
1

University of Toronto Department of Computer Science

© Easterbrook 2004 1

Lecture 21:
Software Evolution

 Basics of Software Evolution
 Laws of software evolution
 Requirements Growth
 Software Aging

 Basics of Change Management
 Baselines, Change Requests and Configuration Management

 Software Families - The product line approach

 Requirements Traceability
 Importance of traceability
 Traceability tools

University of Toronto Department of Computer Science

© Easterbrook 2004 2

Program Types
 S-type Programs (“Specifiable”)

 problem can be stated formally and completely
 acceptance: Is the program correct according to its specification?
 This software does not evolve.

 A change to the specification defines a new problem, hence a new program

 P-type Programs (“Problem-solving”)
 imprecise statement of a real-world problem
 acceptance: Is the program an acceptable solution to the problem?
 This software is likely to evolve continuously

 because the solution is never perfect, and can be improved
 because the real-world changes and hence the problem changes

 E-type Programs (“Embedded”)
 A system that becomes part of the world that it models
 acceptance: depends entirely on opinion and judgement
 This software is inherently evolutionary

 changes in the software and the world affect each other

Source: Adapted from Lehman 1980, pp1061-1063

University of Toronto Department of Computer Science

© Easterbrook 2004 3

real
world

requirements
specification

PROGRAM

abstract
view of world

solution

compare

P-type

real world

PROGRAM

abstract
view of worldrequirements

specification

model

E-type

formal
statement
of problem

PROGRAM

solution

real
world

controls the
production

of

provides
maybe of
interest to

may
relate

to

change

change

change

S-type

Source: Adapted from Lehman 1980, pp1061-1063

University of Toronto Department of Computer Science

© Easterbrook 2004 4

Source: Adapted from Lehman 1980, pp1061-1063

Laws of Program Evolution
 Continuing Change

 Any software that reflects some external reality undergoes continual change
or becomes progressively less useful

 change continues until it is judged more cost effective to replace the system

 Increasing Complexity
 As software evolves, its complexity increases…

 …unless steps are taken to control it.

 Fundamental Law of Program Evolution
 Software evolution is self-regulating

 …with statistically determinable trends and invariants

 Conservation of Organizational Stability
 During the active life of a software system, the work output of a

development project is roughly constant (regardless of resources!)

 Conservation of Familiarity
 The amount of change in successive releases is roughly constant



2

University of Toronto Department of Computer Science

© Easterbrook 2004 5

Requirements Growth
Davis’s model:

User needs evolve continuously
Imagine a graph showing growth

of needs over time
May not be linear or continuous

(hence no scale shown)
Traditional development always
lags behind needs growth
 first release implements only

part of the original requirements
 functional enhancement adds new

functionality
eventually, further enhancement

becomes too costly, and a
replacement is planned

 the replacement also only
implements part of its
requirements,

and so on...

Time
Fu

nc
ti

on
al

it
y

User needs

ide
nti

fy 
req

uir
em

en
ts

fir
st 

rel
ea

se

en
ha

nce
men

t p
ha

se

fre
ez

e a
nd

 re
pla

ce

rep
lac

em
en

t d
eli

ver
ed

en
ha

nce
men

t p
ha

se

conventional
development

Lateness

Shortfall

Inappropriateness

Longevity

Adaptability

(shaded area)

(slope of line)

Source: Adapted from Davis 1988, pp1453-1455

University of Toronto Department of Computer Science

© Easterbrook 2004 6

Alternative lifecycle models

Time

Fu
nc

ti
on

al
it
y

User needs

Throwaway Prototyping

Time

Fu
nc

ti
on

al
it
y

User needs

Evolutionary Prototyping

Time

Fu
nc

ti
on

al
it
y

User needs

Incremental Development

Time

Fu
nc

ti
on

al
it
y

User needs

Automated Software Synthesis

Source: Adapted from Davis 1988, pp1455-1459

University of Toronto Department of Computer Science

© Easterbrook 2004 7

Software “maintenance”
Maintenance philosophies

 “throw-it-over-the-wall” - someone else is responsible for maintenance
 investment in knowledge and experience is lost
 maintenance becomes a reverse engineering challenge

 “mission orientation” - development team make a long term commitment to
maintaining/enhancing the software

 Basili’s maintenance process models:
Quick-fix model

 changes made at the code level, as easily as possible
 rapidly degrades the structure of the software

 Iterative enhancement model
 Changes made based on an analysis of the existing system
 attempts to control complexity and maintain good design

 Full-reuse model
 Starts with requirements for the new system, reusing as much as possible
 Needs a mature reuse culture to be successful

Source: Adapted from Blum, 1992, p492-495

University of Toronto Department of Computer Science

© Easterbrook 2004 8

Software Aging
 Causes of Software Aging

 Failure to update the software to meet changing needs
 Customers switch to a new product if benefits outweigh switching costs

 Changes to software tend to reduce its coherence

 Costs of Software Aging
Owners of aging software find it hard to keep up with the marketplace
 Deterioration in space/time performance due to deteriorating structure
 Aging software gets more buggy

 Each “bug fix” introduces more errors than it fixes

Ways of Increasing Longevity
 Design for change
 Document the software carefully
 Requirements and designs should be reviewed by those responsible for its

maintenance
 Software Rejuvenation…

Source: Adapted from Parnas, 1994



3

University of Toronto Department of Computer Science

© Easterbrook 2004 9

Managing Requirements Change
Managers need to respond to requirements change

 Add new requirements during development
 But not succumbing to feature creep

Modify requirements during development
 Because development is a learning process

 Remove requirements during development
 requirements “scrub” for handling cost/schedule slippage

 Key techniques
 Change Management Process
 Release Planning
 Requirements Prioritization (previous lecture!)
 Requirements Traceability
 Architectural Stability (next week’s lecture)

University of Toronto Department of Computer Science

© Easterbrook 2004 10

Change Management
 Configuration Management

 Each distinct product is a Configuration Item (CI)
 Each configuration item is placed under version control
 Control which version of each CI belongs in which build of the system

 Baselines
 A baseline is a stable version of a document or system

 Safe to share among the team
 Formal approval process for changes to be incorporated into the next

baseline

 Change Management Process
 All proposed changes are submitted formally as change requests
 A review board reviews these periodically and decides which to accept

 Review board also considers interaction between change requests

University of Toronto Department of Computer Science

© Easterbrook 2004 11

Towards Software Families
 Libraries of Reusable Components

 domain specific libraries (e.g. Math libraries)
 program development libraries (e.g. Java AWT, C libraries)

 Domain Engineering
 Divides software development into two parts:

 domain analysis - identifies generic reusable components for a problem domain
 application development - uses the domain components for specific applications.

 Software Families
Many companies offer a range of related software systems

 Choose a stable architecture for the software family
 identify variations for different members of the family

 Represents a strategic business decision about what software to develop
 Vertical families

 e.g. ‘basic’, ‘deluxe’ and ‘pro’ versions of a system
Horizontal families

 similar systems used in related domains

University of Toronto Department of Computer Science

© Easterbrook 2004 12

Requirements Traceability
 From IEEE-STD-830:

 Backward traceability
 i.e. to previous stages of development.
 the origin of each requirement should be clear

 Forward traceability
 i.e., to all documents spawned by the SRS.
 Facilitation of referencing of each requirement in future documentation
 depends upon each requirement having a unique name or reference number.

 From DOD-STD-2167A:
 A requirements specification is traceable if:

 “(1) it contains or implements all applicable stipulations in predecessor document
 (2) a given term, acronym, or abbreviation means the same thing in all documents
 (3) a given item or concept is referred to by the same name in the documents
 (4) all material in the successor document has its basis in the predecessor

document, that is, no untraceable material has been introduced
 (5) the two documents do not contradict one another”



4

University of Toronto Department of Computer Science

© Easterbrook 2004 13

Importance of Traceability
 Verification and Validation

 assessing adequacy of test suite
 assessing conformance to

requirements
 assessing completeness, consistency,

impact analysis
 assessing over- and under-design
 investigating high level behavior

impact on detailed specifications
 detecting requirements conflicts
 checking consistency of decision

making across the lifecycle

 Maintenance
 Assessing change requests
 Tracing design rationale

 Document access
 ability to find information quickly in

large documents

 Process visibility
 ability to see how the software was

developed
 provides an audit trail

 Management
 change management
 risk management
 control of the development process

Source: Adapted from Palmer, 1996, p365

University of Toronto Department of Computer Science

© Easterbrook 2004 14

Traceability Difficulties
 Cost

 very little automated support
 full traceability is very expensive and time-consuming

 Delayed gratification
 the people defining traceability links are not the people who benefit from it

 development vs. V&V
much of the benefit comes late in the lifecycle

 testing, integration, maintenance

 Size and diversity
Huge range of different document types, tools, decisions, responsibilities,…
No common schema exists for classifying and cataloging these
 In practice, traceability concentrates only on baselined requirements

Source: Adapted from Palmer, 1996, p365-6

University of Toronto Department of Computer Science

© Easterbrook 2004 15

Current Practice
 Coverage:

 links from requirements forward to designs, code, test cases,
 links back from designs, code, test cases to requirements
 links between requirements at different levels

 Traceability process
 Assign each sentence or paragraph a unique id number
Manually identify linkages
 Use manual tables to record linkages in a document
 Use a traceability tool (database) for project wide traceability
 Tool then offers ability to

 follow links
 find missing links
 measure overall traceability

Source: Adapted from Palmer, 1996, p367-8

University of Toronto Department of Computer Science

© Easterbrook 2004 16

Limitations of Current Tools
 Informational Problems

 Tools fail to track useful traceability information
 e.g cannot answer queries such as “who is responsible for this piece of

information?”
 inadequate pre-requirements traceability

 “where did this requirement come from?”

 Lack of agreement…
 …over the quantity and type of information to trace

 Informal Communication
 People attach great importance to personal contact and informal

communication
 These always supplement what is recorded in a traceability database

 But then the traceability database only tells part of the story!
 Even so, finding the appropriate people is a significant problem

Source: Adapted from Gotel & Finkelstein, 1993, p100



5

University of Toronto Department of Computer Science

© Easterbrook 2004 17Source: Adapted from Gotel & Finkelstein, 1997, p100

Problematic Questions
 Involvement

Who has been involved in the production of this requirement and how?

 Responsibility & Remit
Who is responsible for this requirement?

 who is currently responsible for it?
 at what points in its life has this responsibility changed hands?

Within which group’s remit are decisions about this requirement?

 Change
 At what points in the life of this requirements has working arrangements of

all involved been changed?

 Notification
Who needs to be involved in, or informed of, any changes proposed to this

requirement?

 Loss of knowledge
What are the ramifications regarding the loss of project knowledge if a

specific individual or group leaves?


