L

" University of Toronto Department of Computer Science

o

o

L4

- Course website

- Textbooks

- Lecture Notes

- Coursework

University of Toronto Department of Computer Science

About the Course

% www.cs.toronto.edu/~sme/CSC340F/

% Fundamentals of Requirements Engineering
% UML Distilled

% Available on the course website prior to each lecture

% Carried out in teams of 4

% Each team submits one report (per assignment)

% All team members receive the same grade (exceptions can be negotiated)
% Involves a practical “real-world” analysis project

[© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

CSC340:
Requirements Engineering
Prof Steve Easterbrook
sme@cs.toronto.edu
http://www.cs.toronto.edu/~sme/CSC340F
(S © 2004-5 Steve This is available free for I use with attribution under a creative commons license.
a

< University of Toronto

L4

Department of Computer Science

Course Objectives

- Examine the state-of-the-art for research &

practice in Requirements Engineering.
% Role of RE in software and systems engineering
% Current techniques, notations, methods, processes and tools used in RE

- Gain practical experience in selected RE techniques
% Especially goal-oriented and object-oriented modelling techniques

- Understand the essential nature of RE

% Breadth of skills needed for RE, and the many disciplines on which it draws
% Contextual factors & practicalities

(S © 2004-5 Steve This is available free for

I use with attribution under a creative commons license. 4

i

o

University of Toronto Department of Computer Science

L4

-

Assessment

4 team assignments:
1. Select a problem to analyze, and prepare a risk assessment (10%)
> Write a brief summary of your project and a risk list

2. Perform a feasibility study for an information systems project (15%)
» Write a feasibility report

3. Perform a requirements analysis for the same project (10%)
» Produce models that explain the problem

4. Specify the requirements for the same project (10%)
» Write a requirements specification

2 tests:
% Midterm test (20%)
% Final Exam (35%)

> Must obtain at least 40% on this exam to pass the course.

[© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

Department of Computer Science

Course Policies

9 University of Toronto

- Assignment Deadlines
% Are very strict (use a U of T medical certificate if you are seriously ill)

% Assignments are due in the first 10 minutes of a tutorial
% Daily penalties apply to late work

- Re-grading
% Will only be done by the professor (TAs will not re-grade your work)
% The whole report will be re-graded (not just individual sections)

% Your mark may go up or down

- Communication
% Ask questions in Lectures and Tutorials
% Announcements will appear on the course website. Please check it regularly.
% TAs and instructor will not answer any queries related to the assignments in
the 24 hour period prior to the deadline
% I will rarely respond to email

» Spam filter may kill email from non-UofT adddresses
» I will (try to) answer emailed questions in the next available lecture/tutorial.

I use with attribution under a creative commons license.

(S © 2004-5 Steve This is available free for

b University of Toronto Department of Computer Science

Software-Intensive Systems

- Software (on its own) is useless
% Software is an abstract description of a set of computations
% Software only becomes useful when run on some hardware
> we sometimes take the hardware for granted
% Software + Hardware = “Computer System”

-+ A Computer System (on its own) is useless
% Only useful in the context of some human activity that it can support
> we sometimes take the human context for granted
% A new computer system will change human activities in significant ways
% Software + Hardware + Human Activities = “"Software-Intensive System”

- 'Software’ makes many things possible
% It is complex and adaptable

% It can be rapidly changed on-the-fly
% It turns general-purpose hardware into a huge variety of useful machines

[© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

b University of Toronto Department of Computer Science

Quality = Fitness for purpose

- Software technology is everywhere

% Affects nearly all aspects of our lives
% But our experience of software technology is often frustrating/disappointing

- Software is designed for a purpose

% If it doesn't work well then either:

» ..the designer didn't have an adequate understanding of the purpose

> ..or we are using the software for a purpose different from the intended one
% Requirements analysis is about identifying this purpose
% Inadequate understanding of the purpose leads to poor quality software

- The purpose is found in human activities
% E.g. Purpose of a banking system comes from the business activities of
banks and the needs of their customers
% The purpose is often complex:
» Many different kinds of people and activities
» Conflicting interests among them

b University of Toronto Department of Computer Science

Where are the challenges?

Application Domain Machine Domain
comalin propertiies Programns
recuirements coMmpUters

-
©2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

I use with attribution under a creative commons license.

(S © 2004-5 Steve This is available free for

b University of Toronto Department of Computer Science

Complexity of Purpose

- People and software are closely-coupled
% Complex modes of interaction
% Long duration of interaction
% Mixed-initiative interaction
% Socially-situated interaction
% ..software systems and human activity shape each other in complex ways

- The problems we'd like software to solve are “wicked”
% No definitive formulation of the problem
% No stopping rule (each solution leads to new insights)
% Solutions are not right or wrong
% No objective test of how good a solution is (subjective judgment needed)
% Each problem is unique (no other problem is exactly like it)
% Each problem can be treated as a symptom of another problem
% Problems often have strong political, ethical or professional dimensions

b University of Toronto Department of Computer Science

Dealing with problem complexity

- Abstraction
% Ignore detail to see the big picture
% Treat objects as the same by ignoring certain differences
% (beware: every abstraction involves choice over what is important)

- Decomposition
% Partition a problem into independent pieces, to study separately
% (beware: the parts are rarely independent really)

- Projection
% Separate different concerns (views) and describe them separately
% Different from decomposition as it does not partition the problem space
%, (beware: different views will be inconsistent most of the time)

- Modularization
% Choose structures that are stable over time, to localize change
% (beware: any structure will make some changes easier and others harder)

(S © 2004-5 Steve This is available free for I use with attribution under a creative commons license. 1
b University of Toronto Department of Computer Science

Designing for people

- What is the real goal of software design?
% Creating new programs, components, algorithms, user interfaces,..?
% Making human activities more effective, efficient, safe, enjoyable,..?

- How rational is the design process?

% Hard systems view:
» Software problems can be decomposed systematically
» The requirements can be represented formally in a specification
> This specification can be validated to ensure it is correct
> A correct program is one that satisfies such a specification
% Soft systems view:
» Software development is is embedded in a complex organisational context
» There are multiple stakeholders with different values and goals
> Software design is part of an ongoing learning process by the organisation
> Requirements can never be adequately captured in a specification
> Participation of users and others throughout development is essential
% Reconciliation:
> Hard systems view okay if there is local consensus on the nature of the problem

(S © 2004-5 Steve This is available free for I use with attribution under a creative commons license. 1

[© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11
b University of Toronto Department of Computer Science

Which systems are soft?

- Generic software components
% E.g. Core operating system functions, network services, middleware, ...
% Functionality relatively stable, determined by technical interfaces

% But note that these systems still affect human activity
> E.g. concepts of a ‘file’, a 'URL', etc.

- Control Systems
% E.g. aircraft flight control, industrial process control, ...
% Most requirements determined by the physical processes to be controlled

% But note that operator interaction is usually crucial
» E.g. accidents caused when the system doesn't behave as the operator expected

- Information Systems
% E.g. office automation, groupware, web services, business support, ...
% These systems cannot be decoupled from the activities they support

% Design of the software entails design of the human activity
> The software and the human activities co-evolve

[© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

L

. University of Toronto

Department of Computer Science

Not a phase

Communication
is as important
as the analysis

Quality means

Cannot say anything
about quality unless
you understand the

or stage!
g \ Requirements Engineering (RE) is a

fitness-for-purpose.

Definition of RE

set of activities concerned with
—identifying and communicating the
purpose of a software-intensi
/system, and the contexts in which it
will be used. Hence, RE acts as the
bridge between the real world needs~
of users, customers, and other
constituencies affected by a software
system, and\the capabilities and
opportunities afforded by software-
intensive tgchnologies

|_> Designers need to
know how and where
the system will be
used

Requirements are
partly about what
is needed...

RN

..and partly about

purpose N what is possible
Need to identify all the stakeholders -
not just the customer and user
(S © 2004-5 Steve This is available free for I use with attribution under a creative commons license. 14

Q University of Toronto

Department of Computer Science

Cost of getting it wrong

- Cost of fixing errors

% Typical development process:
requirements analysis = software design = programming = development testing =
acceptance testing = operation
% Errors cost more to fix the longer they are undetected
> E.g. A requirements error found in testing costs 100 times more than a
programming error found in testing

- Causes of project failure
% Survey of US software projects by the Standish group:

Top 3 success factors:

1994 1998 1) User involvement

Successful 16% 26% 2) Executive management support
3) Clear statement of requirements

Challenged gk dhif Top 3 factors leading to fqailure:

Cancelled 31% 28% 1) Lack of user input

2) Incomplete requirements & specs

3) Changing requirements & specs

[© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

L

. University of Toronto

Department of Computer Science

Y V VY

- Starting point

% Some notion that there is a “problem” that needs solving
> e.g. dissatisfaction with the current state of affairs
> e.g. a new business opportunity
> e.g. a potential saving of cost, time, resource usage, etc.

% A Requirements Analyst is an agent of change

- The requirements analyst must:

% identify the “problem”/“opportunity”
> Which problem needs to be solved? (identify problem Boundaries)
» Where is the problem? (understand the Context/Problem Domain)
Whose problem is it? (identify Stakeholders)
Why does it need solving? (identify the stakeholders’ Goals)
How might a software system help? (collect some Scenarios)
When does it need solving? (identify Development Constraints)
» What might prevent us solving it? (identify Feasibility and Risk)
% and become an expert in the problem domain
» although ignorance is important too -- “the intelligent ignoramus”

What do Requirements Analysts do?

This is available free for

(S © 2004-5 Steve

I use with attribution under a creative commons license.

L

. University of Toronto Department of Computer Sci

ence

Summary

- This course covers most of requirements engineering
% Analyzing problem situations
% Studying human activities
% Formulating requirements so that software solutions can be designed

- This course is different to most CS courses
% It is not about how to solve problems using computers
% It is about how to identify problems worth solving

% The subject matter is human activity:
» how to understand it
> how to support it using software technology

- Your mileage will vary
% Comments from students in previous years vary dramatically:
> “At last - a course that actually taught me something useful”
» “This course should be scrapped - it's an embarrassment to CS"

[© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

