
1

2

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 

CSC340:
Requirements Engineering

Prof Steve Easterbrook

sme@cs.toronto.edu

http://www.cs.toronto.edu/~sme/CSC340F

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

About the Course
 Course website

 www.cs.toronto.edu/~sme/CSC340F/

 Textbooks
 Fundamentals of Requirements Engineering
 UML Distilled

 Lecture Notes
 Available on the course website prior to each lecture

 Coursework
 Carried out in teams of 4
 Each team submits one report (per assignment)
 All team members receive the same grade (exceptions can be negotiated)
 Involves a practical “real-world” analysis project

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

Course Objectives
 Examine the state-of-the-art for research &

practice in Requirements Engineering.
 Role of RE in software and systems engineering
 Current techniques, notations, methods, processes and tools used in RE

 Gain practical experience in selected RE techniques
 Especially goal-oriented and object-oriented modelling techniques

 Understand the essential nature of RE
 Breadth of skills needed for RE, and the many disciplines on which it draws
 Contextual factors & practicalities

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

Assessment
 4 team assignments:

1. Select a problem to analyze, and prepare a risk assessment (10%)
 Write a brief summary of your project and a risk list

2. Perform a feasibility study for an information systems project (15%)
 Write a feasibility report

3. Perform a requirements analysis for the same project (10%)
 Produce models that explain the problem

4. Specify the requirements for the same project (10%)
 Write a requirements specification

 2 tests:
 Midterm test (20%)
 Final Exam (35%)

 Must obtain at least 40% on this exam to pass the course.



2

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

Course Policies
 Assignment Deadlines

 Are very strict (use a U of T medical certificate if you are seriously ill)
 Assignments are due in the first 10 minutes of a tutorial
 Daily penalties apply to late work

 Re-grading
Will only be done by the professor (TAs will not re-grade your work)
 The whole report will be re-graded (not just individual sections)
 Your mark may go up or down

 Communication
 Ask questions in Lectures and Tutorials
 Announcements will appear on the course website. Please check it regularly.
 TAs and instructor will not answer any queries related to the assignments in

the 24 hour period prior to the deadline
 I will rarely respond to email

 Spam filter may kill email from non-UofT adddresses
 I will (try to) answer emailed questions in the next available lecture/tutorial.

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

Software-Intensive Systems
 Software (on its own) is useless

 Software is an abstract description of a set of computations
 Software only becomes useful when run on some hardware

 we sometimes take the hardware for granted
 Software + Hardware = “Computer System”

 A Computer System (on its own) is useless
Only useful in the context of some human activity that it can support

 we sometimes take the human context for granted
 A new computer system will change human activities in significant ways
 Software + Hardware + Human Activities = “Software-Intensive System”

 ‘Software’ makes many things possible
 It is complex and adaptable
 It can be rapidly changed on-the-fly
 It turns general-purpose hardware into a huge variety of useful machines

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

Quality = Fitness for purpose
 Software technology is everywhere

 Affects nearly all aspects of our lives
 But our experience of software technology is often frustrating/disappointing

 Software is designed for a purpose
 If it doesn’t work well then either:

 …the designer didn’t have an adequate understanding of the purpose
 …or we are using the software for a purpose different from the intended one

 Requirements analysis is about identifying this purpose
 Inadequate understanding of the purpose leads to poor quality software

 The purpose is found in human activities
 E.g. Purpose of a banking system comes from the business activities of

banks and the needs of their customers
 The purpose is often complex:

 Many different kinds of people and activities
 Conflicting interests among them

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

Where are the challenges?

Application Domain Machine Domain



3

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Complexity of Purpose
 People and software are closely-coupled

 Complex modes of interaction
 Long duration of interaction
Mixed-initiative interaction
 Socially-situated interaction
 …software systems and human activity shape each other in complex ways

 The problems we’d like software to solve are “wicked”
No definitive formulation of the problem
No stopping rule (each solution leads to new insights)
 Solutions are not right or wrong
No objective test of how good a solution is (subjective judgment needed)
 Each problem is unique (no other problem is exactly like it)
 Each problem can be treated as a symptom of another problem
 Problems often have strong political, ethical or professional dimensions

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

Dealing with problem complexity
 Abstraction

 Ignore detail to see the big picture
 Treat objects as the same by ignoring certain differences
 (beware: every abstraction involves choice over what is important)

 Decomposition
 Partition a problem into independent pieces, to study separately
 (beware: the parts are rarely independent really)

 Projection
 Separate different concerns (views) and describe them separately
 Different from decomposition as it does not partition the problem space
 (beware: different views will be inconsistent most of the time)

 Modularization
 Choose structures that are stable over time, to localize change
 (beware: any structure will make some changes easier and others harder)

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

Designing for people
 What is the real goal of software design?

 Creating new programs, components, algorithms, user interfaces,…?
Making human activities more effective, efficient, safe, enjoyable,…?

 How rational is the design process?
Hard systems view:

 Software problems can be decomposed systematically
 The requirements can be represented formally in a specification
 This specification can be validated to ensure it is correct
 A correct program is one that satisfies such a specification

 Soft systems view:
 Software development is is embedded in a complex organisational context
 There are multiple stakeholders with different values and goals
 Software design is part of an ongoing learning process by the organisation
 Requirements can never be adequately captured in a specification
 Participation of users and others throughout development is essential

 Reconciliation:
 Hard systems view okay if there is local consensus on the nature of the problem

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

Which systems are soft?
 Generic software components

 E.g. Core operating system functions, network services, middleware, …
 Functionality relatively stable, determined by technical interfaces
 But note that these systems still affect human activity

 E.g. concepts of a ‘file’, a ‘URL’, etc.

 Control Systems
 E.g. aircraft flight control, industrial process control, …
Most requirements determined by the physical processes to be controlled
 But note that operator interaction is usually crucial

 E.g. accidents caused when the system doesn’t behave as the operator expected

 Information Systems
 E.g. office automation, groupware, web services, business support,…
 These systems cannot be decoupled from the activities they support
 Design of the software entails design of the human activity

 The software and the human activities co-evolve



4

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

Definition of RE

Requirements Engineering (RE) is a
set of activities concerned with

identifying and communicating the
purpose of a software-intensive

system, and the contexts in which it
will be used. Hence, RE acts as the
bridge between the real world needs

of users, customers, and other
constituencies affected by a software

system, and the capabilities and
opportunities afforded by software-

intensive technologies

Not a phase 
or stage!

Communication
is as important
as the analysis

Quality means
fitness-for-purpose.
Cannot say anything
about quality unless
you understand the

purpose

Designers need to
know how and where
the system will be

used

Requirements are
partly about what

is needed…

…and partly about
what is possible

Need to identify all the stakeholders -
not just the customer and user

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

Cost of getting it wrong
 Cost of fixing errors

 Typical development process:
requirements analysis ⇒ software design ⇒ programming ⇒ development testing ⇒

acceptance testing ⇒ operation
 Errors cost more to fix the longer they are undetected

 E.g. A requirements error found in testing costs 100 times more than a
programming error found in testing

 Causes of project failure
 Survey of US software projects by the Standish group:

28%31%Cancelled
46%53%Challenged
26%16%Successful
19981994

Top 3 success factors:
1) User involvement
2) Executive management support
3) Clear statement of requirements
Top 3 factors leading to failure:
1) Lack of user input
2) Incomplete requirements & specs
3) Changing requirements & specs

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

What do Requirements Analysts do?
 Starting point

 Some notion that there is a “problem” that needs solving
 e.g. dissatisfaction with the current state of affairs
 e.g. a new business opportunity
 e.g. a potential saving of cost, time, resource usage, etc.

 A Requirements Analyst is an agent of change

 The requirements analyst must:
 identify the “problem”/”opportunity”

 Which problem needs to be solved? (identify problem Boundaries)
 Where is the problem? (understand the Context/Problem Domain)
 Whose problem is it? (identify Stakeholders)
 Why does it need solving? (identify the stakeholders’ Goals)
 How might a software system help? (collect some Scenarios)
 When does it need solving? (identify Development Constraints)
 What might prevent us solving it? (identify Feasibility and Risk)

 and become an expert in the problem domain
 although ignorance is important too -- “the intelligent ignoramus”

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17

Summary
 This course covers most of requirements engineering:

 Analyzing problem situations
 Studying human activities
 Formulating requirements so that software solutions can be designed

 This course is different to most CS courses
 It is not about how to solve problems using computers
 It is about how to identify problems worth solving
 The subject matter is human activity:

 how to understand it
 how to support it using software technology

 Your mileage will vary
 Comments from students in previous years vary dramatically:

 “At last - a course that actually taught me something useful”
 “This course should be scrapped - it’s an embarrassment to CS”


