CSCI shall not store graphs in memory. It shall call GDO to access and update information
contained in the current graph. It shall call GSP for opening and saving files.

• Graph Layout Generator (GLG): This CSCI shall lay out an existing graph using the aesthetic conventions of
the appropriate application, using a standard graph layout algorithm. If a given graph has partial layout
information, GLG shall use this information as a basis, and complete the layout. Otherwise, GLG shall generate
a complete layout for the graph. GLG shall call GDO to access information about the current graph, and to store
layout information as part of this graph.

• Graph Save and Print (GSP): This CSCI shall be responsible for opening GXL files and for saving the current
graph to a file. For opening a file, GSP shall parse the GXL information and call the functions of GDO to store
the graph in memory. GSP shall save the file as one of two formats: as GXL, or as an image (for later printing).
For a GXL file, all information about the graph (including layout, and size and shape of nodes and edges) shall
be stored in the GXL description. For an image file, the current view of the graph shall be stored as an image in
one of a number of common image formats. Structure information about the graph may be lost in this case. GSP
shall provide error handling for cases where open and save operations are unsuccessful.

The architecture is summarized in Figure 2.1.

CSC444-2001-SRS-01A Page 5 12-Sep-2001

Graph Editor
Graph
Editing

Interface
(GEI)

Graph
Data Object

(GDO)

Graph
Layout

Generator
(GLG)

Graph
Save and

Print
(GSP)

user

OS File System

GXL files GXL files,
image files

data

control

Key

Figure 2.1: The System Architecture

2.3 User Characteristics
No special knowledge or skills shall be assumed on the part of the users. Users shall not be expected to learn a set of
commands in order to start using the application. Users shall not be expected to remember a list of commands while
using the software – these shall be provided via menus, tool palettes, or help screens. Users shall be protected from
data loss, such as closing a graph without saving it first.

2.4 Constraints
For release 1 of the software, a subset of the GXL notation shall be used. Specifically, the software is not required to
handle composite nodes (nodes that contain other nodes or graphs), hypergraphs and n-ary relationships, and GXL
extensions. If a GXL input file contains a graph that uses these features, they shall be ignored by the program, but
preserved if the graph is saved to a GXL file.

2.5 Assumptions and Dependencies
No special assumptions or dependencies have been identified.

CSC444-2001-SRS-01A Page 6 12-Sep-2001

3 Specific Requirements
3.1 External Interface Requirements

3.1.1 User Interfaces
All interaction with the user shall be via the GEI CSCI. The interface provided by the GEI may be graphical or
textual. The interface shall always give a view of the current graph. If the current graph is too large to display on the
screen, the GEI shall display part of it, and provide controls for scrolling to the hidden parts. The GEI shall also
provide a mechanism for zooming out, to allow the user to see the entire graph in a single view (without necessarily
seeing all the detail). The GEI shall also provide an interface for loading and saving files. It shall provide a visual
reminder if the current graph has been edited but not yet saved, and in this state, shall warn the user if she attempts to
close the graph (or open a different one) without saving the current graph first. It shall also provide a warning if the
user attempts to overwrite an existing file. For ease of use, the GEI shall allow the user to browse the file system
when opening or saving files, and the GEI shall remember the name and location of the last file opened.

3.1.2 Hardware Interfaces
None

3.1.3 Software Interfaces
The system shall make use of the operating system calls to the file management system to store and retrieve graphs
and images. Platform independence and portability requirements are described in section 3.5.5.

3.1.4 Communication Interfaces
The system shall be capable of exchanging graph information with other applications that are GXL compliant.

3.2 Functional Requirements
This section describes the functional requirements for each of the four CSCIs: Graph Data Object CSCI (GDO),
Graph Editing Interface CSCI (GEI), Graph Layout Generator CSCI (GLG), and Graph Save and Print CSCI (GSP).

3.2.1 Graph Data Object CSCI (GDO)
The GDO CSCI shall store the current graph in memory, and provide a functional interface to other CSCIs to access
and make changes to the current graph. It shall also be responsible for checking the validity of the current graph.

3.2.1.1 GDO Internal Data

The main internal data used by the BMS is a representation of the current graph. GDO shall hold all data about the
current graph in a suitable data structure, and provide information about the graph to the other CSCIs. The following
data needs to be stored:

For the graph as a whole, GDO shall store the filename that this graph was last saved to (if any), the size of the grid
on which it will be laid out, and optional global defaults for the size and appearance of nodes and edges.

For each node in the graph, GDO shall provide a unique identifier by which other CSCIs may refer to it. Each node
may additionally have an optional textual label, an optional location represented as a grid reference, an optional size,
an optional shape, and an optional colour.

For each edge in the graph, GDO shall record which nodes are connected by the edge. Each edge may additionally
have an optional textual label, an optional line style (e.g. solid, dashed, dotted, etc), an optional thickness, and
optionally, arrowheads on either end.

Note that information about the size, location and appearance of nodes and edges can be stored in GXL either as
attributes of nodes and edges, or as type information. In the latter case, a graph schema will typically define a small
number of node and edge types, so that appearance information needs to be defined only once. For example, a
dataflow diagram may have three different node types (e.g. “process”, “datastore”, and “external entity”), where the

CSC444-2001-SRS-01A Page 7 12-Sep-2001

attributes of each type define its appearance, and each node in the graph is declared to be one of these types. In either
case, GDO shall store the relevant information in appropriate data structures, so that it can be saved again to a GXL
file in the same form as it originally appeared.

GDO shall also perform validity checks on the current graph when requested. For a graph to be valid, there must be
no disconnected nodes, and no disconnected subgraphs, all edges must connect to valid nodes, and all grid references
representing node locations must lie with the graph’s given grid size.

3.2.1.2 BMS External Interface

The BMS CSCI provides the following functions for external use by other CSCIs:

new_graph(): initializes the internal data structure with a new empty graph.

add_node(nodeID): given a string containing a node identifier that is not already a node in the current
graph, creates a new node in the current graph with this identifier. Returns true if the creation was
successful, false otherwise.

delete_node(nodeID): given a valid node identifier in the current graph, deletes that node from the current
graph. Returns true if the deletion was successful, false otherwise.

add_edge(nodeID, nodeID, edgeID): given two valid node identifiers in the current graph, and a string
containing an edge identifier that is not already an edge in the current graph, adds an edge between the
two nodes with the given identifier. Returns true if the creation was successful, false otherwise.

delete_edge(edgeID): given a valid edge identifier in the current graph, deletes that edge from the current
graph. Returns true if the deletion was successful, false otherwise.

get_label(edgeID|nodeID): given a valid edge identifier or a valid node identifier in the current graph,
returns a string containing the textual label for that edge or node.

set_label(edgeID|nodeID, label): given a valid edge identifier or a valid node identifier in the current graph,
and a string, set the textual label for that edge or node to the given string. Returns true if the change
was successful, false otherwise.

get_position(nodeID): given a valid node identifier in the current graph, returns a pair of coordinates
describing the position of that node on the grid.

set_position(nodeID, coordinates): given a valid node identifier in the current graph and a pair of
coordinates on the grid, sets the position of the given node to the given coordinates. Returns true if the
change was successful, false otherwise.

get_grid(): returns a pair of integers representing the grid size used in the layout of the current graph.

set_grid(X, Y): given two positive integers, sets the grid size of the current graph to the given values.

expand_grid(factor): given a positive integer, expands the size of the current grid by this factor, multiplying
all node location coordinates by the same factor (this function effectively increases the resolution of the
grid). Returns true if the change was successful, false otherwise.

get_node_style(nodeID): given a valid node identifier in the current graph, returns a record giving
appearance parameters for the given node.

set_node_style(nodeID, appearance): given a valid node identifier in the current graph, and a record giving
appearance parameters for the given node, sets the appearance of the node to the given parameters.
Returns true if the change was successful, false otherwise.

get_edge_style(edgeID): given a valid edge identifier in the current graph, returns a record giving
appearance parameters for the given edge.

set_edge_style(edgeID, appearance): given a valid edge identifier in the current graph, and a record giving
appearance parameters for the given edge, sets the appearance of the edge to the given parameters.
Returns true if the change was successful, false otherwise.

list_neighbours(nodeID): given a valid node identifier in the current graph, returns a list of all nodes that are
directly connected to this node via edges.

CSC444-2001-SRS-01A Page 8 12-Sep-2001

list_edges(nodeID): given a valid node identifier in the current graph, returns a list of edgeIDs of edges
connected to that node.

first_node() and next_node(): These functions provide an iterator over all the nodes in the current graph.
first_node initializes the iterator, returning the nodeID of the first node (chosen arbitrarily). Each time
next_node is called, it returns the nodeID of the next node in the graph (in some arbitrary order). Each
node in the current graph is returned at most once in any sequence of calls to next_node() (unless there
is an intervening call to first_node()). If there are no more nodes, next_node returns an empty string.

number_of_nodes(): returns the total number of nodes in the current graph.

valid_graph(): checks whether the current graph is valid. Returns true if the graph is valid, false otherwise.

3.2.2 Graph Editing Interface CSCI (GEI)
The GEI CSCI shall provide a user interface for viewing and editing graphs. GEI shall provide a view of the current
graph, along with the ability to zoom in and out, and to scroll to any parts of the graph not visible in the current view.
GEI shall also provide a set of tools for editing graphs, including the ability to add and delete nodes and edges, and
to set various parameters concerning the visual appearance of the graph. All user interaction with the software shall
be handled by GEI. Hence GEI shall also provide user commands for opening and saving to files, for navigating the
filesystem, and for generating and modifying layouts.

GEI shall not not store any data about the current graph. GEI shall use the GDO to store the current graph, including
layout and appearance information, and to check that the current graph is valid. GEI shall use the GLG to generate
layouts prior to displaying any graphs that do not have complete layout information. GEI shall also provide user
commands for modifying the automatically generated layout (e.g. by moving individual nodes). GEI shall not
directly interact with the operating system for access to files; all access to the filesystem shall be via GSP.

3.2.2.1 GEI Internal Data

GEI shall store information about the past sequence of edit actions, so that it can provide a multi-level undo. GEI
shall allow the user to undo an entire sequence of edits, back to the last time the graph was saved to a file. The saved
list of edit actions shall be cleared each time the current graph is saved.

GEI shall store a list of recently opened files, to allow the user instant access to these files.

GEI shall store user preferences, including the size, position and zoom level of the current view, so that these can be
restored if the software is closed and reopened.

3.2.2.2 GEI External Interface

The GEI CSCI uses the functions provided by GDO, GLG and GSP to provide information about the current graph,
to generate layouts, and to open, save and print the current graph.

The GEI CSCI makes the following functions available to other CSCIs:

ask_user(message, type): given a string containing a message, and a primitive type (integer, boolean, string,
or real), asks the user to input a value of the given type, using the given message as a prompt. Returns
the value input by the user.

3.2.2.3 GEI User Commands

The GEI CSCI shall make the following commands available to the user. These commands may be provided by
whatever interface mechanisms are appropriate, (e.g pull-down or pop-up menus, tool palettes, keyboard shortcuts,
etc). A combination of such mechanisms may be used if usability testing suggests they are helpful.

• new: initializes the current graph. This command must give the user a warning (and a chance to cancel the
operation) if the previous current graph has not been saved since the last edit

• open: allows the user to browse the directory structure to select a GXL file to open. This command must
give the user a warning (and a chance to cancel the operation) if the previous current graph has not been
saved since the last edit.

CSC444-2001-SRS-01A Page 9 12-Sep-2001

• save: saves the current graph to the most recent GXL file associated with this graph. If the current graph has
been initialized and not yet saved to a file, this command functions the same as the “save as” command.

• save as: this command shall prompt the user to select a directory and a filename to save the current graph to
(as GXL). If the selected filename already exists, this command shall ask the user to confirm whether to
overwrite the existing file.

• export: this command shall prompt the user to select an image type to export the file as (selected from those
image types supported by GSP), along with any necessary parameters (such as image size, resolution, etc).
It will then prompt the user to select a directory and a filename to export an image of the current graph to.

• zoom in: allows the user to zoom in on the current view, centered on the selected node(s). If no nodes are
selected, this command should zoom in on the last edited node. If no nodes are selected, and no nodes have
been edited, this command should zoom in on the center of the current view. At least two levels of
magnification should be offered.

• zoom out: allows the user to zoom out from the current view. Enough levels of magnification shall be
provided to allow the user to zoom out such that the entire current graph is visible (even if much of the
detail is lost).

• scroll: allows the user to scroll to all parts of the graph that are not visible in the current view, without
changing the zoom level. If the entire graph is visible, this command shall not be enabled.

• add node: allows the user to create a new node and place it on the grid.

• select node(s): allows the user to select one or more nodes in the current graph on which to perform edit
actions. This command shall include functions to add nodes to the current selection, select all nodes in the
graph, and to clear the selection.

• delete node: allows the user to delete the currently selected node(s) from the graph.

• move node: allows the user to move the currently selected node(s) on the grid. This command should
ensure that edges connected to the moved nodes are redrawn correctly.

• change node style: allows the user to change the appearance of the currently selected node(s), by changing
their shape, size, colour or other relevant parameters.

• add edge: allows the user to add an edge between two nodes. An appropriate interface mechanism should
be used to allow the user to indicate which two nodes the edge should connect.

• select edge(s): allows the user to select one or more edges in the current graph on which to perform edit
actions. This command shall include functions to add edges to the current selection, select all edges in the
graph, and to clear the selection.

• delete edge: allows the user to delete the currently selected edge(s) from the graph.

• change edge style: allows the user to change the appearance of the currently selected edge(s), by changing
their thickness, arrowheads, or other relevant parameters.

• create new layout: allows the user to invoke the auto-layout function on demand. If one or more nodes is
currently selected, only the selected nodes will be laid out (with all other nodes fixed).

• undo: allows the user to undo edit actions. A multi-level undo shall be provided to allow the user to keep
undoing edit actions, back to the last saved version of the file.

• redo: allows the user to ‘undo’ an undo command. This command shall be enabled immediately after an
undo command has been used, and disabled as soon as other edit actions are performed.

• repeat: allows the user to repeat the last edit action on the current selection.

• revert: allows the user to revert to the last saved version of the current graph. This command must ask the
user to confirm that they wish to discard all edits to the current graph.

CSC444-2001-SRS-01A Page 10 12-Sep-2001

3.2.3 Graph Layout Generator CSCI (GLG)
The GLG CSCI is responsible for automatically generating a layout for the current graph. If the current graph has
location information for some nodes and not for others, GLG shall use the existing layout for those nodes that have
locations defined, and layout the remaining nodes. If the current graph has a grid size defined, GLG shall attempt to
use this grid. If there is no grid size, or the grid size is smaller than the number of nodes in the current graph, GLG
shall set a new, appropriate grid size.

GLG shall use a standard graph layout algorithm to find an aesthetically pleasing layout. Typical aesthetics for graph
layouts include minimizing the number of edges that cross one another, keeping the lengths of edges to be similar to
each other, and keeping nodes that are connected to one another closer together than nodes that are not. Note that
most standard graph layout algorithms have input parameters that affect the way the layout is generated. These
parameters should be made available to the user to select via the ask_user command of the GEI. If appropriate, GLG
may include more than one layout algorithm. If so, the user should be allowed to select between the available
algorithms.

GLG does not store any data about the current graph. It uses the GDO to store the current graph, including layout
information, and for checking that the current graph is valid.

GLG does not interact with the user directly. All user interactions shall be handled by GEI.

3.2.3.1 GLG Internal Data

The GLG may need to store temporary information about the layout being generated, according to the algorithm(s)
used.

GLG shall keep a copy of any layout for the current graph that it overwrites, so that old layouts can be retrieve by the
user via the undo command.

3.2.3.2 GLG External Interface

The GLG provides the following functions for use by other CSCIs:

layout(): completes a layout for the current graph, preserving any location information already defined.
Returns true if it successfully generates a new layout, false otherwise.

new_layout(): generates a new layout for the current graph, discarding any existing location information
defined. Returns true if it successfully generates a new layout, false otherwise.

partial_layout(list of nodeIDs): given a list of valid node identifiers, generates a new layout for the current
graph, by discarding any existing location information for the given nodes, but preserving location
information for all nodes not in the given list. Returns true if it successfully generates a new layout,
false otherwise.

undo_layout(): restores the previous layout. Returns true if it successfully restores a layout, false otherwise.

3.2.4 Graph Save and Print CSCI (GSP)
The GSP CSCI is responsible for opening GXL files, saving the current graph to a GXL file, and for exporting views
of the current graph to image files for displaying in other applications and for printing. GSP is responsible for all
interactions with the file system, including checking whether a file exists, and moving between directories.

GSP shall support one image export format chosen from the following list: GIF image, JPEG image, Encapsulated
Postscript (EPS), BMP bitmap, TIFF bitmap, or portable document format (PDF). The image saved shall correspond
as closely as possible to the appearance of the graph displayed by GEI.

3.2.4.1 GSP Internal Data

GSP shall not store any information about the current graph. All data read in from GXL files shall be passed to GDO
to be stored in memory.

3.2.4.2 GSP External Interface

The GSP CSCI provides the following functions for external use by other CSCIs:

CSC444-2001-SRS-01A Page 11 12-Sep-2001

open_graph(filename): given a valid filename in the current directory, if the file contains GXL, the GXL
information is passed to GDO to be stored in the appropriate data structures. Returns true if it
succeeded in loading a new graph, false otherwise. If the graph could not be loaded for any reason, the
previous current graph should be unchanged, otherwise any previous graph data is discarded.

save_graph(): saves the current graph to the GXL file from which it was read. Returns true if the save
operation was completed successfully, false otherwise. If the current graph is not associated with a file,
save_graph returns false.

save_graph_as(filename): given a string, saves the current graph as a GXL file with the given name in the
current directory. Returns true if the save operation was completed successfully, false otherwise.

save_image(filename): given a string, saves the current graph as an image file with the given name in the
current directory. Returns true if the save operation was completed successfully, false otherwise.

exists(filename): given a string, returns true if the given string is the filename of an existing file in the
current directory, false otherwise.

change_dir(dirname): given a string, changes the current directory to the given directory if it exists. Returns
true if the directory change was completed successfully, false otherwise.

list_dir(): returns a list of the files and subdirectories in the current directory as a list of strings.

3.3 Performance Requirements
The system should respond to each user input within 2 seconds. The system should be able to handle large graphs
(thousands of nodes), as would be generated from typical reverse engineering tools. When laying out large graphs,
speed is important. If the layout will take more than a few seconds, the user should be warned of this, and given a
progress indicator. There are no other performance requirements.

3.4 Design Constraints

3.4.1 Standards Compliance
The input and output file formats should conform to the GXL standard.

All language used in the software (including manuals and documentation) should comply with current University of
Toronto guidelines for decency and equal opportunities.

3.5 Software System Attributes

3.5.1 Reliability
The system should never crash or hang, other than as the result of an operating system error. The system should
provide graceful degradation in the face of network delays and failures, or when handling large graphs.

3.5.2 Availability
There are no specific availability requirements.

3.5.3 Security and Privacy
There are no specific security and privacy requirements, other than those generally governing use of student login
accounts on University of Toronto computer equipment.

3.5.4 Maintainability
All code shall be fully documented. Each function shall be commented with pre- and post-conditions. All program
files shall include comments concerning authorship and date of last change.

The code should be modular, to permit future modifications.

3.5.5 Portability
The software should run on at least one of the following four platforms:

CSC444-2001-SRS-01A Page 12 12-Sep-2001

• Microsoft Windows (Windows implementations shall be portable to all versions of Windows up to and
including Windows XP)

• UNIX (Unix implementation shall be portable to any version of Unix that supports the user interface
libraries used)

• Apple Macintosh OS (Apple Mac implementations shall be portable to all current versions of the MacOS)

• Linux (Linux implementations shall run on at least one version of Linux)

No other specific portability requirements have been identified.

3.5.6 Safety
No safety requirements have been identified.

3.5.7 Training-related Requirements
No specific training should be necessary for a user to begin using this application.

3.5.8 Packaging Requirements
The system should be packaged along with source code and all documentation, and be available for electronic
transfer as a single compressed file. The uncompressed set of files should include a README file containing a
minimal guidance for installing and running the software, including recompilation if needed. For recompilation, the
system should include a makefile.

3.5.9 Legal Requirements
Copyright laws and license agreements must be respected for any third party software used in the creation of this
system.

3.6 Other Requirements
There are no other requirements.

