
Fundamentals of Requirements Engineering
© 2003-4 Steve Easterbrook and Bashar Nuseibeh

Section A. Introduction
Chapter 1. What is Requirements Engineering?
Chapter 2. What are Requirements?
Chapter 3. What is Engineering?
Chapter 4. What is a System?

Section B. Eliciting and Planning
Chapter 5. Elicitation Sources and Targets
Chapter 6. Elicitation Techniques
Chapter 7. The Feasibility Study
Chapter 8. Risk

Section C. Modeling and Analyzing
Chapter 9. An introduction to modeling
Chapter 10. Enterprises
Chapter 11. Information Structures
Chapter 12. Behaviour
Chapter 13. Quality Requirements

Section D. Communicating and Agreeing
Chapter 14. Validation Demystified
Chapter 15. Specifications and Documentation
Chapter 16. Prototyping and Walkthroughs
Chapter 17. Inspection and Review
Chapter 18. Negotiation and Prioritization

Section E. Realizing and Evolving
Chapter 19. Requirements Evolution
Chapter 20. Requirements and Architectures
Chapter 21. Traceability and Rationale
Chapter 22. Consistency Management

Section F. Advanced Topics
Chapter 23. Formal Methods in RE
Chapter 24. Research Methodology in RE

Appendices

Steve Easterbrook
Chapter 3. What is Engineering?

©2004 Steve Easterbrook. DRAFT – PLEASE DO NOT CIRCULATE page 1

C H A P TE R 3

What is Engineering?

In this chapter we explore the context in which requirements engineering takes place.
We start with an analysis of engineering itself, and compare the engineering of software-
intensive systems with other types of engineering. An engineering discipline captures and
codifies the knowledge and practices needed by engineers to design complex devices. It
also seeks to use experience from past projects so that engineering practice can be
continually improved. To understand how an engineering project forms the context for RE,
we need to understand how engineering know-how is applied in a systematic way as a
project unfolds. We will examine two types of model: lifecycle models and process models.
Lifecycle models are ecological descriptions of the stages that an engineering project goes
through, much as we may observe and describe the stages in the lifecycle of a butterfly.
As there are a large variety of species of engineering project, so there are a large variety
of lifecycle models. Lifecycle models are useful for comparing project types, but are too
simplistic for the management tasks of measuring and controlling a particular project, and
for assessing where new techniques and tools may be applied. Detailed process models
address this need, and so we will briefly examine the idea of process modeling and
improvement.

By the end of the chapter you should be able to:
• Define the term engineering, and distinguish engineering from science.
• Distinguish between normal design and radical design.
• Explain why systems engineering is fundamentally about radical design.
• Identify the attributes of software that make software engineering significantly

different from engineering of physical devices.
• Summarize the basic tenets of an engineering code of ethics.
• Evaluate the ethical issues in any given requirements engineering activity.
• Describe the ways in which a manager can control an engineering project.
• Differentiate between types of engineering project based on the existence (or

otherwise) of a customer before and during the project.
• Discuss how the idea of a product family affects the way in which requirements are

identified and prioritized.
• Critique the use of design considerations arising from reuse of existing components

to constrain the requirements.
• Summarize the strengths and weaknesses of the waterfall model with respect to

requirements engineering issues.
• Describe the differences between a phased and an iterative development model.
• Summarize the key stages in the lifecycle of a requirement.
• Contrast process modeling and improvement with agile development and give

examples of the types of project for which each is appropriate.

3.1. Engineering
Requirements Engineering is a collection of activities that only make sense as part of a larger

engineering project. The requirements activities will play a significant role in scoping and guiding
the overall project, but the overall project will also constrain and guide the RE activities. As we saw

©2004 Steve Easterbrook. DRAFT – PLEASE DO NOT CIRCULATE page 2

in the first chapter, there are a huge variety of different kinds of engineering project in which RE
will play a role. Later in this chapter, we will examine this variety, so that we can compare different
projects both in terms of how they are initiated, and how they are organized. Before we get there,
we will examine engineering itself.

3.1.1. What is Engineering?

A typical definition of engineering runs as follows: “Engineering is the development of cost-
effective solutions to practical problems, through the application of scientific knowledge”. Several
parts of this definition are important:
 Cost-effective – engineering involves a consideration of design trade-offs, especially those to do

with resource usage. Cost is often used as a common evaluation criterion in judging whether a
particular engineering solution to a problem is a good one, but good engineering also demands a
wider definition of cost-effectiveness, involving wise use of all resources, and minimizing any
negative impacts of a particular solution.

 Solutions – engineering emphasizes the design of solutions, usually tangible artifacts (we will
refer to them as devices for convenience, and we’ll explain this term shortly)

 Practical problems – the problems that engineers tackle are those that matter to people;
engineering has a wider concern with improvements to human life in general, through
technological advance. Of course, some engineering solutions to practical problems may turn
out to have detrimental effects (on the environment, for example), however, the overall concern
of the engineering profession is to make the world a better (or at least more convenient) place
for humankind.

 Applying scientific knowledge – a key feature that distinguishes engineering from other forms of
design (for example, clothing design, furniture design, etc) is the systematic application of
analytical techniques grounded in science and mathematics, both to analyze the problem, and to
guide design choices in creating a solution.
Many people believe fail to understand the relationship between science and engineering. The

key difference lies in the idea of intervention. Scientists seek to understand the world through
observation and experimentation, but do not seek to change the world. Engineers, on the other hand,
seek enough understanding in order to make a change to the world, but do not regard any scientific
knowledge that they generate or use in the process as an end in itself. Engineering degree
programmes (and the professional bodies that accredit them) enshrine this idea by trying to achieve
a balance between the teaching of two complementary strands, ‘engineering science’ and
‘engineering design’.

It is also common amongst scientists to regard engineers as ‘users’ of the knowledge that
scientists create. However, the history of engineering clearly indicates that this is not an accurate
view of the relationship between science and engineering. The important ideas used in each of the
engineering disciplines were typically discovered and codified as design principles well ahead of
the corresponding scientific advances. For example, engineers were able to build reliable and cost
effective bridges long before science was ever able to provide a complete analysis of the materials
and forces involved in bridge building.

Engineers develop and validate theories in much the same way that scientists do, and indeed
each design that an engineer creates is, in itself, a theory about some relevant aspect of the world.
However, engineering science may involve a level of approximation that is unacceptable in the
‘pure’ sciences. For scientists, the existence of such approximations is often the impetus for further
investigation, while the engineer will quite happily use approximations if they are good enough for
the problem in hand. So, scientific advances may help to improve engineering practice, but such
advances aren’t necessarily the drivers of engineering advances. The science in engineering science
is quite distinct from the science taught in science degree programmes.

©2004 Steve Easterbrook. DRAFT – PLEASE DO NOT CIRCULATE page 3

Engineering Design vs. Engineering Science
 Engineering Design "…is the process of devising a system, component, or process to meet desired needs.

It is a decision-making process (often iterative), in which the basic science and mathematics and
engineering sciences are applied to convert resources optimally to meet a stated objective. Among the
fundamental elements of the design process are the establishment of objectives and criteria, synthesis,
analysis, construction, testing, and evaluation. The engineering design component of a curriculum must
include most of the following features: development of student creativity, use of open-ended problems,
development and use of modern design theory and methodology, formulation of design problem
statements and specifications, consideration of alternative solutions, feasibility considerations, production
processes, concurrent engineering design, and detailed system descriptions. Further, it is essential to
include a variety of realistic constraints, such as economic factors, safety, reliability, aesthetics, ethics,
and social impact."

 Engineering Science: "…has its roots in mathematics and basic sciences but carries knowledge further
toward creative application. These studies provide a bridge between mathematics and basic sciences on
the one hand and engineering practice on the other. Such subjects include mechanics, thermodynamics,
electrical and electronic circuits, materials science, transport phenomena, and computer science (other
than computer programming skills), along with other subjects depending upon the discipline."

(Adapted from the ABET criteria)

The two engineering disciplines most relevant to this book are software engineering and
systems engineering. The term software engineering can be traced to around 1968, when it was
used as a provocative title for a NATO conference in Garmisch, Germany, intended to examine why
software was proving so expensive to produce. The term systems engineering has been in use in the
aerospace and defense industries since the 1970’s, but has recently been popularized by INCOSE,
the international council on systems engineering, which was founded (originally as a national
society in the US) in 1990. The term systems engineer was coined in reaction to the fact that large
systems have become so complex that there is a need for a new set of skills to do with
understanding and controlling the complex interactions in the design of such systems (such as
aircraft, spacecraft, weapons systems, medical devices, etc). These systems do not necessarily
contain software, although they invariably do, and by and large it is software that has allowed such
systems to become so sophisticated and complex.

3.1.2. From Devices to Systems

A key distinction in engineering is between normal design and radical design. In normal
design, the engineer knows how the device she is designing works, understands the usual features of
such devices, and also understands the design principles that apply to such devices. Engineering
practice is, in general, concerned almost exclusively with normal design – it codifies the knowledge
and principles involved in the normal design of well-understood devices. Radical design, on the
other hand, involves the creation of solutions to problems that have never been solved before, or the
creation of novel solutions by combining devices in new ways. The development of the first internal
combustion engine was radical design. The development of variants of these engines in the modern
automobile industry is normal design. In most engineering disciplines, normal design is very
common, while radical design is relatively rare. The design principles that engineers are taught are
the principles of normal design.

For normal design, requirements engineering is relatively straightforward, although certainly
not trivial. The device to be designed has well-known known properties, such that a specification
for the device to be built will look very similar to specifications for other, similar devices. The set
of design choices that still have to be made is constrained, and the principles on which these choices
must be based are well-understood. Therefore, the requirements process focuses on two main
activities – an initial matching of the problem type to a particular class of known devices that solve
such problems, and a focused analysis of just those aspects of the problem that will determine how

©2004 Steve Easterbrook. DRAFT – PLEASE DO NOT CIRCULATE page 4

to resolve the remaining design decisions. This is not to say that such requirements analysis is easy;
it is however much more tightly constrained than requirements analysis for radical design.

Software engineering, and especially software engineering education, has been criticized for
focusing too much on radical design. Students of software engineering are taught to develop
systems from scratch, solving each problem as though that problem had never been solved before.
This criticism is usually followed by a call for software engineering to become more like other
engineering disciplines, by codifying well-known solutions to routine design problems, so that
software development becomes normal design. Whether you believe such criticism is valid depends
on whether or not you think software engineering (and, as we shall see, systems engineering) should
be like other engineering disciplines.

One of the reasons that we have used the term ‘device’ to describe the things that engineers
design is so that we can contrast ‘devices’ with ‘systems’. By device, we mean an entity whose
properties and design principles are well-known. By system, we mean an assembly of devices
brought together to solve a complex (and perhaps poorly understood) design problem. The
behaviour of individual devices may be well understood, but the system itself is not. In particular,
systems tend to have emergent properties that are not at all obvious from a consideration of the
component devices. If we build enough similar systems, we may come to understand the principles
involved, such that they can be codified into a normal design. To keep the terminology consistent,
we can say that in this case we can eventually start to treat a well-understood system as a device.

Recent advances in software engineering indicate that some parts of software engineering are
moving towards normal design. The characterization of architectural patterns for certain kinds of
system, and the analysis of the design principles needed to apply such patterns, indicate that
software engineering (as a discipline) is beginning to turn some of its systems into devices. For
example, the architecture and design principles of compilers are now sufficiently well understood
that we can consider them to be devices. On the other hand, many of the software-intensive systems
that we described in the last chapter continue to defy such codification into normal design, and
perhaps always will, because of the complex nature of the human activity systems in which they are
enmeshed. Just as we think we might understand how to engineer some business information
system, advances in technology and changing user perceptions will change the problem so much
that we can’t just re-use a standard design from last year’s solution.

With respect to this discussion, systems engineering would appear to be an anomaly as an
engineering discipline, because its concern is with complex systems, rather than devices. By
definition, systems engineering can never be codified into the kinds of normal design that dominate
other engineering disciplines. Indeed, as soon as such codification occurs, the resulting devices will
no longer be the concern of systems engineers – they become the concern of one of the other
engineering disciplines that systems engineers rely on. However, this does not mean that the set of
problems that systems engineers tackle will shrink over time. On the contrary, the trend is to
attempt to exploit software-intensive technologies to solve ever more complex problems, and to
combine software components (‘devices’) into new systems in ever more inventive ways.

It therefore seems likely that systems engineering, and perhaps many areas of software
engineering, will always be very different from other engineering disciplines, because they are
concerned with the radical design of complex systems. Because of this, analysis of requirements for
both systems and software engineering will remain a major challenge. In this book we will address
requirements engineering both for radical design and for normal design, although the former will
occupy us for longer, as it offers a much greater challenge.

©2004 Steve Easterbrook. DRAFT – PLEASE DO NOT CIRCULATE page 5

3.1.3. Is Software Engineering Different?

Development of software-intensive systems presents a number of challenges beyond those
found in other engineering disciplines. The first of these is the concern for complex systems (rather
than relatively well-behaved devices) as we described above.

Other challenges come from the nature of software itself. Because software is not a physical
artifact, we cannot appeal to the laws of physics to understand how software will behave. This poses
challenges in understanding how software failures occur, and how to make software more robust.
To illustrate the point, consider the difference between a physical component, such as a steel beam,
and a software component such as a procedure (or a method):
 Small changes to the forces to which the steel beam is exposed will cause the beam to deform in

small, predictable ways. In general, the behaviour of physical components can be described
using equations in continuous mathematics. As we increase the load on the beam, it will
continue to deflect in the same direction. Discontinuities in behaviour are rare, but do occur
occasionally (for example, if our beam snaps). A robust design avoids such discontinuities, by
ensuring components operate within a carefully chosen range of operating conditions. For
example, to ensure our steel beam is strong enough for a particular task, we could choose a
beam design that can withstand double (or treble) the expected maximum load.

 Small changes to the inputs to a method call may cause wildly different behaviour, and the
changes are hard to predict without a careful analysis of every line of code. The behaviour of
software cannot be described using continuous mathematics, but rather, requires discrete
mathematics. If we wish to make a program robust, we cannot use the same trick as was used
for the steel beam, because the concept of doubling the load makes no sense in a discrete
system. Even if we can express some aspect of the function of a software system in continuous
terms (for example, speed of an operation), the resulting design changes are usually not
continuous when we need to vary these quantities. If we want a procedure to run twice as fast,
we may have to redesign it completely, rather than just varying some design parameter in a
continuous way.
Furthermore, when a software component fails, there are no physical limits on the propagation

of such failure. In physical systems, when a component fails, the components that are physically
close to it are most likely to be affected, and propagation of the failure is constrained by physics. Of
course, in some cases, such as an explosion, the physical propagation can be extremely fast.
However, software failures can propagate in ways that have nothing to do with physical proximity.
An error in the output of a procedure can cause failures in any other part of the system, no matter
where they are physically located. An extreme case of this occurred on NASA’s Mars Climate
Orbiter, when a small error in a data file in the ground support system on Earth led to the loss of the
spacecraft hundreds of millions of miles away as it approached Mars.

Another key difference is that software is not manufactured. In the engineering of physical
devices, due consideration must be given to how the device is to be manufactured. At some point,
the design must be frozen, so that manufacture can begin. Software does not need to be
manufactured – it can be replicated at virtually no cost at any moment. This has two important
consequences. The first is that there is no manufacturing variability – every copy is a perfect
replica, and all defects in the software are design errors. The second is that we can keep changing
the design, even after delivery to the customer. Many software developers exploit this fact by
shipping software to the customer before it is fully designed, with the expectation that any
weaknesses in the design can be corrected in a future release.

Software never wears out, and so, in theory should never need replacing. In practice, we
replace software regularly, both to correct design defects, and to add new functionality. Software
that keeps doing the same job year after year is likely to become less and less useful. So although it
doesn’t wear out, it does ‘age’. As the original problem that it was designed to solve changes over
time, so the software becomes less and less well suited to its purpose. We will examine this

©2004 Steve Easterbrook. DRAFT – PLEASE DO NOT CIRCULATE page 6

continuous evolution of both software systems, and the requirements on which they are based, in
chapter 18.

3.1.4. Engineering as a Profession

Our definition of engineering stressed the importance of careful use of resources, and on
solving problems that matter to people. In many engineering disciplines, the consequences of poor
engineering practice can be catastrophic – if engineered devices fail, they can lead to serious injury,
death, destruction of property, or financial loss. Because of the scope for harm, in many countries
there are professional engineering bodies that license (or charter) engineers. These bodies set
standards for engineering practice, and work to protect the public interest. Typically they grant a
license to an engineer only after she has taken an accredited engineering educational programme,
and has passed various professional examinations.

An important foundation for a profession is a code of ethics, which spell out the
responsibilities of engineers to use their knowledge and skills in an honest and ethical manner. As
an example, the following box summarizes a code of ethics for Software Engineers developed by
the IEEE and ACM.

ACM/IEEE code of ethics

PUBLIC

Software engineers shall act consistently with the public interest.

CLIENT AND EMPLOYER

Software engineers shall act in a manner that is in the best interests of their client and employer,
consistent with the public interest.

PRODUCT

Software engineers shall ensure that their products and related modifications meet the highest
professional standards possible.

JUDGEMENT

Software engineers shall maintain integrity and independence in their professional judgment.

MANAGEMENT

Software engineering managers and leaders shall subscribe to and promote an ethical approach to the
management of software development and maintenance.

PROFESSION

Software engineers shall advance the integrity and reputation of the profession consistent with the public
interest.

COLLEAGUES

Software engineers shall be fair to and supportive of their colleagues.

SELF

Software engineers shall participate in lifelong learning regarding the practice of their profession and shall
promote an ethical approach to the practice of the profession.

For full version, see http://www.acm.org/serving/se/code.htm

©2004 Steve Easterbrook. DRAFT – PLEASE DO NOT CIRCULATE page 7

There are several key issues to do with professional conduct that are particularly relevant to
requirements engineering:
 Competence – A central part of any code of ethics concerns the appropriate use of good

engineering practice, and the competence of engineers to do so. For example, professional
engineers should never misrepresent their level of competence, nor should they knowingly
accept work that demands skills beyond their competence.

 Confidentiality – Engineers are bound to respect the confidentiality of employers and clients,
irrespective of whether a formal confidentiality agreement has been signed. Requirements
analysts often need to interview and collect data from a wide variety of stakeholders, and
appropriate steps need to be taken to protect confidentiality of all such stakeholders.

 Intellectual property rights – Engineers need to be aware of local laws governing use of
intellectual property, such as patents, and copyright protection. Information collected during
requirements gathering may be protected in various ways.

 Data protection – Many countries now have data protection laws that restrict how data held in
computer systems can be used, and create rights for people to access (and correct mistakes in)
data that refers to them. Compliance with such laws is an important requirement for any
information system, and requirements analysts need to be familiar with the appropriate laws and
the scope of the jurisdictions in which they apply.
Although a code of ethics describes a set of basic principles, application to any given situation

can be difficult, as ethical questions often occur where two or more principles come into conflict
with each another. For example, having interviewed a number of employees in a client’s
organization, and agreed to keep their responses confidential, a requirements analyst may discover
that the data collected reveal that employees (individually or collectively) are acting in ways that
management is not aware of. If they are ignoring safety standards or fiddling the accounts, say, the
right course of action might be obvious.

More commonly, there is no obvious course of action. The analyst may be working in a
situation where there is an existing conflict between the interests of different groups (for example,
employees versus management, one customer versus another, etc), or between different engineering
principles. Two examples should illustrate the point:
 A requirements analyst is conducting an observational study of new accounting software at a

large consultancy company. Staff have consented for their interaction with the software to be
recorded while they carry out their work. They have been told that it is not them, but the
software that is being evaluated, and that their anonymity will be protected. During the study, it
becomes clear that many of the junior consultants are making a series of systematic data entry
errors, thus causing the company to lose profit. Company policy clearly states that in such
cases, employees should have their salaries docked to cover the shortfall. Should the
requirements analyst report the errors (thus potentially breaking confidentiality promised in the
study), or should she cover up the problem (thus potentially falsifying the data)?

 A requirements analyst is analyzing the requirements for the personnel office of a small
manufacturing plant. Her initial specification includes fairly stringent security requirements,
reflecting the sensitivity of the data to be stored, as it includes employee performance
evaluations, medical histories used in insurance claims, and so on. Her client deletes these
requirements from the specification, arguing that it will be too expensive to meet them.
However, without these requirements, it may be relatively easy for employees to figure out how
to access one another’s records, and the system may be easy to hack into from outside the
company. She tries to explain these risks to the managers, but the head of personnel and the
director of computing regard the security requirements as “gold plating”, and hence
unnecessary. What should she do?

©2004 Steve Easterbrook. DRAFT – PLEASE DO NOT CIRCULATE page 8

3.1.5. Managing an Engineering Project

If the engineering of complex systems is difficult, then the management of such engineering
projects is even harder. Management involves different skills from those needed for the technical
engineering work. Managers need to understand how the project is progressing, and adjust the
resources available in response. Although project management is not a major concern of this book,
we give a brief account of it here as part of the context for understanding how management
decisions interact with requirements engineering activities.

In some sense, a good manager is often invisible. When the project is going well, the
engineering staff may not notice that the manager is doing anything at all, even when the success of
the project is directly due to her decisions. The job of managing a successful project will often look
very simple in hindsight, while the technical staff will get the credit for a job well done. On the
other hand, failure is usually very obvious, and managers will tend to get the blame no matter what
role they actually played.

The project manager is responsible for ensuring at the outset of the project that the necessary
resources (funding, people, time, etc) are in place, and that the task to be carried out is correctly
understood. From these, she can develop a project plan. During the project, she must measure
progress, and assess how such progress (or lack thereof) affects the plan, adjusting the plan and/or
the resources as necessary. At the end of the project, she is responsible for ensuring that the right
lessons are captured, for use in future projects.

In essence, a manager can control four things:
 Resources – including funding, personnel, facilities and technical infrastructure. If the project is

not going well, the manager may need to find additional resources (e.g. more personnel, better
tools, etc), or re-assess how effectively the current resources are being used.

 Time – the project schedule is a key variable that can be adjusted as necessary. Often the
simplest solution to an unforeseen problem is to slip the schedule by delaying key milestones or
deliverables. Unfortunately, for many projects, this is the area where the manager has least
flexibility, because “time-to-market” has become a dominating factor in the software industry.

 Product – the manager can change the product to be built, for example by reducing the planned
functionality if the project is behind schedule, or even adding functional enhancements if the
project is ahead of schedule. Reducing the scope of the product to be built during a project is
often referred to as a ‘requirements scrub’, and is greatly facilitated if the manager has a clear
idea of the relative importance of, and dependencies between, the various requirements.

 Risk – if a project is going badly, and the manager does not adjust any of the previous three
factors, the result will be an increase in risk: for example, the risk of missing the delivery date
or the risk of shipping a product that is not ready and still contains defects. Risk in itself is
neither good nor bad, but necessary – if we don’t take risks we are unlikely to achieve anything
worthwhile. Risk can be treated as a resource to be traded against the other three variables;
sometimes it may be appropriate to take bigger risks, if the consequences of failure are not
likely to be catastrophic, and sometimes it may be sensible to take steps to reduce a risk that has
become unacceptable, by adjusting one of the other variables appropriately.
Central to all of these issues is the problem of measurement. A manager cannot control a

project if she cannot measure it. Software measurement is a topic for an entire textbook, but we can
give at least a few pointers here. As a starting point, any sensible measurement program must start
with a clear idea of what the measures will be used for. If we wish to understand how to adjust the
four project management variables described above, then we need some basic information on how
we are doing with respect to each variable. Hence, a core set of metrics might include measures of:
 Effort – how much effort will be needed? How much have we expended so far?
 Time – what is the expected schedule? How much are we currently deviating from it?
 Size – how much functionality are we planning to build? How much have we built already?

©2004 Steve Easterbrook. DRAFT – PLEASE DO NOT CIRCULATE page 9

 Defects – how many errors are we making? What proportion of those errors are we detecting?
How does this compare to our quality goals?
It shouldn’t be hard to see that each of these four measures connects directly with a

corresponding project variable, while focusing on things that are relatively easy to measure. Too
often, projects are managed on the basis of only two of these metrics: Effort and Time. Lawrence
Putnam likens this to flying an aircraft using only a fuel gauge and a stopwatch. Without data on the
size and quality of the system being built, a manager has no sound basis for making adjustments.

Another common mistake is to confuse one of these measures with another. For example, when
asked how big the system they are developing is, some managers answer in terms of ‘man-months’
(i.e. effort) instead of some measure of functionality. This is because we do not yet have good
metrics for the size of complex software-intensive systems. This is an important question for
requirements engineering, because a statement of the requirements is often the only benchmark
available for assessing the size of a proposed system.

At the beginning of a project, the project manager needs good estimates of effort, time, size
and risk, in order to plan good use of project resources. Good estimates of risk are especially
important for assessing how much flexibility there is when adjusting the plan. As the project
proceeds, measures of progress can be compared with the estimates on a regular basis, to find out
whether the project is proceeding according to the plan. If they are diverging, either the plan or the
project will need adjusting.

Good estimation depends on two things: accurate data from previous projects, and a clear
understanding of the requirements. Initial estimates of size of the system to be built can be obtained
from a consideration of the number of requirements, and the anticipated difficulty in meeting them.
Time and effort can then be derived from size using data from similar projects in the past. Risk can
be assessed by considering the importance attached to each requirement and the consequences of
not meeting it.

The relationship between requirements engineering and good project management should now
be clear. The requirements act as the basis for estimation and planning; without them a project may
simply be unmanageable.

3.2. Engineering Projects
Before we look at engineering project lifecycles, we will consider the context in which such

projects are initiated:
 Projects get started for a huge variety of reasons, ranging from an explicit contract with a

customer, to a speculative development of some new idea or new technology.
 Projects vary according to how easy it is to identify a customer, who can act as the ultimate

authority for requirements decisions.
 In most cases, there is nearly always some existing system to be enhanced or replaced, because

whatever problem we are seeking to solve, people must have some way of dealing with it
currently, even if that just means coping with the absence of a good solution.

 There are nearly always existing products or components that we can use to build some part of
the solution, and which therefore may constrain how we scope the problem.

 Engineering projects do not exist in isolation, but are usually part of some larger business
strategy, which may involve an interrelated family of products. For example, a particular system
may be part of a coherent product line for an organization, or may be one step in a wider
marketing strategy.
We will discuss each of these ideas in turn.

©2004 Steve Easterbrook. DRAFT – PLEASE DO NOT CIRCULATE page 10

3.2.1. Project Initiation

A project to develop a software-intensive system may be initiated for any of the following
reasons:
 Problem-driven: A problem is encountered in some human activities that requires a response.

For example, a company may find that their competitors are beating them in the market place; a
series of accidents indicate that an existing system is unsafe; or a crisis occurs that an
organization finds it cannot handle adequately. The solution to the problem may take many
forms: an entirely new system where none existed previously; the replacement of a system that
is not performing well; or an integration of several existing systems to improve communication
and coordination between them.

 Change-driven: Changes to a business or its environment mean that changes are needed in the
systems on which it depends. This may be because of growth, expansion into new markets,
changes in technology, changes in legal constraints, improvements to business practices, or
changes in the cost or availability of resources. Often, the response will be to enhance or adapt
an existing system. For example, new functions may be added to a system, or an existing
system may be converted to a new platform. Alternatively, it may be that the existing systems
cannot be adapted, and must be replaced entirely.

 Opportunity-driven: Development of new technology opens up new possibilities, or a new
market opportunity is identified. Such projects tend to be exploratory in nature and perhaps
riskier. The opportunity could result in new products or services, or new ways of carrying out
some existing activity. For example an existing function might be computerized to exploit a
low-cost new technology.

 Legacy-driven: Occasionally, a project arises because some previous plan called for it, or
because an earlier project left some work unfinished. This is perhaps the trickiest type of project
for the requirements analyst, because the rationale for the project might be unclear, or no longer
valid. Unless the rationale is carefully re-examined, such a project is unlikely to go smoothly.
In any of these cases, the value of the potential outcome must be weighed against the expected

development costs, to determine whether the project is worth doing. In chapter 6 we will examine
some specific techniques for calculating these factors.

Purely economic factors may not entirely explain why an organization undertakes a particular
project – organizational politics also plays a role. For example, initiation of a particular project may
owe more to the pet interests of a particular executive, or an attempt to gain control over resources
by some unit within the organization than it does to any explicit economic benefit. Such
circumstances make the requirements analyst’s job much harder. Even though they play an
important role in shaping the requirements, making them explicit may not be possible or desirable.

3.2.2. The role of the customer

Projects also vary according to how easy it is to identify the customer(s) – those stakeholders
who will derive the primary benefit of the proposed system, and who will therefore be willing to
pay for (at least part of) the development costs. For example a project may be:
 Customer-specific – there is a specific customer is who needs a system to solve a specific

problem, and who is available as the main authority in determining the requirements. The
customer may be internal to the organization developing the system (e.g. another unit within the
organization) or external, in which case there will most likely be a customer-supplier contract in
place. Such contracts vary greatly in how much requirements detail they include. Customer-
specific projects are also sometimes known as ‘bespoke’ systems.

 Market-based – rather than a specific customer, the system is developed to be sold to a broad
market. In some cases an established market may already exist (because similar products are

©2004 Steve Easterbrook. DRAFT – PLEASE DO NOT CIRCULATE page 11

already available); in others the product must create its own market. For market-driven projects,
a marketing team may act as a substitute for a real customer, as they investigate the market
opportunities, and determine which features will improve marketability.

 Community-based – some projects are targeted neither at specific customers, nor at particular
markets. Rather, such projects are intended as a general benefit to a broad community, whether
through creation of free services or infrastructure, or the creation of new knowledge. Many
open source and free software projects fall into this category – they are funded through the
donation of the developers’ time, and provide a benefit to a large (but ill-defined) community.
Systems created for scientific exploration also fall into this category – for example spacecraft
for exploring the solar system, or systems for collecting data about climate change. Such
projects may be funded by governments or research agencies, but these act as enablers rather
than customers if they do not have a direct stake in shaping the requirements.

 Hybrid – various combinations of customer-specific, market-based and community-based
projects are possible. For example, a system might be developed for a specific customer, but
with an intention to market the system more widely once it is developed. Or a government
agency may act as a customer for a community-based project for which it is also the major
funder. In these cases, there may be a tension between the competing goals – making a system
fit well to a specific customer’s needs may make it too specific for the more general
marketplace, or make it less useful to a target community. Relative priorities of the competing
goals need to be understood when determining the importance of different requirements.
Problem-driven, customer-specific projects are perhaps the best understood, and were the

target of much of the research in requirements engineering in the 1970’s and 80’s. Here, the key
challenge is how to analyze the problem to discover the customer’s real needs, and how to negotiate
a suitable scope so that a satisfactory system can be delivered within the agreed constraints.
Expectation management is also important – the requirements processes help to set the customer’s
expectations for what will be delivered, and hence have an impact on customer satisfaction. The
challenges involved in balancing these concerns become particularly difficult as projects increase in
scale and complexity.

Through the 1990’s, as software technology became cheaper and more widely available, other
types of project increased in prominence, especially market-based, opportunity-driven, and
community-based projects. In such projects, the absence of a specific customer with a well-defined
problem adds significant new challenges for the requirements analyst. Such projects tend to be
smaller in scope than customer-specific projects, but the problems are complex because they
involve more stakeholders, with greater diversity, and greater potential for conflicting needs.

3.2.3. The existing system

Requirements engineering rarely starts with a blank slate – there is always an existing system
that can be studied for insights into how the new system should work. An analysis of the existing
system can help to provide a better understanding of the human activities that the new system
should support, because those activities can be observed as they are currently carried out. Some
people argue that too much concentration on the existing system may stifle innovation; however a
much bigger danger is that an innovative new system may be not be acceptable to the users of the
old system, especially if it is too different, fails to address their most pressing problems, or discards
whatever they liked about the old system.

In some cases, the need to study the existing system is obvious. For example if the project is to
upgrade or enhance a system, then the project will be constrained by the existing design; some
functions will be easy to add, others may be hard, and this may determine which new features are
selected for implementation. If the project is to integrate several existing systems, then the

©2004 Steve Easterbrook. DRAFT – PLEASE DO NOT CIRCULATE page 12

requirements will be derived almost entirely from an analysis of the systems that are to be
integrated.

If the project is intended to replace a system that is now considered obsolete, then analysis of
the existing system is still important. Such analysis can help to avoid the weaknesses of the current
system, and can identify opportunities for improvements. Although a project may have been
initiated with a clear idea of what was wrong with the old system, the requirements analyst must
still investigate the old system. Different users may disagree about what is good or bad about the
old system, and there may be features of the old system that nobody realizes are important until they
are removed.

Finally, some projects are intended to introduce software-intensive technology where none has
been used before. In such cases it may seem like there is no existing system to study. However,
using the human-centered perspective we described in chapter 1, it should be clear that there is still
an existing human activity system to study, as people carry out some existing functions manually,
or develop coping strategies to deal with the limitations of an entirely manual operation. A
systematic analysis of these activities may reveal places where automation would be a mistake, and
other places where a software system could make a dramatic improvement.

3.2.4. Pre-existing components

As well as being constrained by the existing system, engineering projects are also affected by
the availability of suitable components from which to construct a solution. In many cases, using
commonly available components can dramatically reduce the price of a system, because they do not
need to be custom-built. However, there may be a trade-off between the functionality of the
available components and the needs of the current project.

A consideration of components during requirements engineering is important because it can
help in finding a good problem decomposition. Decomposing complex problems into simpler ones
is an important activity in RE. Such decomposition is hard to do in a purely top-down manner
because, as Jackson points out: “it enforces the riskiest possible ordering of decisions. The largest
decision is the dubdivision of whole problem: it is the largest in scale and the largest in its
consequences. Yet this decision is taken first, when nothing is yet known and everything remains to
be discovered”1. If a potential decomposition yields some subproblems that already have readily
available solutions in the form of off-the-shelf components, this may reduce the risk. Hence,
knowledge of available components can play an important role in guiding problem decomposition,
thus permitting a mix of top-down and bottom-up strategies. Naturally, availability of existing
components cannot be the only guide for this, because of the danger of ignoring aspects of the
problem for which there are no existing components.

One issue that demands particular attention in RE is the mismatch between what an existing
component offers and the actual requirements of the current problem. The requirements analyst
needs to examine the trade-offs, and consider whether any compromises will be made. For example,
there is a danger that some requirements will be ignored if they cannot be met with existing
components. The benefits of using a pre-existing component may be offset by the difficulty of
integrating it into the broader system. And the stakeholders’ views of the problem may be distorted
by knowledge of available components. Such distortion can lead to a system that is easier to build,
but will not address the real problem. A requirements analyst must perform enough analysis to
ensure that the stakeholders can make informed decisions about the use of pre-existing components.

1 From Jackson’s lexicon of practice, principles and prejudices book.

©2004 Steve Easterbrook. DRAFT – PLEASE DO NOT CIRCULATE page 13

3.2.5. Product families and shared architectures

If the problem to be solved is similar to problems that other customers might experience, there
is an opportunity to exploit this commonality to reduce costs. Software re-use has often been
proposed a way of realizing such cost reductions: program code from an existing system is used as
the basis for components of the new system. However, software re-use suffers from the problems
we described in the previous section: in essence, the cost of adapting re-used software to the new
problem may outweigh the benefits. An alternative is to design a coordinated product family (also
known as a product line).

In a product family, a set of software-intensive systems are designed to share the same overall
architecture, with certain kinds of flexibility built into the design from the outset. Each member of
the family has features that satisfy the specific needs of particular types of customer, while sharing
the same overall design.

Example product families include vertical lines, in which customers can pay more for
additional features, such as desktop applications available in ‘basic’, ‘deluxe’ and ‘pro’ versions.
They also include horizontal families, where similar software systems are needed in different
domains, such as control systems for similar engines in cars, trucks, boats, etc.

The design of a product family involves a mix of technical decisions and business decisions.
The key technical decisions surround the choice of an architecture that is robust enough to be used
across the family, while permitting the flexibility for particular specialized needs. The key business
decisions involve deciding the scope of the family, and the variations within it, based on the likely
market for each family member. The broader the family, the harder it is to find a suitable
architecture that will support the expected variants. Hence, an important aspect of product families
is the decision of what not to include. A company considering developing a product line needs to
make decisions about its core business, and which of its (potential) customers’ needs can be
included in a coherent family of software-intensive systems.

Many of these decisions are requirements engineering issues. Understanding both what is
common and what is different about the different needs across the product family is a requirements
engineering problem, as is dealing with the trade-off between business goals and technical
feasibility of the proposed family. Requirements engineering for a product family proceeds a little
differently from other types of project, because of this need to balance the similarities and
differences between the members of the family.

3.3. Engineering lifecycle models
We now turn to the shape of the project itself. In this section we will consider a range of

lifecycle models, which provide a general overview of the key stages in the life of a software-
intensive system development project. As we suggested in the introduction to this chapter, lifecycle
models are useful for comparing different species of project, but are insufficient for managing a
project. The lifecycle models do not describe the conditions under which one phase of a project
stops and another starts. Nor do they specify what types of activity should (or should not) occur in
each phase. This is appropriate: every organization and every project is different, and must be
managed according to local practices. Some organizations capture detailed guidance for project
managers by describing process models for their projects. We will address these in the next section.
In this section, we merely compare some general species of project, and the role of requirements
engineering in each species.

©2004 Steve Easterbrook. DRAFT – PLEASE DO NOT CIRCULATE page 14

3.3.1. Sequential Lifecycle Models

The waterfall model (see figure 1) is the simplest and best known lifecycle model. It divides a
project into a sequence of phases based on the idea of stepwise refinement – requirements are first
specified, then refined to produce a high-level design, which is then further refined to produce the
detailed design (the program code). Once code is produced it is tested, and when it has passed all
the tests, the system is integrated and finally delivered to the customer. At each stage, it may be
necessary to revisit earlier stages, because of unexpected problems – for example, when missing or
incorrect requirements are only discovered during the design phase, etc.

Early software engineering textbooks presented the waterfall model as an overview of how
software development should proceed. Later textbooks acknowledged the weaknesses of the
waterfall model, and presented some alternatives. However, the waterfall model is so deeply
entrenched that many textbooks and courses still use it as a way of organizing the material to be
presented.

The waterfall model is a very simplistic ideal, and only makes sense under certain very
restrictive assumptions. The key assumption is that the requirements can be described at the
beginning of the project, and then frozen for the remainder of the project. As we saw in chapter 1,
this is unrealistic for most types of software-intensive system – the requirements evolve
continuously, and uncertainties about the technical feasibility of meeting customers’ needs means
that requirements discovery is intertwined with design choices. This problem is compounded by the
lack of analysis tools for software designs, so that major requirements and design errors may not be
discovered until late in the test and integration phases, by which time the cost to correct them is
significantly higher.

A variant of the waterfall model, known as the V model, is shown in figure 2. This model
shows the conceptual relationship between the analysis/design phases (down the left-hand side of
the V) and the corresponding verification steps (up the right-hand side). The verification steps
ensure that each level of design is carefully checked in a sensible order – check each unit
thoroughly before integrating it with other units, etc.

One interesting feature of the V model is that it separates time and level of abstraction as
different dimensions. Because these were conflated on the waterfall model, progress on the project
is confused with adding increasing detail. If we have to revisit the requirements during the design

requirements

design

code

integrate

test

maintain

Figure 1: The Waterfall Lifecycle Model

©2004 Steve Easterbrook. DRAFT – PLEASE DO NOT CIRCULATE page 15

phases, this looks like a backwards step on the waterfall model. In contrast, on the V model, vertical
jumps make complete sense – for example during the requirements phase, it might be necessary to
jump down to the detailed design phase to conduct a feasibility study on a particular technology;
likewise, during detailed design, it might be necessary to jump up to the requirements level to revise
part of the requirements. Such steps are moves only in the vertical dimension – they need not be
seen as impeding the progress of the project.

3.3.2. Rapid Prototyping models

Both the waterfall and V model assume the requirements can be pinned down almost entirely
before any code is written. An obvious way to weaken this assumption is to allow for prototyping.
Prototyping can be used to explore the requirements with the stakeholders, to evaluate designs of
how the system will interact with users, to examine feasibility of a particular design approach, or
merely to improve the communication and understanding between developer and client.

Figure 3 shows the basic waterfall model modified to allow for one or more prototyping phases
before the main development process begins. Note that a prototyping phase could be added to any
of the lifecycle models in this section in a similar way. We will discuss the use of prototypes for

system
requirements

software
requirements

preliminary
design

detailed
design

code and
debug

unit
test

component
test

software
integration

acceptance
test

system
integration

“analyse
and

design”

“test
and

integrate”

time

Le
ve

l
of

 a
bs

tr
ac

ti
on

Figure 2: The V model.

Specify full
requirements design code test integrate

Preliminary
requirements

design
prototype

build
prototype

evaluate
prototype

Figure 3: The prototyping cycle

©2004 Steve Easterbrook. DRAFT – PLEASE DO NOT CIRCULATE page 16

requirements engineering in more detail in chapter 16. For now, we will just note two problems
often associated with prototyping:
 Customers (and even developers!) may fail to understand the difference between a prototype

and a production quality system. Unlike prototypes for physical systems (a prototype car for
example), these differences are invisible. The result is that a prototype that was intended as a
rough mock up of a particular conception of the system often evolves into the delivered system,
without proper attention to good design. The lack of principled design results in a system that is
hard to understand, hard to maintain, and inflexible in the face of changing requirements.

 A prototype typically only covers some aspects of the requirements, most typically those related
to how the user interface will work. This means that undue attention on the prototyping process
can mean other requirements are ignored or forgotten.
In chapter 16 we examine some of the ways in which prototyping can be used as part of a

requirements process.

3.3.3. Phased models

Another problem with the waterfall model is that it ignores what happens after the system is
delivered. In practice, most software systems undergo continuing defect correction and re-design
after initial delivery, resulting in a series of releases. Here we present two variants of the waterfall
model that account for these subsequent versions of a system.

Figure 4 shows an incremental development model. As with the waterfall model, an initial
requirements engineering phase aims to discover all the requirements. These are then prioritized so
that they can be allocated to one of a planned series of releases, each of which meets more of the
requirements than the previous one. This model avoids the one-shot effect of the waterfall model,

Re q ui re m
e n ts

design code test integrate O&M

design code test integrate O&M

design code test integrate O&M

design code test integrate O&M

Release 1

release 2

release 3

release 4

Figure 4: Incremental development. Initial requirements are allocated to a planned series of releases.

design code test integrate O&Mreqts

design code test integrate O&Mreqts

design code test integratereqts

version 1

version 2

version 3

lessons learnt

lessons learnt

Figure 5: Evolutionary development. Each version incorporates lessons learned from earlier
versions.

©2004 Steve Easterbrook. DRAFT – PLEASE DO NOT CIRCULATE page 17

but still suffers from the assumption that all the requirements can be known at the beginning of the
project, and will not change subsequently.

Figure 5 shows an evolutionary development lifecycle. Here, instead of attempting to identify
the requirements for all the releases initially, just enough requirements analysis is performed to
permit development of a first version of the system. Each subsequent version then begins with
another requirements phase, in which experience with earlier versions and changing needs can be
taken into account. The difficulty with this model is that it is harder to plan the versions, and hence
correspondingly harder to decide how to scope the requirements for each version. Also, if the
development phases for each phase overlap, the lessons from the one version may be learnt too late
to be incorporated into the next version.

3.3.4. Iterative Models

The phased models recognize that most software-intensive systems are developed via a series
of releases. This allows the developer to deliver some functionality to the customer early, and to
adapt future releases to changes in the requirements. However, these models only allow for a very
limited evolution of requirements from one release to another. For some projects, the problem
complexity is so high that the only way to understand the requirements is through an iterative,
exploratory process.

The spiral model, shown in figure 6, attempts to capture this iterative approach to
development. In this model, each iteration is carefully planned, to include a sequence of planning,
determining objectives and constraints, evaluating alternatives, resolving risks (including an explicit
prototyping step), and development. The size of the spiral at each iteration is intended to convey an
accumulation of knowledge and experience.

Determine goals,
alternatives,
constraints

Evaluate
alternatives

and risks

Plan
Develop

and
test

budget1budget2budget3budget4 prototype1 prototype2 prototype3 prototype4

alt
er

na
tiv

es 4

alt
er

na
tiv

es 3

Al
te

rn
-

at
ive

s 2

constraints4

constraints3

Constr-

aints2

alte
rnativ

es

const
rain

ts

risk analysis4
risk analysis3riskanalysis2risk

analysis1

concept of
operation

so
ft

wa
re

re
qu

ire
men

ts

validated

requirements

so
ft

wa
re

de
sig

n

validated,

verified design

de
ta

ile
d

de
si

gn

co
de

uni
t

test

system

testacceptance
test

requirements,lifecycle plandevelopment plan
integration and test plan

implementation plan

Figure 6: The spiral model.

©2004 Steve Easterbrook. DRAFT – PLEASE DO NOT CIRCULATE page 18

There are several variants of the spiral model available in the literature. The version shown in
figure 6 still includes some remnants of the waterfall model, because each iteration is associated
with a major phase in the original waterfall model. The difference, of course, is that now each
waterfall phase is embedded in an explicit risk reduction process, allowing re-planning and re-
focusing between phases. However, the explicit requirements phase shown in the second loop of the
spiral now represents only a small fragment of requirements activities, concerned with writing and
validating specifications. Many aspects of the planning, evaluation, risk analysis and prototyping on
each iteration are also requirements engineering activities.

3.3.5. Agile Models

The lifecycle models in the previous sections are based on an ability to distinguish identifiable
phases in the development of a software system. The phases are typically distinguished according to
the documentation produced. Indeed, the waterfall lifecycle really only applies to a species of
project found in large government agencies, especially defense, in which the end of each phase is
marked by the production and approval of a large document (e.g. a requirements specification at the
end of the requirements phase, a design spec at the end of the high level design phase, etc).

Agile development is a contrast to this document-heavy approach. Agile methods are based on
the premise that too much reliance on documentation is a bad thing. The documents are expensive
to produce, are of limited use, and lead to a very bureaucratic management style. In agile
development, this documentation is replaced with direct interaction with customers. A key
argument is that this allows the development team to respond much better to customer need, rather
than relying on written contracts.

Probably the best-known agile method is XP – eXtreme Programming. XP includes a number
of practices that are suitable for small project teams (typically no more than a dozen programmers).
The XP lifecycle is shown in figure 7. An XP project is based around frequent releases, perhaps as
often as every three weeks. Each release cycle begins by collecting ‘user stories’, each expressed on
a notecard, and then using a ‘planning game’ in which a set of user stories are selected for

Planning
game

Collect
User stories

Write test
casescode

integrate

test

Release

Figure 7: The XP lifecycle

©2004 Steve Easterbrook. DRAFT – PLEASE DO NOT CIRCULATE page 19

implementation. Test cases are written before the program code, and programming itself is
conducted with a daily integration and test schedule. Programming is carried out in pairs, with the
assumption that paired programmers produce higher quality programs than single programmers.

In agile development, the requirements engineering activities are not limited to a particular
phase, but are carried out continuously. Mistakes are likely, but each mistake is treated as an
opportunity for learning. An on-site customer representative provides continuous feedback, to guide
this learning process. Above all, agile development relies on people rather than documents to
convey an understanding of the requirements. Clearly, this type of project is appropriate for some
types of system (e.g. small projects, where there is a great deal of uncertainly about the
requirements), and is inappropriate for others (e.g. large safety-critical systems).

3.3.6. Is there a Requirements Lifecycle?

We have surveyed a number of lifecycle models, and indicated the role of requirements
engineering in each. In the past, RE methods often assumed that requirements engineering was
performed for a specific customer, in a particular phase of the lifecycle, and that the customer could
sign off a requirements specification. In fact, requirements engineering is performed in a variety of
contexts, including projects for which no customer is initially identifiable. Because of this huge
variety of projects, there is no single correct requirements engineering process. Many books on
requirements engineering would have you believe otherwise: they describe one particular way to do
requirements engineering, and assume it will work for all projects. In this book we describe the
fundamental activities involved in requirements engineering. The decision about which of these
activities will be needed, when they will be applied, and how they will be managed depends entirely
on the type of project.

Because of this variety, there are a wide variety of terms used to refer to requirements, often
with differing connotations. Some approaches, most notably the agile methods, refuse to use the
term requirements at all, preferring instead to talk of scenarios, vision, metaphors, user stories, etc.
However, a basic set of requirements activities is common to all projects. Every project needs to

Specification

Agreement

Representation

complete

fair

vague

personal
view

common
view

informal semi-formal formal
Figure 8: Pohl’s 3 dimensions of requirements engineering

©2004 Steve Easterbrook. DRAFT – PLEASE DO NOT CIRCULATE page 20

identify and scope the problem, decompose it into manageable pieces, and manage the changes as
the problem (and our understanding of it) evolves.

So, even if we cannot describe a single process model for requirements engineering, can we
still identify lifecycle models for the requirements themselves (as opposed to the project in which
they are embedded)? One of the simplest characterizations of a requirements lifecycle is the
distinction between early and late requirements, first introduced by Mylopoulos and colleagues.
Early requirements are concerned with understanding the problem context: modelling the
organization in which the problem exists, and the goals of and dependencies between the various
stakeholders. Late requirements are concerned with pinning down the desired functions of the
system-to-be-built.

Another view of the requirements lifecycle is the model described by Pohl, as shown in figure
8. Pohl identifies three dimensions over which a requirement ranges during its life:
 Specification – initially each requirement is likely to be vague, but the eventual goal is to attain

a complete specification of it.
 Agreement – initially each requirement is likely to be just a personal view of a single

stakeholder, but eventually the aim is to reach agreement among all stakeholders
 Formality – initially each requirement is likely to be stated informally, perhaps in sketches and

words, but the eventual goal is a precise formal statement of the requirement.
The trajectory of each requirement along these three dimensions will vary; figure 8 shows one

possible path. The destination in the upper right hand corner is just an ideal. It might not be reached
by all requirements, because attaining complete specification, agreement and formality may be too
expensive.

By contrast, the inquiry cycle model shown in figure 9 equates the requirements with a theory
about the nature of the problem to be solved. This model is based on (an idealized version of)
scientific investigation: scientists develop theories to explain observed events, and then design and
conduct experiments to test their theories. In this model, requirements engineering covers the first
three boxes. Using both prior knowledge and observation of the current system, the requirements
analyst builds models that represent the best current theory of what the problem is that needs
solving. Based on this theory, a software-intensive system can be designed and installed, to test the

Prior Knowledge
(e.g. customer feedback)

Observe
(what is wrong with
the current system?)

Model
(describe/explain the
observed problems)

Design
(invent a better system)

Intervene
(replace the old system)

Figure 9: The inquiry cycle

©2004 Steve Easterbrook. DRAFT – PLEASE DO NOT CIRCULATE page 21

theory. Observations of this new system in use then become the first step in the next iteration of the
cycle: the requirements models are adjusted to capture what has been learnt about the problem, and
the next version of the system can be designed and installed.

3.4. Improving the Engineering Process
There are two key outputs from any engineering project: the engineered artifact itself, and the

knowledge and experience gained in producing it. The latter is often neglected, but for many
projects, it may be the most important output – this is certainly true of projects that fail! The
problem is that much of the knowledge and experience gets dissipated when a team disperses at the
end of a project. Some project team members may remember and apply the lessons. However,
individuals may not be able to apply these lessons, especially if they require major changes to the
organizational culture. Some organizations produce a “lessons learnt” document as part of a post
mortem at the end of each project. Other organizations have found that it is better to institutionalize
the capture and application of lessons learnt through the use of process improvement techniques.

3.4.1. Quality Control

The ideas of process improvement can be traced back to the early attempts to improve the
quality of manufacturing processes in the latter half of the twentieth century, particularly in the car
industry in the US and Japan.

Early approaches to quality control on production lines were based on inspection of
intermediate and final products, so that defective products could be discarded. This approach led to
various experiments with process control, whereby various control parameters on the production
line were adjusted in response to observed defects in the products. For example, if some car body
panels are found not to have a good coverage of paint, one could increase the length of the spraying.

Unfortunately, this approach tends to make things worse. This is because in general, on most
production lines only a very small proportion of products are defective, typically less than 5%. If
you adjust various control parameters to attempt to eliminate these defective products, you have to
adjust them for all the products, even the non-defective ones. Hence, there is a huge risk that other
defects will be introduced for the 95% of products that were previously okay. For example,
increasing the length of paint spraying for all the body panels may introduce problems of paint runs
and poor drying for panels that would otherwise have been fine.

Eventually, these observations led to the use of statistical techniques to analyze the production
processes and identify the causes of defects. This analysis was then used to redesign the production
process to eliminate the causes of defects, rather than just adjusting control parameters. To continue
the body panels example, the defect data could be used to analyse the paint spraying process, with
the aim of redesigning how paint is applied, to eliminate defects. The use of statistical analysis of
defects is crucial, as it serves to pinpoint changes that will offer the greatest improvement on overall
quality. The approach was pioneered by Deming, and applied with great success first in the
Japanese car industry in the 1970’s, and eventually in the US car industry in the 1980’s.

3.4.2. Software Process Maturity

The success of quality management ideas for improving quality in the car industry led several
people to question whether the same ideas could be applied to software production. Because
software is not manufactured, there is no manufacturing process to improve. However, the idea can
also be applied to the software development process. Unfortunately, software development
processes are poorly understood, at least in comparison with industrial manufacturing processes.

©2004 Steve Easterbrook. DRAFT – PLEASE DO NOT CIRCULATE page 22

The challenge then, was to get organizations to document their development processes carefully,
use statistical measurement techniques to identify places in these processes where the most design
defects occur, and to use this information to re-design the process itself. The payoff is potentially
large, because instead of just fixing defects in individual products, it may be possible to prevent the
defect for all subsequent products, by redesigning the development step that causes the defect in the
first place.

These ideas form the centerpiece of the Capability Maturity Model (CMM), developed by
Watts Humphrey and colleagues at the Software Engineering Institute in Pittsburgh. The CMM is
an assessment tool, used to determine how mature a particular company’s software development
processes are, by assessing how well that company measures and improves them on a routine basis.
The CMM places software development companies at one of five levels:
 Initial – in which development is entirely ad hoc;
 Repeatable – in which the same development process is used in different projects, but such

repetition is dependent on individuals;
 Defined – in which the development process is documented, and institutionalized;
 Managed – in which measurement techniques are used to quantify the process so that

improvements can be made; and
 Optimizing – in which improvements are continually fed back into the process.

The CMM has led to significant quality improvements in some parts of the software industry,
particularly those involved with large, safety-critical systems. Versions of the CMM have also been
adapted for use in systems engineering, and a number of other engineering disciplines. The same
ideas are also captured in the ISO9000 series of international standards, which are applicable across
a wide range of industries.

One of the key ideas underlying the CMM is that each organization must understand its own
processes, and a process that works for one organization may not work for another. Hence, neither
the CMM nor the ISO9000 standards prescribe any particular development process. Instead, they
insist that each organization should be aware of what process it is using, and should work to
continually improve it. Most importantly, assessment and comparison between organizations is with
respect to their relative maturity in understanding and managing their processes, and does not
involve any comparison of their actual process models. In fact, comparison of the process models
themselves would be counter-productive, as it may work against the goal of these models being an
honest appraisal of actual development processes.

Finally, we should note that although there is empirical evidence that initiatives such as the
CMM have had a positive impact on some of the organizations that have applied them, there has
also been a backlash within some parts of the software industry, in response to the demand for a
process-heavy approach. The value of documenting the development process, and then managing to
this defined process is only of use if the various projects conducted by a company are sufficiently
similar to one another for the same process to apply repeatedly. For some companies, this is clearly
not true. In particular, small companies involved in very innovative projects may find that very few
aspects of their development process carry over from one project to the next. For example, Agile
development methods projects do not document development processes, and do not use process
models as a way of managing the project. Instead, they rely on highly skilled individuals, and good
quality direct communication between the customer and the development team to keep the project
on track. However, such methods only really work well for small dynamic project teams.

3.4.3. Lifecycles vs. Process models

Earlier in this chapter, we described a number of lifecycle models for development of software.
Lifecycle models are quite different in purpose and scope from the process models we have
described above. Process models are detailed descriptions of the step-by-step development of a

©2004 Steve Easterbrook. DRAFT – PLEASE DO NOT CIRCULATE page 23

system, and include information about scheduling and resources for each step, along with
dependencies between steps. They are intended as a tool for managing projects, and as a structure
for statistical analysis of defects, used for process improvement. Lifecycle models, on the other
hand, are very generalized descriptions of the phases that a project goes through, and are intended
for understanding and comparing different species of project. The analogy with the lifecycle models
used in biology is helpful – a description of the lifecycle of a butterfly is useful for getting the
overall understanding, and for comparison with lifecycles of other types of insect. However, it
doesn’t tell you how exactly a butterfly manages to mutate from one stage to the next, nor does it
contain any data on how various factors (temperature, food supply, predator density, etc) will
impact the development stages of a particular butterfly.

Lifecycle models are so abstract that they are almost useless for management purposes.
However, they are a useful pedagogical tool – in this book, we use them to help us understand the
role of requirements engineering in different types of project.

3.5. Chapter Summary
TBD

3.6. Further Reading
Nature of Engineering: For interesting thoughts on the differences between engineering and

science, read Walter Vincenti’s book “What Engineers Know and How they Know it”. The
distinction between normal and radical design is also covered in this book.

Nature of Software Engineering: For thoughts on software engineering as a discipline, read
Mary Shaw’s paper “Prospects for An Engineering Discipline of Software”, which appeared in
IEEE Computer in Nov 1990. There is also an excellent set of papers in the Annals of Software
Engineering, vol 6, no1-2, 1998, ranging from what it means to call software engineering an
engineering discipline, through to specific ideas about how it should be taught.

On whether software is different: The classic paper is Fred Brooks’ “No Silver Bullet”
(IEEE Computer, April 1987), in which he discusses why software engineering is so hard. Tom
Maibaum provides a more recent analysis in his paper “Mathematical Foundations of Software
Engineering: A roadmap”, which appeared in the IEEE Press 2000 volume “The Future of Software
Engineering”.

Code of Ethics: The IEEE/ACM code of ethics can be found online at
http://www.computer.org/tab/seprof/code.htm The IEEE has also produced a “Software
Engineering Body of Knowledge” as a first step towards identifying what software engineering
professionals should know: see http://www.swebok.org/ Finally. IEEE Software of Nov/Dec 1999
has an interesting collection of paper on accreditation and licensing of software engineers.

Ethical Dilemmas in Engineering: The example ethical dilemmas in this chapter are adapted
from examples at http://onlineethics.org/ and at from Kevin McBride’s IS214 course at Berkeley:
http://www.sims.berkeley.edu/courses/is214/ both sites have more examples.

Project Management: There are many books on project management. A good place to start
for software engineering project management is Thayer and Dorfman’s edited volume “Software
Engineering Project Management (2nd Edition)”, IEEE press, 1997. The suggestions for key
measurements are adapted from Mah and Putnam’s paper “Software By The Numbers: An Aerial
View Of The Software Metrics Landscape” in American Programmer, Nov 1998.

Product Families: A good starting point for work on product families and how they related to
requirements is Stuart Faulk’s paper “Product-Line Requirements Specification: An Approach and
Case Study”, which appeared in RE’01.

©2004 Steve Easterbrook. DRAFT – PLEASE DO NOT CIRCULATE page 24

Project Initiation: An interesting paper exploring how projects get started is Bergman and
Mark’s paper on project selection at NASA, “In Situ Requirements Analysis: A Deeper
Examination of the Relationship between Requirements Determination and Project Selection”,
which appeared in RE’03.

Lifecycle models: Any good textbook on Software Engineering has a summary of lifecycle
models. For a discussion of the difference between lifecyle models and process models, see Walt
Scacchi’s entry “Process Models in Software Engineering” in the Encyclopedia of Software
Engineering (2nd edition), 2001.

Agile Models: Recent books on Agile Methods and Extreme Programming are too numerous
to mention. Kent Beck’s “Extreme Programming Explained” is probably as good a place as any to
start. For thoughts on Requirements Engineering and Agile Methods, read Ben Kovitz’s paper
“Hidden skills that support phased and agile requirements engineering” in the Requirements
Engineering Journal, volume 8, 2003.

Requirements Lifecycle: The distinction between Early and Late Requirements was first
introduced by John Mylopoulos – see for example the paper “Towards Requirements-Driven
Software Development Methodology: The Tropos Project," by Castro, Kolp and Mylopoulos, in
Information Systems, June 2002, The Klaus Pohl’s three dimension are described in his paper “The
three dimensions of Requirements Engineering: a framework and its applications” in Information
Systems vol 19, 1994. The inquiry cycle was first introduced by Colin Potts and colleagues in their
paper “Inquiry-based Requirements Analysis”, IEEE Software, November 1994.

Capability Maturity Model: Information about the capability maturity model can be found on
the SEI website at http://www.sei.cmu.edu/cmm/ An empirical study of the benefits of the CMM
was conducted by Jim Herbsleb et al in 1994, and is available as report CMU/SEI-94-SR-013 on the
SEI website.

3.7. Exercises
TBD

