
University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 22:
Moving into Design

 Analysis vs. Design
 Why the distinction?

 Design Processes
 Logical vs. Physical Design
 System vs. Detailed Design

 Architectures
 System Architecture
 Software Architecture
 Architectural Patterns (next lecture)

 Useful Notation
 UML Packages and Dependencies



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Refresher: Lifecycle models
Waterfall model

reqts

architecture
(high level design)

code
(low level design)

integrate

unit test

maintain

perceived
need

design code test integ-
rate O&Mreqts

design code test integ-
rate O&Mreqts

design code test integ-
ratereqts

version 1

version 2

version 3

lessons
learnt

lessons
learntEvolutionary

development
(each version

incorporates new
requirements)

Spiral
model

Evaluate
alternatives
and risks

Plan
Develop

and
test

budget1budget2budget3budget4 prototype1prototype2prototype3prototype4
alt

ern
ati

ve
s 4

alt
ern

ati
ve

s 3
Alt

ern
-

ati
ve

s 2

constraints4

constraints3

Constr-

aints2altern

atives

constr

aints

risk analysis4
risk analysis3riskanalysis2

riskanalysis1
concept of
operation so

ftw
are

req
uir

em
en

ts

validated

requirements so
ftw

are
de

sig
n

validated,

verified design

de
ta

ile
d

de
sig

n

co
de

unit
test

system
testacceptance

test

requirements,lifecycle plan
development plan

integration and test plan
implementation plan

Agile development

Planning
game

Collect
User stories

Write test
casescode

integrate

test

Release Each cycle:
approx 2 weeks



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

Analysis vs. Design
 Analysis

 Asks “what is the problem?”
 what happens in the current system?
 what is required in the new system?

 Results in a detailed understanding of:
 Requirements
 Domain Properties

 Focuses on the way human activities are conducted

 Design
 Investigates “how to build a solution”

 How will the new system work?
 How can we solve the problem that the analysis identified?

 Results in a solution to the problem
 A working system that satisfies the requirements
 Hardware + Software + Peopleware

 Focuses on building technical solutions

 Separate activities, but not necessarily sequential
 …and attempting a design usually improves understanding of the problem



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

Refresher: different worlds

Application Domain Machine Domain

Analysis is all about
studying this world

Design is all about
building this world

But who builds the bridge?



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

Four design philosophies
Decomposition & Synthesis
Drivers:

 Managing complexity
 Reuse

 Example:
 Design a car by designing

separately the chassis, engine,
drivetrain, etc. Use existing
components where possible

Situated Design
Drivers

 Errors in existing designs
 Evolutionary Change

 Example:
 Design a car by observing what’s

wrong with existing cars as they
are used, and identifying
improvements

Negotiation
Drivers

 Stakeholder Conflicts
 Dialogue Process

 Example:
 Design a car by getting each

stakeholder to suggest (partial)
designs, and them compare and
discuss them

Search
Drivers

 Transformation
 Heuristic Evaluation

 Example:
 Design a car by transforming an

initial rough design to get closer
and closer to what is desired



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

Logical
Design

Physical
Design

Choose
Platform

Logical vs. Physical Design

 Logical Design concerns:
 Anything that is platform-independent:

 Interactions between objects
 Layouts of user interfaces
 Nature of commands/data passed between subsystems

 Logical designs are usually portable to different platforms

 Physical Design concerns:
 Anything that depends on the choice of platform:

 Distribution of objects/services over networked nodes
 Choice of programming language and development environment
 Use of specialized device drivers
 Choice of database and server technology
 Services provided by middleware



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

System Design vs. Detailed Design
 System Design

 Choose a System Architecture
 Networking infrastructure
 Major computing platforms
 Roles of each node (e.g. client-server; clients-broker-servers; peer-to-peer,…)

 Choose a Software Architecture
 (see next lecture for details)

 Identify the subsystems
 Identify the components and connectors between them

 Design for modularity to maximize testability and evolveability
 E.g. Aim for low coupling and high cohesion

 Detailed Design
 Decide on the formats for data storage

 E.g. design a data management layer
 Design the control functions for each component

 E.g. design an application logic layer
 Design the user interfaces

 E.g. design a presentation layer



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

Global System Architecture
 Choices:

 Allocates users and other external systems to each node
 Identify appropriate network topology and technologies
 Identify appropriate computing platform for each node

 Example:
 See next slide…



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

System Architecture Questions
 Key questions for choosing platforms:

 What hardware resources are needed?
 CPU, memory size, memory bandwidth, I/O, disk space, etc.

 What software/OS resources are needed?
 application availability, OS scalability

 What networking resources are needed?
 network bandwidth, latency, remote access.

 What human resources are needed?
 OS expertise, hardware expertise, sys admin needs,
 user training/help desk requirements.

 What other needs are there?
 security, reliability, disaster recovery, uptime requirements.

 Key questions constraining the choice:
 What funding is available?
 What resources are already available?

 Existing hardware, software, networking
 Existing staff and their expertise
 Existing relationships with vendors, resellers, etc.



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

Data Management Questions
 How is data entry performed?

 E.g. Keyless Data entry
 bar codes; Optical Character Recognition (OCR)

 E.g. Import from other systems
 Electronic Data Interchange (EDI), Data interchange languages,…

What kinds of data persistence is needed?
 Is the operating system’s basic file management sufficient?
 Is object persistence important?
 Can we isolate persistence mechanisms from the applications?

 Is a Database Management System (DBMS) needed?
 Is data accessed at a fine level of detail

 E.g. do users need a query language?
 Is sophisticated indexing required?
 Is there a need to move complex data across multiple platforms?

 Will a data interchange language suffice?
 Is there a need to access the data from multiple platforms?



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

Software Architecture
 A software architecture defines:

 the components of the software system
 how the components use each other’s functionality and data
 How control is managed between the components

 An example: client-server
 Servers provide some kind of service; clients request and use services
 applications are located with clients

 E.g. running on PCs and workstations;
 data storage is treated as a server

 E.g. using a DBMS such as DB2, Ingres, Sybase or Oracle
 Consistency checking is located with the server

 Advantages:
 Breaks the system into manageable components
 Makes the control and data persistence mechanisms clearer

 Variants:
 Thick clients have their own services, thin ones get everything from servers

 Note: Are we talking about logical (s/w) or physical (h/w) architecture?



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

Coupling and Cohesion
 Architectural Building blocks:

 A good architecture:
 Minimizes coupling between modules:

 Goal: modules don’t need to know much about one another to interact
 Low coupling makes future change easier

 Maximizes the cohesion of each module
 Goal: the contents of each module are strongly inter-related
 High cohesion makes a module easier to understand

module module
connector

X 



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

Coupling
Given two units (e.g. methods, classes, modules, …), A and B:

Form Features Desirability 

Data coupling 
A & B communicate by 

simple data only 
High (use parameter passing & 
only pass necessary info) 

Stamp coupling 
A & B use a common 

type of data 
Okay (but should they be 
grouped in a data abstraction?) 

Control coupling 
(activating) 

A transfers control to 
B by procedure call Necessary 

Control coupling 
(switching) 

A passes a flag to B to 
tell it how to behave 

Undesirable (why should A 
interfere like this?) 

Common data 
coupling 

A & B make use of a 
shared data area 
(global variables) 

Undesirable (if you change 
the shared data, you have to 
change both A and B) 

Content coupling 
A changes B’s data, or 
passes control to the 

middle of B 

Extremely Foolish (almost 
impossible to debug!) 

 

 



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

Cohesion
How well do the contents of an object (module, package,…) go together?

Form Features Desirability

Data cohesion
all part of a well defined data

abstraction Very High

Functional cohesion
all part of a single problem solving

task High

Sequential cohesion
outputs of one part form inputs to

the next Okay

Communicational
cohesion

operations that use the same input
or output data Moderate

Procedural cohesion
a set of operations that must be
executed in a particular order Low

Temporal cohesion
elements must be active around the

same time (e.g. at startup) Low

Logical cohesion
elements perform logically similar
operations (e.g. printing things) No way!!

Coincidental
cohesion

elements have no conceptual link
other than repeated code No way!!



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

UML Packages
We need to represent our architectures

 UML elements can be grouped together in packages
 Elements of a package may be:

 other packages (representing subsystems or modules);
 classes;
 models (e.g. use case models, interaction diagrams, statechart diagrams, etc)

 Each element of a UML model is owned by a single package
 Packages need not correspond to elements of the analysis or the design

 they are a convenient way of grouping other elements together

 Criteria for decomposing a system into packages:
 Ownership

 who is responsible for working on which diagrams
 Application

 each problem has its own obvious partitions;
 Clusters of classes with strong cohesion

 e.g., course, course description, instructor, student,…
 Or use an architectural pattern to help find a suitable decomposition



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17

Package notation

 2 alternatives for showing package containment:



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 18

Persons

Meetings

Constraints

dependency
(read as

“depends on”)

Package Diagrams
 Dependencies:

 Similar to compilation dependencies
 Captures a high-level view of coupling

between packages:
If you change a class in one package,
you may have to change something in
packages that depend on it

 A good architecture
minimizes dependencies
 Fewer dependencies means lower

coupling
 Dependency cycles are especially

undesirable



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 19

…Dependency Cycles



University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 20

Application Logic Layer Package

Storage Layer Package

Presentation Layer Package

Architectural Patterns

E.g. 3 layer
architecture:

Presentation
Layer

Application
Logic Layer

Storage
Layer

Java AWT

Application
Windows

Control
Objects

Business
Objects

Object to
Relational

JDBC

Java SQL




