
1

University of Toronto Department of Computer Science

© Easterbrook 2004 1

Lecture 19:
Verification and Validation

 Some Refreshers:
 Summary of Modelling Techniques seen so far
 Recap on definitions for V&V

 Validation Techniques
 Inspection (see lecture 6)
Model Checking (see lecture 16)
 Prototyping

 Verification Techniques
 Consistency Checking
Making Specifications Traceable (see lecture 21)

 Independent V&V

University of Toronto Department of Computer Science

© Easterbrook 2004 2

The story so far
We’ve looked at the following UML diagrams:

 Activity diagrams
 capture business processes involving concurrency and synchronization
 good for analyzing dependencies between tasks

 Class Diagrams
 capture the structure of the information used by the system
 good for analysing the relationships between data items used by the system
 good for helping you identify a modular structure for the system

 Statecharts
 capture all possible responses of an object to all uses cases in which it is involved
 good for modeling the dynamic behavior of a class of objects
 good for analyzing event ordering, reachability, deadlock, etc.

 Use Cases
 capture the view of the system from the view of its users
 good starting point for specification of functionality
 good visual overview of the main functional requirements

 Sequence Diagrams (collaboration diagrams are similar)
 capture an individual scenario (one path through a use case)
 good for modelling dialog structure for a user interface or a business process
 good for identifying which objects (classes) participate in each use case
 helps you check that you identified all the necessary classes and operations

University of Toronto Department of Computer Science

© Easterbrook 2004 3

The story so far (part 2)
We’ve looked at the following non-UML diagrams

 Goal Models
 Capture strategic goals of stakeholders
 Good for exploring ‘how’ and ‘why’ questions with stakeholders
 Good for analysing trade-offs, especially over design choices

 Fault Tree Models (as an example risk analysis technique)
 Capture potential failures of a system and their root causes
 Good for analysing risk, especially in safety-critical applications

 Strategic Dependency Models (i*)
 Capture relationships between actors in an organisational setting
 Helps to relate goal models to organisational setting
 Good for understanding how the organisation will be changed

 Entity-Relationship Models
 Capture the relational structure of information to be stored
 Good for understanding constraints and assumptions about the subject domain
 Good basis for database design

Mode Class Tables, Event Tables and Condition Tables (SCR)
 Capture the dynamic behaviour of a real-time reactive system
 Good for representing functional mapping of inputs to outputs
 Good for making behavioural models precise, for automated reasoning

University of Toronto Department of Computer Science

© Easterbrook 2004 4

Verification and Validation

Problem
Statement

Implementation
Statement

System

V
al
id
at
io
n

V
er
if
ic
at
io
n

 Validation:
 “Are we building the right

system?”
 Does our problem statement

accurately capture the real
problem?

 Did we account for the needs of
all the stakeholders?

 Verification:
 “Are we building the system

right?”
 Does our design meet the spec?
 Does our implementation meet the

spec?
 Does the delivered system do

what we said it would do?
 Are our requirements models

consistent with one another?

Problem
Situation



2

University of Toronto Department of Computer Science

© Easterbrook 2004 5

Refresher: V&V Criteria

 Some distinctions:
 Domain Properties: things in the application domain that are true anyway
 Requirements: things in the application domain that we wish to be made true
 Specification: a description of the behaviours the program must have in

order to meet the requirements

 Two verification criteria:
 The Program running on a particular Computer satisfies the Specification
 The Specification, given the Domain properties, satisfies the Requirements

 Two validation criteria:
 Did we discover (and understand) all the important Requirements?
 Did we discover (and understand) all the relevant Domain properties?

Source: Adapted from Jackson, 1995, p170-171

Application Domain Machine Domain

University of Toronto Department of Computer Science

© Easterbrook 2004 6

V&V Example
 Example:

 Requirement R:
 “Reverse thrust shall only be enabled when the aircraft is moving on the runway”

 Domain Properties D:
 Wheel pulses on if and only if wheels turning
 Wheels turning if and only if moving on runway

 Specification S:
 Reverse thrust enabled if and only if wheel pulses on

 Verification
 Does the flight software, P, running on the aircraft flight computer, C,

correctly implement S?
 Does S, in the context of assumptions D, satisfy R?

 Validation
 Are our assumptions, D, about the domain correct? Did we miss any?
 Are the requirements, R, what is really needed? Did we miss any?

University of Toronto Department of Computer Science

© Easterbrook 2004 7

Inquiry Cycle

Prior Knowledge
(e.g. customer feedback)

Observe
(what is wrong with
the current system?)

Model
(describe/explain the
observed problems)

Design
(invent a better system)

Intervene
(replace the old system)

Note similarity with
process of scientific

investigation:
Requirements models are
theories about the world;
Designs are tests of those

theories

Initial hypotheses

Look for anomalies - what can’t
the current theory explain?

Create/refine
a better theory

Design experiments to
test the new theory

Carry out the
experiments
(manipulate

the variables)

University of Toronto Department of Computer Science

© Easterbrook 2004 8

Shortcuts in the inquiry cycle
Prior Knowledge

(e.g. customer feedback)

Observe
(what is wrong with
the current system?)

Model
(describe/explain the
observed problems)

Design
(invent a better system)

Intervene
(replace the old system)

Build a
Prototype

Get users
to try it

(what is wrong with
the prototype?)

Analyze
the model

Check properties
of the model

(what is wrong with
the model?)



3

University of Toronto Department of Computer Science

© Easterbrook 2004 9

Prototyping
“A software prototype is a partial implementation constructed primarily to

enable customers, users, or developers to learn more about a problem or its
solution.” [Davis 1990]

“Prototyping is the process of building a working model of the system”
[Agresti 1986]

 Approaches to prototyping
 Presentation Prototypes

 explain, demonstrate and inform – then throw away
 e.g. used for proof of concept; explaining design features; etc.

 Exploratory Prototypes
 used to determine problems, elicit needs, clarify goals, compare design options
 informal, unstructured and thrown away.

 Breadboards or Experimental Prototypes
 explore technical feasibility; test suitability of a technology
 Typically no user/customer involvement

 Evolutionary (e.g. “operational prototypes”, “pilot systems”):
 development seen as continuous process of adapting the system
 “prototype” is an early deliverable, to be continually improved.

University of Toronto Department of Computer Science

© Easterbrook 2004 10

Throwaway or Evolve?
Throwaway Prototyping

Purpose:
 to learn more about the problem or its

solution…
 discard after desired knowledge is gained.

Use:
 early or late

Approach:
 horizontal - build only one layer (e.g. UI)
 “quick and dirty”

Advantages:
 Learning medium for better convergence
 Early delivery → early testing → less cost
 Successful even if it fails!

Disadvantages:
 Wasted effort if reqts change rapidly
 Often replaces proper documentation of the

requirements
 May set customers’ expectations too high
 Can get developed into final product

 Evolutionary Prototyping
Purpose

 to learn more about the problem or its
solution…

 …and reduce risk by building parts early
Use:

 incremental; evolutionary
Approach:

 vertical - partial impl. of all layers;
 designed to be extended/adapted

Advantages:
 Requirements not frozen
 Return to last increment if error is found
 Flexible(?)

Disadvantages:
 Can end up with complex, unstructured

system which is hard to maintain
 early architectural choice may be poor
 Optimal solutions not guaranteed
 Lacks control and direction

Brooks: “Plan to throw one away - you will anyway!”

University of Toronto Department of Computer Science

© Easterbrook 2004 11

Model Analysis
 Verification

 “Is the model well-formed?”
 Are the parts of the model consistent with one another?

 Validation:
 Animation of the model on small examples
 Formal challenges:

 “if the model is correct then the following property should hold...”
 ‘What if’ questions:

 reasoning about the consequences of particular requirements;
 reasoning about the effect of possible changes
 “will the system ever do the following...”

 State exploration
 E.g. use a model checking to find traces that satisfy some property

University of Toronto Department of Computer Science

© Easterbrook 2004 12

Basic Cross-Checks for UML
Use Case Diagrams
Does each use case have a user?

 Does each user have at least one use case?
Is each use case documented?

 Using sequence diagrams or equivalent

Class Diagrams
Does the class diagram capture all the

classes mentioned in other diagrams?
Does every class have methods to get/set

its attributes?

Sequence Diagrams
Is each class in the class diagram?
Can each message be sent?

 Is there an association connecting sender and
receiver classes on the class diagram?

 Is there a method call in the sending class for
each sent message?

 Is there a method call in the receiving class
for each received message?

StateChart Diagrams
Does each statechart diagram capture (the

states of) a single class?
 Is that class in the class diagram?

Does each transition have a trigger event?
 Is it clear which object initiates each event?
 Is each event listed as an operation for that

object’s class in the class diagram?
Does each state represent a distinct

combination of attribute values?
 Is it clear which combination of attribute

values?
 Are all those attributes shown on the class

diagram?
Are there method calls in the class

diagram for each transition?
 …a method call that will update attribute

values for the new state?
 …method calls that will test any conditions on

the transition?
 …method calls that will carry out any actions

on the transition?



4

University of Toronto Department of Computer Science

© Easterbrook 2004 13

Independent V&V
 V&V performed by a separate contractor

 Independent V&V fulfills the need for an independent technical opinion.
 Cost between 5% and 15% of development costs
 Studies show up to fivefold return on investment:

 Errors found earlier, cheaper to fix, cheaper to re-test
 Clearer specifications
 Developer more likely to use best practices

 Three types of independence:
Managerial Independence:

 separate responsibility from that of developing the software
 can decide when and where to focus the V&V effort

 Financial Independence:
 Costed and funded separately
 No risk of diverting resources when the going gets tough

 Technical Independence:
 Different personnel, to avoid analyst bias
 Use of different tools and techniques

University of Toronto Department of Computer Science

© Easterbrook 2004 14

Some philosophical views of validation
 logical positivist view:

 “there is an objective world that can be modeled by building a consistent body of
knowledge grounded in empirical observation”

 In RE, assumes there is an objective problem that exists in the world
 Build a consistent model; make sufficient empirical observations to check validity
 Use tools that test consistency and completeness of the model
 Use reviews, prototyping, etc to demonstrate the model is “valid”

 Popper’s modification to logical positivism:
 “theories can’t be proven correct, they can only be refuted by finding exceptions”

 In RE, design your requirements models to be refutable
 Look for evidence that the model is wrong
 E.g. collect scenarios and check the model supports them

 post-modernist view:
 “there is no privileged viewpoint; all observation is value-laden; scientific

investigation is culturally embedded”
 E.g. Kuhn: science moves through paradigms
 E.g. Toulmin: scientific theories are judged with respect to a weltanschauung

 In RE, validation is always subjective and contextualised
 Use stakeholder involvement so that they ‘own’ the requirements models
 Use ethnographic techniques to understand the weltanschauungen


