ﬂ University of Toronto Department of Computer Science

v Lecture 21:
Software Architectures

- Architectural Styles
% Pipe and filter
% Object oriented:
> Client-Server; Object Broker
%, Event based
% Layered:
> Designing Layered Architectures
% Repositories:
> Blackboard, MVC
% Process control

| _® _1©2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

SOME RIEHTS RESERVED

~§ University of Toronto Department of Computer Science

‘ Analysis vs. Design

- Analysis

% Asks “what is the problem?”
> what happens in the current system?
> what is required in the new system?

% Results in a detailed understanding of:
> Requirements
> Domain Properties

% Focuses on the way human activities are conducted

- Design

& Investigates “how to build a solution”
» How will the new system work?
> How can we solve the problem that the analysis identified?

% Results in a solution to the problem
> A working system that satisfies the requirements
> Hardware + Software + Peopleware

% Focuses on building technical solutions

- Separate activities, but not necessarily sequential
% _.and attempting a design usually improves understanding of the problem

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

9’ University of Toronto Department of Computer Science

|

Software Architecture

- A software architecture defines:

Y the components of the software system
% how the components use each other's functionality and data
Y How control is managed between the components

- An example: client-server

Y Servers provide some kind of service; clients request and use services

% applications are located with clients
> E.g. running on PCs and workstations;

% data storage is treated as a server
» E.g. using a DBMS such as DB2, Ingres, Sybase or Oracle
> Consistency checking is located with the server
% Advantages:
> Breaks the system into manageable components
> Makes the control and data persistence mechanisms clearer

% Variants:
> Thick clients have their own services, thin ones get everything from servers

Y Note: Are we talking about logical (s/w) or physical (h/w) architecture?

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. R)

ﬂ University of Toronto Department of Computer Science

v Coupling and Cohesion

- Architectural Building blocks:

+ connector +

module module

- A good architecture:

% Minimizes coupling between modules:
> Goal: modules don't need to know much about one another to interact
> Low coupling makes future change easier

% Maximizes the cohesion of each module
> Goal: the contents of each module are strongly inter-related
> High cohesion makes a module easier to understand

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

@ University of Toronto Department of Computer Science

Lo

L Pipe-and-filter

Source: Adapted from Shaw & Garlan 1996, p21-2. See also van Vliet, 1999 Pp266-7 and p279

f”Ter‘ plpe > fllTer‘ iip»@ - p|pe I e
filter : pIp
ipe —> L—p| filter F—»
— pipe .
> filter : pipe
PIPE »| filter
pipe

- Examples:
% UNIX shell commands
& Compilers:

> Lexical Analysis -> parsing -> semantic analysis -> code generation
% Signal Processing

- Interesting properties:

% filters don't need to know anything about what they are connected to
G filters can be implemented in parallel

% behaviour of the system is the composition of behaviour of the filters
> specialized analysis such as throughput and deadlock analysis is possible

[_®] ©2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

SOME RIEHTS RESERVED

ﬂ University of Toronto Department of Computer Science

o8

v Object Oriented Architectures

Source: Adapted from Shaw & Garlan 1996, p22-3.

: me’rho.d e) method
o Invocation o
L] o invocation
o B & [O <
O o L "6 O 2, o
-+ 0O — S.
i o
method @ 31
invocation 1 ©
= EC E .me‘rho.d
Q E invocation
]
=+ [

- Examples:
Y abstract data types

- Interesting properties

% data hiding (internal data representations are not visible to clients)
% can decompose problems into sets of interacting agents
% can be multi-threaded or single thread

- Disadvantages
% objects must know the identity of objects they wish to interact with

[_®] ©2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

SOME RIEHTS RESERVED

ﬂ University of Toronto Department of Computer Science

)

v Variant 1: Client Server

o [
6.
S
-t
\—/ method
invocation

method
invocatio

4u2)|2

metho
invocation

- Interesting properties
Y Is a special case of the previous pattern object oriented architecture
% Clients do not need to know about one another

- Disadvantages
% Client objects must know the identity of the server

[_®] ©2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

SOME RIEHTS RESERVED

ﬂ University of Toronto Department of Computer Science

o8

v Variant 2: Object Brokers

)
o [O ®
& O 3
3 3
e/ ————/

[J?AJ?S]

- Interesting properties

Y, Adds a broker between the clients and servers
Y Clients no longer need to know which server they are using
Y Can have many brokers, many servers.

- Disadvantages

" Broker can become a bottleneck
% Degraded performance

M © 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

ﬂ University of Toronto Department of Computer Science

v :

Broker Architecture Example
:Client LlientSide :Broker SenerSide Sernver
EE— Proxy _ Proxy _

i. callServer() E E E i
: | | :
| I I I
sendRequest{) | : |
packData() ' : |
| : |
(< : : :
send equest()> :lndServer() : |
| l
E i
requestSevice() :unPackData() i
1 :
- [l service() \i
I ~ |
| N
E packDatai)
| sendResponse() | I E
| |
I |
I |
| |
dRegponse()] i
L<sen ! !
PackData() \:*\ . E
- 1-=>Possible
< _______ : process |
: | boundaries |
H i | |
I I | 1

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

“ University of Toronto Department of Computer Science

o8

v Event based (implicit invocation)

Source: Adapted from Shaw & Garlan 1996, p23-4. See also van Vliet, 1999 Pp264-5 and p278
announce

agent event agent
listen for
broadcast event
agent |
listen for announce€™ agent
event event
- Examples

& debugging systems (listen for particular breakpoints)
% database management systems (for data integrity checking)
& graphical user interfaces

- Interesting properties

& announcers of events don't need to know who will handle the event
% Supports re-use, and evolution of systems (add new agents easily)

- Disadvantages
Y, Components have no control over ordering of computations

| _® _1©2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

SOME RIEHTS RESERVED

ﬂ University of Toronto Department of Computer Science

oh

v Layered Systems

Source: Adapted from Shaw & Garlan 1996, p25. See also van Vliet, 1999, p281.

application laye
utilities

users

- Examples

% Operating Systems
% communication protocols

- Interesting properties

% Support increasing levels of abstraction during design
% Support enhancement (add functionality) and re-use
% can define standard layer interfaces

- Disadvantages
% May not be able to identify (clean) layers

[_®] ©2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

SOME RIEHTS RESERVED

11

“ University of Toronto Department of Computer Science

v Variant: 3-layer data access
Presentation layer

| _® _1©2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

SOME RIEHTS RESERVED

ﬂ University of Toronto Department of Computer Science

v Open vs. Closed Layered Architecture

- closed architecture + L'—“Ye"NNl
v ayer N-

% each layer only uses services of the layer
immediately below:

% Minimizes dependencies between layers and E v
reduces the impact of a change. Layer 2 v
Layer 1

- open architecture

% a layer can use services from any lower

layer. _v Layer N

Y More compact code, as the services of lower Layer N-1|
layers can be accessed directly

% Breaks the encapsulation of layers, so : l
increase dependencies between layers Layer 2

B Layer 1 \

| _® _1©2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

SOME RIEHTS RESERVED

“ University of Toronto Department of Computer Science

- How many layers?

- 2-|ayeps: .. > Application (client)

% application layer Database (server)

% database layer

% e.g. simple client-server model Presentation layer (user interface)
> 3-layers: ... > Business Logic

& separate out the business logic Database

>helps to make both user interface and
database layers modifiable

Presentation layer (user interface)

- 4‘|GY€PS: .. > —
L, Separates applications from the pplications
domain entities that they use: Domain Entities
>boundary classes in presentation layer
»>control classes in application layer Database
>entity classes in domain layer
- Partitioned 4-layers > [ui2 ui3 ul4
% identify separate applications App1 App2 App3 App4

Domain Entities

Database

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

ﬂ University of Toronto Department of Computer Science

oh

% Repositories

Source: Adapted from Shaw & Garlan 1996, p26-7. See also van Vliet, 1999, p280

agent

blackboard
agent (shared agent

data)

agent agent

- Examples
% databases
% blackboard expert systems
% programming environments

- Interesting properties

% can choose where the locus of control is (agents, blackboard, both)
% reduce the need to duplicate complex data

- Disadvantages
% blackboard becomes a bottleneck

[_®] ©2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

SOME RIEHTS RESERVED

15

ﬂ University of Toronto Department of Computer Science

u Variant: Model-View-Controller

access

Eauoa;uo%

Eauoa;uo%

- Properties

% One central model, many views (viewers)

% Each view has an associated controller

Y The controller handles updates from the user of the view
% Changes to the model are propagated to all the views

M © 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

“ University of Toronto

og

Department of Computer Science

Model View Controller Example

-] dependson *

g p—

«component»
CampaignModel

coreData
setOfObservers [0..*]

attach(Observer)
detach(Observer)

notify()
getAdvertData()

modify Advert()

1

-

Navigability arrows show the
directions in which messages

will be sent.

updates

«component»
AdvertView
viewData
initialize ()
displayAdvert()
update()
1 N A
updates
1
AV
«component»

AdvertController

initialize()
changeAdvert()
update()

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

17

“ University of Toronto

Department of Computer Science

=

MVC Component Interaction

‘AdvertController

:CampaignModel

‘AdvertView

I
|
changeAdvert))

Sy

modifyAdvert()

update()

/

notify()

getAdvertData()

update()

getAdvertData()

displayAdvert()

I)

i

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

18

ﬂ University of Toronto Department of Computer Science

=

v Process Control

Source: Adapted from Shaw & Garlan 1996, p27-31.

<2
input variables &
v ;4’
control manipulated
pamme’rer'gl @ variables >@> process ¥
A controlled
variables

actuators
- Examples

Y aircraft/spacecraft flight control systems
Y controllers for industrial production lines, power stations, etc.
% chemical engineering

- Interesting properties

% separates control policy from the controlled process
% handles real-time, reactive computations

- Disadvantages
% Difficult to specify the timing characteristics and response to disturbances

[_®] ©2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

SOME RIEHTS RESERVED

19

