
University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 14:
Modelling “events”

 Focus on states or events?
 E.g. SCR table-based models
 Explicit event semantics

 Comparing notations for state transition models
 FSMs vs. Statecharts vs. SCR

 Checking properties of state transition models
 Consistency Checking
Model Checking, using Temporal Logic

When to use formal methods

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

What are we modelling?

 Starting point:
 States of the environment
 (Application domain) events that change the state of the environment

 Requirements expressed as:
 Constraints over states and events of the application domain

E.g. “When the aircraft is in the air, the pilot should be prevented from accidentally engaging
the reverse thrust”
I.e. “In state X, event Y shall be prevented”

 To get to a specification:
 For each relevant application domain event, find a corresponding input event
 For each relevant state, ensure there is a way for the machine to detect it
 For each required action, find a corresponding output event

Application Domain Machine Domain

D - domain properties

R - requirements

C - computers

P - programs

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

software
Monitored

 Variables

Enviro-
ment

System

input
devices

input
data

items

data
items

output

devices
output Controlled

 Variables

Enviro-
ment

Tabular Specifications: SCR
Four Variable Model:

CurrentModePoweredonToo ColdTemp OKToo HotNew ModeOff@T-t-Inactive@Tt--Heat@T--tACInactive@F---Off-@T--Heat---@TACHeat@F---Off--@T-InactiveAC@F---Off--@T-Inactive

ModesEventsNoFailure@T(INMODE)neverBlah@T(thingy)@T(other)DoodahneveralwaysACFailure, HeatFailurenever@T(INMODE)ACpower =OffOn

ModesEventsNoFailurefalsetrueACFailure, HeatFailuretruefalseBuzzer =OffOn

ModesEventsNoFailuretruefalseACFailuretemp > temp0temp <= temp0HeatFailurefalsewaterlevel =lowWarning light =OffOn

VariableTypeInitial ValueUnitsWarningFlagbooleanfalse-OtherFlagbooleantrueFudgelevelenumeratedone-Waterlevelreal0.0mtemperaturereal0.0degrees CBlipCounterinteger0milesTimeNowreal100.0secAirBrakeAccreal0.0m/sec

ConstantTypeValueUnitsLowTempinteger15degrees CHighTempinteger23degrees CMaxTimeOutinteger300millisecReferenceSafetyLevelsafetytypelow-TempMargininteger5degrees C

TypeBaseTypeValuesUnitsWarningLevelenumeratedlow,med,high-Temperatureinteger-100..100degrees CWaterlevelinteger0..100metersFlagenumeratedon, off-

Dictionaries:

Monitored/Controlled
Variables

Types

Constants

Mode Transition Tables
CurrentModePoweredonToo ColdTemp OKToo HotNew ModeOff@T-t-Inactive@Tt--Heat@T--tACInactive@F---Off-@T--Heat---@TACHeat@F---Off--@T-InactiveTimeout@F---No Failure-ff@TACFailure

CurrentModePoweredonToo ColdTemp OKToo HotNew ModeOff@T-t-Inactive@Tt--Heat@T--tACInactive@F---Off-@T--Heat---@TACHeat@F---Off--@T-InactiveAC@F---Off--@T-Inactive

ModesEventsNoFailure@T(INMODE)neverBlah@T(thingy)@T(other)DoodahneveralwaysACFailure, HeatFailurenever@T(INMODE)Heater =OffOn

ModesEventsNoFailure@T(INMODE)neverSensorFail@T(reset=on)@T(INMODE)TimeoutalwaysneverACFailure, HeatFailurenever@T(INMODE)Warning light =OffOn

Event Tables

Condition Tables

Tables: also:
Assertions,
Scenarios,

...

SCR Specification

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

Source: Adapted from Heitmeyer et. al. 1996.
SCR basics

Modes and Mode classes
 A mode class is a finite state machine, with states called system modes

 Transitions in each mode class are triggered by events
 Complex systems described using several mode classes operating in parallel
Overall system state is:

 the system is in exactly one mode from each mode class…
 …and each variable has a unique value

 Events
 An event occurs when any system entity changes value

 An input event occurs when an input variable changes value
 Single input assumption - only one input event can occur at once
Notation:

 We may need to refer to both the old and new value of a variable:
 ‘Primes’ denote values after the event:
@T(c) ≡ ¬c ∧ c’ e.g. @T(y=1) ≡ y≠1 ∧ y’=1
@F(c) ≡ c ∧ ¬c’

 A conditioned event is an event with a predicate
@T(c) WHEN d ≡ ¬c ∧ c’ ∧ d

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

 Mode Class Tables
 Define a (disjoint) set of modes (states) that the software can be in.
 Each mode class has a mode table showing which events cause mode changes

 A mode table defines a partial function from modes and events to modes

 Example:

Defining Mode Classes
Source: Adapted from Heitmeyer et. al. 1996.

Current
Mode

Powered
on

Too Cold Temp OK Too Hot New Mode

Off @T - t - Inactive

@T t - - Heat

@T - - t AC

Inactive @F - - - Off

- @T - - Heat

- - - @T AC

Heat @F - - - Off

- - @T - Inactive

AC @F - - - Off

- - @T - Inactive

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

 Event Tables
 defines how a controlled variable changes in response to input events
 Defines a partial function from modes and events to variable values
 Example:

 Condition Tables
 defines the value of a controlled variable under every possible condition
 Defines a total function from modes and conditions to variable values
 Example:

Defining Controlled Variables
Source: Adapted from Heitmeyer et. al. 1996.

Modes

Heat target - temp ! 5 target - temp >5

AC temp - target ! 5 temp - target >5

Inactive, Off true never

Warning light = Off On

Modes

Heat, AC @C(target) never

Inactive, Off never @C(target)

Ack_tone = Beep Clang

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

offhook

idle connectedringtonedialtone

busytone
on hook

on hook
on hook

on hook

off hook

Dial
[callee
busy]

Dial
[callee idle]

Callee
accepts

Callee disconnects

idle connectedringtonedialtone

busytone

on hook

off hook

Dial
[callee
busy]

Dial
[callee idle]

Callee
accepts

Callee disconnects

Refresher: FSMs and Statecharts

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

SCR Equivalent
Current
Mode

offhook dial
callee
offhook

New
Mode

Idle @T - - Dialtone

Dialtone - @T F Ringtone

- @T T Busytone

@F - - Idle

Busytone @F - - Idle

Ringtone - - @T Connected

@F - - Idle

Connected - - @F Dialtone

AC @F - - Idle

 Interpretation:
 In Dialtone: @T(offhook) WHEN callee_offhook takes you to Ringing
 In Ringtone: @F(offhook) takes you to Idle
 Etc…

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

State Machine Models vs. SCR
 All 3 models on previous slides are (approx) equivalent

 State machine models
 Emphasis is on states & transitions

 No systematic treatment of events
 Different event semantics can be applied

 Graphical notation easy to understand (?)
 Composition achieved through statechart nesting
Hard to represent complex conditions on transitions
Hard to represent real-time constraints (e.g. elapsed time)

 SCR models
 Emphasis is on events

 Clear event semantics based on changes to environmental variables
 Single input assumption simplifies modelling

 Tabular notation easy to understand (?)
 Composition achieved through parallel mode classes
Hard to represent real-time constraints (e.g. elapsed time)

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Formal Analysis
 Consistency analysis and typechecking

 “Is the formal model well-formed?”
 [assumes a notation where well-formedness is a useful thing to check]

 Validation:
 Animation of the model on small examples
 Formal challenges:

 “if the model is correct then the following property should hold...”
 ‘What if’ questions:

 reasoning about the consequences of particular requirements;
 reasoning about the effect of possible changes

 Reachability analysis
 E.g. use a model checker to find traces that satisfy some property

 Checking application properties:
 “will the system ever do the following...”

 Verifying design refinement
 “does the design meet the requirements?”

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

Model Checking
 A debugging tool for state machine models

 emphasis on partial verification of partial models

What it does:
Mathematically – computes the “satisfies” relation:

 Given a temporal logic theory, checks whether a given finite state machine is a
model for that theory.

 Engineering view – checks whether properties hold:
 Given a state machine model, checks whether the model obeys:
 safety properties - a ‘bad’ state cannot be reached
 liveness properties - something good will eventually happen

 How to apply it in RE:
 … if the model is an (operational) Specification:

 Check whether particular requirements hold of the spec
 … if the model is (an abstracted portion of) the Requirements

 Carry out basic validity tests as the model is developed
 … if the model is a conjunction of the Requirements and the Domain

 Formalise assumptions and test whether the model respects them

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

Model Checking Basics
 Build a finite state machine model

 E.g. PROMELA - processes and message channels
 E.g. SCR - tables for state transitions and control actions
 E.g. RSML - statecharts + truth tables for action preconditions

 Express validation property as a logic specification
 Propositions in first order logic (for invariants)
 Temporal Logic (for safety & liveness properties)

 E.g. CTL, LTL, ...

 Run the model checker:
 Computes the value of: model property

 Explore counter-examples
 If the answer is ‘no’ find out why the property doesn’t hold
 Counter-example is a trace through the model

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

Temporal Logic
 LTL (Linear Temporal Logic)

 Expresses properties of infinite traces through a state machine model
 adds two temporal operators to propositional logic:

◊p - p is true eventually (in some future state)
p - p is true always (now and in the future)

 CTL (Computational Tree Logic)
 branching-time logic - can quantify over possible futures
 Each operator has two parts:

EX p - p is true in some next states
AX p - p is true in all next states
EF p - along some path, p is true in some future state
AF p - along all paths…
E[p U q] - along some path, p holds until q holds;
A[p U q] - along all paths…
EG p - along some path, p holds in every state;
AG p - along all paths…

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

Example

 Sample Properties
 If you are connected you can hang up:
 AG(CONNECTED → EX(¬OFFHOOK)
 If you are connected, hanging up always disconnects you:
 AG(CONNECTED → AX(¬OFFHOOK → ¬CONNECTED))
 A connection doesn’t start until you pick up the phone:
 AG(¬CONNECTED → A[¬CONNECTED U OFFHOOK])
 If you make a call, the phone cannot ring without returning to idle first:
 AG((RINGTONE ∨ BUSYTONE) → A[¬RINGING U IDLE])

offhook

idle connectedringtonedialtone

busytone

on hook

off hook

Dial
[callee
busy]

Dial
[callee idle]

Callee
accepts

Callee disconnects

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

Complexity Issues
 The problem:

Model Checking is exponential in the size of the model and the property
 Current MC engines can explore 10120 states…

 using highly optimized data structures (BDDs)
 …and state space reduction techniques

 …that’s roughly 400 propositional variables
 integer and real variables cause real problems

 Realistic models are often too large to be model checked

 The solution:
 Abstraction:

 Replace related groups of states with a single superstate
 Replace real & integer variables with propositional variables

 Projection:
 Slice the model to remove parts unrelated to the property

 Compositional verification - break large model into smaller pieces
 (But it’s hard to verify that the composition preserves properties)

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

Summary
 SCR vs UML Statecharts

 Tabular view allows more detail - e.g. complex conditions
 Graphical view shows hierarchical structure more clearly
 Event Semantics

 SCR has a precisely defined meaning for “events”
 UML Statecharts do not

 Uses:
 UML statecharts good for sketches, design models
 SCR good for writing precise specifications

 Analysis:
 “Model checkers” are debugging tools for state machine models
Write temporal logic properties and test whether they hold
 Very good at finding subtle errors in specifications

