“ University of Toronto Department of Computer Science

¥ Lecture 17:
Modelling System Interactions

- Interactions with the new system

Y How will people interact with the system?
Y When/Why will they interact with the system?

- Use Cases

% introduction to use cases
% identifying actors

% identifying cases

%, Advanced features

- Sequence Diagrams

% Temporal ordering of events involved in a use case

| ® 1 ©2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

SOME RIBHTS RESERVED

ﬁ‘ University of Toronto Department of Computer Science

Moving towards specification

- What functions will the new system provide?

Y How will people interact with it?
Y Describe functions from a user's perspective

-» UML Use Cases

% Used to show:
> the functions to be provided by the system
> which actors will use which functions

% Each Use Case is:

> a pattern of behavior that the new system is required to exhibit

> a sequence of related actions performed by an actor and the system via a
dialogue.

- An actor is:

% anything that needs to interact with the system:
> a person
> a role that different people may play
> another (external) system.

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

R University of Toronto Department of Computer Science

W Use Case Diagrams

- Capture the relationships between actors and Use
Cases

-

C) Change a ‘\\\\\ C)
;K> client contact X
' N
Campaign
Manager O Staff contact

Add a new client

o — T

;K Record client payment

Accountant

| ® 1 ©2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

SOME RIBHTS RESERVED

“ University of Toronto Department of Computer Science

v Notation for Use Case Diagrams

Use case

Change client

contact

>0

Staff contact

Actor Communication

association System
boundary

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

ﬂ University of Toronto Department of Computer Science

o

hd Example

Add new
staff member

Change rate
Nor staff gradg

Accountan \\\‘\\\\\

>0
AN

Change grade
for staff membe

falculate staf
bonuses

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

R University of Toronto Department of Computer Science

v <<extends>> and <<uses>>

- <<extends>> when one use case adds behaviour to a base case

% used to model a part of a use case that the user may see as optional system behavior;
% also models a separate sub-case which is executed conditionally.

- <<uses>>: one use case invokes another (like a procedure call);

% used to avoid describing the same flow of events several times
% puts the common behavior in a use case of its own.

Print
Campaign
Summary

<<extends>>

Check Campaign
Budget

N
~N

<<uses\x

Find Campaign

| ® 1 ©2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

SOME RIGH TS RESERVED

“ University of Toronto Department of Computer Science

o

h Sample use cases for a car

) Mechanic
Driver GasAttendant

Q

<< >>
FJ;;;\\‘ uses

<<uses>> <<ext

<<uses>> -
IX car on

the road

Turn On
Engine

nds>>

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

R University of Toronto Department of Computer Science

o

i Meeting Scheduler Example

Initiator Participant

\ /
N /

Edit Provide
constraints

Generate
Schedule

Constrainty/_ .o+ ends>>

Schedule

; -
<<uses> meeing ,C\' @4
w 2
o B
w L
\ 7
Sy A e®’
A . 0,9
3/ Validate X »<¢

User

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

rﬁ University of Toronto Department of Computer Science

Generalizations

- Actor classes

Y It's sometimes useful to identify classes
of actor

> E.g. where several actors belong to a
single class

> Some use cases are needed by all members
in the class

» Other use cases are only needed by some
members of the class

Record completion
of an advert

Staff % Actors inherit use cases from the class
Contact :
Change a client
contact - Use Case classes
Y Sometimes useful to identify a
GWMWW relat{,omsf generalization of several use cases
Read as: “is A
« .
or Just " & 7 sign individual
staff to work on a
campaign
Assign stalf towork
Campaign on a campaign
Manager Assign team of staff

to work on a
campaign

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

SOME RIBHTS RESERVED

”L University of Toronto Department of Computer Science

Identifying Actors

- Ask the following questions:

Y Who will be a primary user of the system? (primary actor)
> Who will need support from the system to do her daily tasks?
» Who or what has an interest in the results that the system produces ?

Y, Who will maintain, administrate, keep the system working? (secondary
actor)

Y Which hardware devices does the system need?
Y With which other systems does the system need to interact with?

- Look for:

Y the users who directly use the system
% also others who need services from the system

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

ﬁ# University of Toronto Department of Computer Science

Lo

v Finding Use Cases

- For each actor, ask the following questions:

Y Which functions does the actor require from the system?
Y What does the actor need to do ?

% Does the actor need to read, create, destroy, modify, or store some kinds
of information in the system ?

% Does the actor have to be notified about events in the system?
% Does the actor need to notify the system about something?
Y What do those events require in terms of system functionality?

Y Could the actor’s daily work be simplified or made more efficient through
new functions provided by the system?

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

11

L=

@ University of Toronto Department of Computer Science

Documenting Use Cases

- For each use case:

L prepare a “flow of events” document, written from an actor’s point of view.

Y describe what the system must provide to the actor when the use case is
executed.

- Typical contents

Y How the use case starts and ends;
% Normal flow of events;

% Alternate flow of events;

& Exceptional flow of events;

- Documentation style:

% Choice of how to represent the use case:
> English language description
> Collaboration Diagrams
> Sequence Diagrams

3

| ® 1 ©2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

OME RIGHTS RESERVED

12

ﬁ‘ University of Toronto Department of Computer Science

‘ Modelling Sequences of Events

- Objects “"own” information and behaviour

Y they have attributes and operations relevant to their responsibilities.
Y They don't "know” about other objects’ information, but can ask for it.
Y To carry out business processes, objects have to collaborate.

> ..by sending messages to one another to invoke each others’ operations

Y Objects can only send messages to one another if they “know” each other
> I.e. if there is an association between them.

- Describe a Use Case using Sequence Diagrams

&, Sequence diagrams show step-by-step what's involved in a use case
> Which objects are relevant to the use case
> How those objects participate in the function

Y You may need several sequence diagrams to describe a single use case.
> Each sequence diagram describes one possible scenario for the use case

% Sequence diagrams...

> ..should remain easy to read and understand.
> ..do not include complex control logic

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

“ University of Toronto Department of Computer Science

: Example Sequence Diagram

i i participating i
ob J ect \

Initiator Staff Scheduler Participant
:‘Person ‘Person :Person :‘Person
Call() ' '

, Respond() iteration

What’s up?() 47

: Give mtq details()

:' [for all participants] *Inform()
= Acknowledge()
[\ <
[for all participants] *Remind() 5 >
4 Acknowledge() :

conditioh

: : Prompt() ’_
\i_‘\ Show schedule()

[decision=0K] SchedleeOK’ed()

>
: [for all part|C|pantsJ
*Inform()

_ © 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

¥ University of Toronto

Department of Computer Science

|

Another Example

Campaign
Manager
~ :Client :Campaign :Advert
getName()
B an | =
listCampaigns() i getCampaign | :
’T' Details() : '
listAdverts() | r *getAdvert |
: ~ Details() _ |
addNewAdvert() E J. :
] P Advert() : newAd:Advert
ki E /’1 . g % I:—l
//’Y l /// l ' : l
// // :
o7 Activation :
Object lifeline :
Object creation

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

15

“ University of Toronto

Department of Computer Science

Branching messages, etc
X X .Printer :Queue
:CustomerP ‘PrinterP
Lifelinr}e PrintFile(file) > GetStatus() . Inactive
[Ready]Print() . Active
«« . v I
.............. 5 [lBlasy] L
ing utinQueue i,
Branching (D)
[OutOfService]
Done‘ CallRepair O
| . Ready(iile)
o Ready(file) ¥. GetNext() >:
. Asynchronous |__L|

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

9 University of Toronto Department of Computer Science

Don't forget what we're modelling

|

- During analysis
Y we want to know about the application domain and the requirements

& ..so we develop a course-grained model to show where responsibilities are,

and how objects interact
» Our models show a message being passed, but we don't worry too much about the
contents of each message
> To keep things clear, use icons to represent external objects and actors, and
boxes to represent system objects.

- During design
%, we want to say how the software should work

L ... so we develop fine-grained models to show exactly what will happen when

the system runs
> E.g. show the precise details of each method call.

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17

