o University of Toronto

v

Department of Computer Science

Lecture 23:
Software Architectures

- Architectural Styles
% Pipe and filter
% Object oriented:
» Client-Server; Object Broker
% Event based
% Layered:
> Designing Layered Architectures
% Repositories:
> Blackboard, MVC

% Process control

© Easterbrook 2004 1

“ University of Toronto Department of Computer Science

Pipe-and-filter
Source: Adapted from Shaw & Garlan 1996, p21-2. See also van Vliet, 1999 Pp266-7 and p279
filter pipe pipe pipe
filter filter

e e bipe
pipe
- Examples:

% UNIX shell commands
% Compilers:

> Lexical Analysis -> parsing -> semantic analysis -> code generation
% Signal Processing

- Interesting properties:
% filters don't need to know anything about what they are connected to
% filters can be implemented in parallel

% behaviour of the system is the composition of behaviour of the filters
> specialized analysis such as throughput and deadlock analysis is possible

© Easterbrook 2004 2

Department of Computer Science

Object Oriented Architectures

Source: Adapted from Shaw & Garlan 1996, p22-3.

o University of Toronto

method

- Examples:
% abstract data types

- Interesting properties
% data hiding (internal data representations are not visible to clients)
% can decompose problems into sets of interacting agents
% can be multi-threaded or single thread

- Disadvantages
% objects must know the identity of objects they wish to interact with

© Easterbrook 2004 3

“ University of Toronto Department of Computer Science

Variant 1: Client Server

method
invocation
invocation!

method
invocation

- Interesting properties
% Is a special case of the previous pattern object oriented architecture
% Clients do not need to know about one another

- Disadvantages
% Client objects must know the identity of the server

© Easterbrook 2004 4

ﬂ University of Toronto Department of Computer Science

- Variant 2: Object Brokers

ﬂ University of Toronto Department of Computer Science

Broker Architecture Example

“Client ClientSide Broker SenverSide Server
== Proxy. _— Proxy I
H
i

[%]
0 S
O &
o
- Interesting properties
% Adds a broker between the clients and servers
% Clients no longer need to know which server they are using
% Can have many brokers, many servers.
- Disadvantages
% Broker can become a bottleneck
% Degraded performance
© Easterbrook 2004 5
ﬂ University of Toronto Department of Computer Science
Event based (implicit invocation)

Source: Adapted from Shaw & Garlan 1996, p23-4. See also van Viiet, 1999 Pp264-5 and p278

announce

- Examples
% debugging systems (listen for particular breakpoints)
% database management systems (for data integrity checking)
% graphical user interfaces

- Interesting properties
% announcers of events don't need to know who will handle the event
% Supports re-use, and evolution of systems (add new agents easily)

- Disadvantages
% Components have no control over ordering of computations

© Easterbrook 2004 7

L callServer() !
|
|
|
q i
packData() !
i
i
sendRequest() | ifindServer() !
|
i
|
requestSerlice() H unPackData()
packDataf)
sendResgonse()
sendRegbonse()
PackData(); ~Possible
————— process
_J ! boundaries
T i
H i
© Easterbrook 2004 ’
 University of Toronto Department of Computer Science

Layered Systems

Source: Adapted from Shaw & Garlan 1996, p25. See also van Viiet, 1999, p281.

users

- Examples
% Operating Systems
% communication protocols

- Interesting properties
% Support increasing levels of abstraction during design
% Support enhancement (add functionality) and re-use
% can define standard layer interfaces

- Disadvantages
% May not be able to identify (clean) layers

© Easterbrook 2004 8

o University of Toronto

v

Department of Computer Science

Variant: 3-layer data access

Presentation layer

© Easterbrook 2004 9

“ University of Toronto Department of Computer Science

Department of Computer Science

How many layers?

Application (client)
Database (server)

o University of Toronto

- 2-layers:
% application layer
% database layer
% e.g. simple client-server model

Presentation layer (user interface)
Business Logic

- 3-layers:
% separate out the business logic Database

>helps to make both user interface and
database layers modifiable

Presentation layer (user interface)

- 4-layers: Applications
% Separates applications from the Domain Entities
domain entities that they use:
>boundary classes in presentation layer Database

>control classes in application layer
>entity classes in domain layer

ui ui2 ui3 ui4
- Partitioned 4-layers - Appl | App2 | App3 | Apps
% identify separate applications

Domain Entities

Database

© Easterbrook 2004 11

Open vs. Closed Layered Architecture
| d : & Layer N
- closed architecture ¥
X & Layer N-1
% each layer only uses services of the layer \{
immediately below: n
% Minimizes dependencies between layers and Layer 2 .
reduces the impact of a change. Layer 1 \
- open architecture
% a layer can use services from any lower N Layer N
layer. v Layer N-1
% More compact code, as the services of lower
layers can be accessed directly
% Breaks the encapsulation of layers, so Layer 2
increase dependencies between layers Layer 1
© Easterbrook 2004 10
“ University of Toronto Department of Computer Science

Repositories

Source: Adapted from Shaw & Garlan 1996, p26-7. See also van Viiet, 1999, p280

]
gy
data)
—

- Examples
% databases
% blackboard expert systems
% programming environments

- Interesting properties
% can choose where the locus of control is (agents, blackboard, both)
% reduce the need to duplicate complex data

- Disadvantages
% blackboard becomes a bottleneck

© Easterbrook 2004 12

o University of Toronto

Department of Computer Science

Variant: Model-View-Controller

- Properties
% One central model, many views (viewers)
% Each view has an associated controller
% The controller handles updates from the user of the view
% Changes to the model are propagated to all the views

© Easterbrook 2004

L University of Toronto

Model View Controller Example

«component»
AdvertView

-« dependson viewData

Navigability arrows show the Eg;gﬁ%v ert)

P
<« directions in which messages | update()
will be sent.

«component»
CampaignModel

coreData 1 ‘

setOfObservers [0..*]

attach(Observer) updates

detach(Observer) 1

notify()

getAdvertData() «component»

modifyAdvert() AdvertController

! T <4 updates *
P initialize ()

changeAdvert()
update()

Department of Computer Science

© Easterbrook 2004

Department of Computer Science

o University of Toronto

MVC Component Interaction

% AdvertController :CampaignModel :AdvertView
M i 1 1
I | |
changeAdvert) H |
I |
I 1
difyA | |
modifyAdvert() ' notify()]
i
i
update() |
|

displayAdvert()
P getAdvertData()
update()

getAdvertData() H
I
1
1
1
i
o i
i
|
I
; !
L \ !
L ! ! |

© Easterbrook 2004

b University of Toronto

Process Control

Source: Adapted from Shaw & Garlan 1996, p27-31

&
mpu‘r variables &
&
control mumpulufed coss
—> roce:
parameters vurlubles P
A controlled
variables

acTuaTor‘s
- Examples
% aircraft/spacecraft flight control systems
% controllers for industrial production lines, power stations, etc.
% chemical engineering

- Interesting properties
% separates control policy from the controlled process
% handles real-time, reactive computations

- Disadvantages
% Difficult to specify the timing characteristics and response to disturbances

Department of Computer Science

© Easterbrook 2004

16

