University of Toronto Department of Computer Science %& University of Toronto Department of Computer Science
Lecture 18: ¥ What are Non-functional Requirements?
Non-Functional Requirements (NFRs)

- Functional vs. Non-Functional

% Functional requirements describe what the system should do

- Defin“'ions > things that can be captured in use cases
. e . > things that can be analyzed by drawing sequence diagrams, statecharts, etfc.
© Quality criteria; metrics > Functional requirements will probably trace to individual chunks of a program
% Example NFRs % Non-functional requirements are global constraints on a software system
. ese > e.g. development costs, operational costs, performance, reliability,
- Product-oriented 50f1’war‘e Quall'ﬂes maintainability, portability, robustness etc.

> Often known as the “ilities”
> Usually cannot be implemented in a single module of a program

% Making quality criteria specific
% Catalogues of NFRs
% Example: Reliability > The challenge of NFRs

- Process-oriented Software Qualities % Hard to model

& Usually stated i lly, and :
% Softgoal analysis for design tradeoffs sf”ofyf:n (Zo:fr;g:;:::a Y. and so are

» difficult to enforce during development
> difficult o evaluate for the customer prior to delivery
% Hard to make them measurable requirements
> We'd like to state them in a way that we can measure how well they've been met

©2000-2003, Steve Easterbrook 1 ©2000-2003, Steve Easterbrook 2

@ University of Toronto Department of Computer Science % University of Toronto Department of Computer Science
b 4 B, 4
Example NFRs Approaches to NFRs
- Interface requirements - Operating requirements - Product vs. Process?
% hcfw v!/ill Thev new sys;rem interface % physical cons'r‘ruir-n"s (sizellweight), % Product-oriented Approaches
with its environment? o % personnel availability & skill level > Focus on system (or software) quality
»User interfaces and "user-friendiness A ibility for main > Aim is fo have a way of measuring the product once it's built
>Interfaces with other systems % . tal diti Y 9
i environmental conditions % Process-oriented Approaches
- Performance requirements © etc > Focus on how NFRs can be used in the design process

% time/space bounds) - Lifecycle r‘equir‘ements > Aim is fo have a way of making appropriate design decisions
»>workloads, response time, throughput % °F fing" l 5
and available storage space uture-proofing - 1 1 H H 7
and avgable storage SBOct e 1,000 e prooting Quantitative vs. Qualitative
transactions per second" »>Enhanceability % Quantitative APPPOCICheS

% reliability >Portability A > Find measurable scales for the quality attributes
>the availability of components © i ;EXP“'ded ’“l“"ke* °: product lifespan > Calculate degree to which a design meets the quality targets
>integrity of information maintained and imifs on developmen PR
supplied to the system >E.g development time limitations, © Qualitative APPFOQChZ'S .)
>e.g. "system must have less than 1hr »>resource availability > Study various relationships between quality goals
downtime per three months" >methodological standards > Reason about trade-offs etc.

% security >etc.
»E.g. permissible information flows, or . .
e ot - Economic requirements

% survivability % e.g. restrictions on immediate and/or
>E.g. system will need to survive fire, long-term costs.
natural catastrophes, etc

©2000-2003, Steve Easterbrook 3 ©2000-2003, Steve Easterbrook 4

& University of Toronto

Department of Computer Science

v Software Qualities

- Think of an everyday object
% e.g. a chair
% How would you measure it's "quality”?
> construction quality? (e.g. strength of the joints,..)
> aesthetic value? (e.g. elegance,..)
> fit for purpose? (e.g. comfortable,..)

- All quality measures are relative

% there is no absolute scale

% we can sometimes say A is better than B..
> .. but it is usually hard to say how much better!

- For software:
% construction quality?
» software is not manufactured

% aesthetic value?
> but most of the software is invisible
> aesthetic value matters for the user interface, but is only a marginal concern

% fit for purpose?
> Need to understand the purpose

©2000-2003, Steve Easterbrook

@

University of Toronto

Department of Computer Science

- Software quality is all about fitness to purpose

- Quality is not a measure of software in isolation

Fitness

Source: Budgen, 1994, pp58-9

% does it do what is needed?

% does it do it in the way that its users need it to?

% does it do it reliably enough? fast enough? safely enough? securely enough?
% will it be affordable? will it be ready when its users need it?

% can it be changed as the needs change?

% it measures the relationship between software and its application domain
> cannot measure this until you place the software into its environment...
> ..and the quality will be different in different environments!
% during design, we need to predict how well the software will fit its purpose
> we need good quality predictors (design analysis)
% during requirements analysis, we need to understand how fitness-for-
purpose will be measured
> What is the intended purpose?
> What quality factors will matter to the stakeholders?
> How should those factors be operationalized?

©2000-2003, Steve Easterbrook

& University of Toronto

Department of Computer Science

v Factors vs. Criteria

- Quality Factors

% These are customer-related concerns

- Design Criteria
% These are technical (development-oriented) concerns such as anomaly
management, completeness, consistency, traceability, visibility, ...

- Quality Factors and Design Criteria are related:

% Each factor depends on a number of associated criteria:
> E.g. correctness depends on completeness, consistency, traceability,...
> E.g. verifiability depends on modularity, self-descriptiveness and simplicity

% There are some standard mappings to help you...

- During Analysis:
% Identify the relative importance of each quality factor
> From the customer's point of view!
% Identify the design criteria on which these factors depend
% Make the requirements measurable

> Examples: efficiency, integrity, reliability, correctness, survivability, usability,...

©2000-2003, Steve Easterbrook

@

University of Toronto

Department of Computer Science

device-independence

accuracy
completeness
robustness/integrity
consistency

Source: See Blum, 1992, p176

portability

General
utility

& accountability

As-is utility

device efficiency

accessibility

communicativeness

self-descriptiveness

structuredness
conciseness

legibility

Maintainability

modifiability

augmentability

©2000-2003, Steve Easterbrook

' University of Toronto

Department of Computer Science

Product operation

Product revision

Product transition

Source: See van Viiet 2000, pp111-3

¥ McCall's NFR list
[sabitty

maintainability
N simplcty]
o\

reusapiy e
< e ——

usal

1/0 volume
integrity 1/O rate
—
efficiency

traceabilit;

error tolerance
‘ .

e

==\

<\
==

interoperability

©2000-2003, Steve Easterbrook

ty |

Storage efficienc:
execution efficienc)

comms. commonality
data commonalit)

@

University of Toronto Department of Computer Science

Making Requirements Measurable
Source: Budgen, 1994, pp60-1
- We have to turn our vague ideas about quality into
measurables
examples. ..
The Quality Concepts
(abstract notions of [reliability || [complexity | [usability |
quality properties)
v v v
Measurable Quantities mean time f‘l"f“t;’““m“ “"“el taken
. . to failure? ow between to learn
(define some metrics) modules? how to use?
} } !
Counts taken from run it and count minutes
Design Representations | count crashes procedure 7
s s
(realization of the metrics) |_Perhour??? calls2?? c;:‘:k;;;r
© 2000-2003, Steve Easterbrook IO

University of Toronto

Department of Computer Science

@]

Example Metrics

Quality

Metric

Speed

transactions/sec
response time
screen refresh time

Size

Kbytes
number of RAM chips

Ease of Use

training time
number of help frames

Reliability

mean-time-to-failure,
probability of unavailability
rate of failure, availability

Robustness

time to restart after failure
percentage of events causing failure

Portability

percentage of target-dependent statements
number of target systems

©2000-2003, Steve Easterbrook

& University of Toronto Department of Computer Science

4 Example: Measuring Reliability

- Definition
% the ability of the system to behave consistently in a user-acceptable
manner when operating within the environment for which it was intended.

- Comments:
% Reliability can be defined in terms of a percentage (say, 99.999%)
% This may have different meaning for different applications:
> Telephone network: the entire network can fail no more than, on average, 1hr
per year, but failures of individual switches can occur much more frequently
> Patient monitoring system: the system may fail for up to 1hr/year, but in those
cases doctors/nurses should be alerted of the failure. More frequent failure of
individual components is not acceptable.
% Best we can do may be something like:
> "...No more than X bugs per 10KLOC may be detected during integration and
testing: no more than Y bugs per 10KLOC may remain in the system after
delivery, as calculated by the Monte Carlo seeding technique of appendix Z: the
system must be 100% operational 99.9% of the calendar year during its first
year of operation..."

©2000-2003, Steve Easterbrook 12

& University of Toronto

v Measuring Reliability...

Department of Computer Science

- Example reliability requirement:
% “The software shall have no more than X bugs per thousand lines of code”
% ...But is it possible fo measure bugs at delivery time?

- Use bebugging
% Measures the effectiveness of the testing process

% a number of seeded bugs are introduced to the software system
> then testing is done and bugs are uncovered (seeded or otherwise)

Number of bugs = # of seeded bugs x # of detected bugs
in system # of detected seeded bugs

% ...BUT, not all bugs are equally important!

©2000-2003, Steve Easterbrook

5;3 University of Toronto

Example model: Reliability growth

Source: Adapted from Pfleeger 1998, p359

- Motorola's Zero-failure testing model

% Predicts how much more tfesting is needed to establish a given reliability goal

% basic model: empirical consmrib(f)

testing time

failures = ae

- Reliability estimation process

% Inputs needed:
> fd = target failure density (e.g. 0.03 failures per 1000 LOC)
> tf = total test failures observed so far
> th = total testing hours up to the last failure

% Calculate number of further test hours needed using:
In(fd/(0.5 + fd)) x th
In((0.5 + fd)/(+f + fd))
% Result gives the number of further failure free hours of testing needed to

establish the desired failure density
> if a failure is detected in this time, you stop the clock and recalculate

% Note: this model ignores operational profiles!

Department of Computer Science

©2000-2003, Steve Easterbrook

¥ Making Requirements Measurable

&

= _University of Toronto Department of Computer Science

- Define ‘fit criteria’ for each requirement
% Give the 'fit criteria’ alongside the requirement
% E.g. for new ATM software

> Requirement: "The software shall be intuitive and self-explanatory”

> Fit Criteria: "95% of existing bank customers shall be able to withdraw money
and deposit cheques within two minutes of encountering the product for the first
time”

- Choosing good fit criteria
% Stakeholders are rarely this specific
% The right criteria might not be obvious:
> Things that are easy to measure aren't necessarily what the stakeholders want
> Standard metrics aren't necessary what stakeholders want
% Stakeholders need to construct their own mappings from requirements to fit

criteria

©2000-2003, Steve Easterbrook

5;3 University of Toronto

v Using softgoal analysis

Accuracy[Account]

- Goal types:
% Non-functional Requirement
% Satisficing Technique

>e.g. a design choice

% Claim

>supporting/explaining a choice

Accuracy
[PremierAccount]

Accuracy

Accuracy
[RegularAccount] GoldAccount]

Accuracy
[GoldAccount.credit]

- Contribution Types: (GoldAssaant debit ![f\;%ﬁgfcccyoum.mghs;uending]
% AND links (decomposition)

% OR links (alternatives) +*
% Sup links (supports)

% Sub links (necessary subgoal)

Claim [one of vital few:

Validation
[GoldAccount.highSpending]

Auditing
[GoldAccount.highSpending]

- Evaluation of goals *
L Saﬂ.sficed E{;agl(éalx‘ggguynt.highSpending,
% Denied
% Conflicting i
el

% Undetermined

ailable

[policy-on-spending-pattern]

Claim [Policyof Available)
rigorous exam. on high spénding] [GoldAccount.highSpending,

acc. of high spendings in gold accts]

Av:
Available [class-I-secretary]

Department of Computer Science

©2000-2003, Steve Easterbrook

Source: Chung, Nixon, Yu & Mylopoulos, 1999

% University of Toronto Department of Computer Science

A 4 NFR Catalogues

Source: Cysneiros & Yu, 201

- Predefined catalogues of NFR decomposition
% Provides a knowledge base to check coverage of an NFR
% Provides a tool for elicitation of NFRs

% Example:
L

6 pordood ded
50}5-,—‘._ £ change over

