Lecture 7: the Feasibility Study

→ What is a feasibility study?
 % What to study and conclude?

→ Types of feasibility
 % Technical
 % Economic
 % Schedule
 % Operational

→ Quantifying benefits and costs
 % Payback analysis
 % Net Present Value Analysis
 % Return on Investment Analysis

→ Comparing alternatives

Why a feasibility study?

→ Objectives of a feasibility study:
 % To find out if an system development project can be done:
 > ...is it possible?
 > ...is it justified?
 % To suggest possible alternative solutions.
 % To provide management with enough information to know:
 > Whether the project can be done
 > Whether the final product will benefit its intended users
 > What the alternatives are (so that a selection can be made in subsequent phases)
 > Whether there is a preferred alternative

→ A feasibility study is a management-oriented activity
 % After a feasibility study, management makes a “go/no-go” decision.
 % Need to examine the problem in the context of broader business strategy

Content of a feasibility study

→ Things to be studied in the feasibility study:
 % The present organizational system
 > Stakeholders, users, policies, functions, objectives,…
 % Problems with the present system
 > inconsistencies, inadequacies in functionality, performance,…
 % Goals and other requirements for the new system
 > Which problem(s) need to be solved?
 > What would the stakeholders like to achieve?
 % Constraints
 > including nonfunctional requirements on the system (preliminary pass)
 % Possible alternatives
 > “Sticking with the current system” is always an alternative
 > Different business processes for solving the problems
 % Advantages and disadvantages of the alternatives

→ Things to conclude:
 % Feasibility of the project
 % The preferred alternative

Exploring Feasibility

→ The “PIECES” framework
 % Useful for identifying operational problems to be solved, and their urgency
 % Performance
 > Is current throughput and response time adequate?
 % Information
 > Do end users and managers get timely, pertinent, accurate and usefully formatted information?
 % Economy
 > Are services provided by the current system cost-effective?
 > Could there be a reduction in costs and/or an increase in benefits?
 % Control
 > Are there effective controls to protect against fraud and to guarantee information accuracy and security?
 % Efficiency
 > Does current system make good use of resources: people, time, flow of forms,…?
 % Services
 > Are current services reliable? Are they flexible and expandable?

See the course website for a more specific list of PIECES questions
Four Types of feasibility

→ Technical feasibility
 ➤ Is the project possible with current technology?
 ➤ How much technical risk is there?
 ➤ Does the technology exist at all?
 ➤ Is it available locally?
 ➤ Can it be obtained?
 ➤ Will it be compatible with other systems?

→ Economic feasibility
 ➤ Is the project possible, given resource constraints?
 ➤ What benefits will result from the system?
 ➤ Both tangible and intangible benefits
 ➤ Quantity these?
 ➤ What are the development and operational costs?
 ➤ Are the benefits worth the costs?

→ Schedule feasibility
 ➤ Is it possible to build a solution in time to be useful?
 ➤ Any constraints on the schedule?
 ➤ Can these constraints be met?

→ Operational feasibility
 ➤ Urgency of the problem and the acceptability of any solution:
 ➤ If the system is developed, will it be used?
 ➤ Human and social issues...
 ➤ Internal issues:
 ➤ Available human resources?
 ➤ Potential labour objections?
 ➤ Manager resistance?
 ➤ Organizational conflicts and policies?
 ➤ External issues:
 ➤ Social acceptability?
 ➤ Legal aspects and government regulations?

Economic Feasibility

→ Can the bottom line be quantified yet?
 ➤ Very early in the project...
 ➤ a judgement of whether solving the problem is worthwhile.
 ➤ Once specific requirements and solutions have been identified...
 ➤ the costs and benefits of each alternative can be calculated

→ Cost-benefit analysis
 ➤ Purpose - answer questions such as:
 ➤ Is the project justified (i.e., will benefits outweigh costs)?
 ➤ Can the project be done, within given cost constraints?
 ➤ What is the minimal cost to attain a certain system?
 ➤ Which alternative offers the best return on investment?
 ➤ Examples of things to consider:
 ➤ Hardware/software selection
 ➤ How to convince management to develop the new system
 ➤ Selection among alternative financing arrangements (rent/lease/purchase)
 ➤ Difficulties
 ➤ benefits and costs can both be intangible, hidden and/or hard to estimate
 ➤ ranking multi-criteria alternatives

Technical Feasibility

→ Is the proposed technology or solution practical?
 ➤ Do we currently possess the necessary technology?
 ➤ Do we possess the necessary technical expertise, and is the schedule reasonable?
 ➤ Is relevant technology mature enough to be easily applied to our problem?

→ What kinds of technology will we need?
 ➤ Some organizations like to use state-of-the-art technology
 ➤ ...but most prefer to use mature and proven technology.
 ➤ A mature technology has a larger customer base for obtaining advice concerning problems and improvements.

→ Is the required technology available “in house”?
 ➤ If the technology is available:
 ➤ does it have the capacity to handle the solution?
 ➤ If the technology is not available:
 ➤ ...can it be acquired?

Benefits and Costs

→ Tangible Benefits
 ➤ Readily quantified as $ values
 ➤ Examples:
 ➤ increased sales
 ➤ cost/error reductions
 ➤ increased throughput/efficiency
 ➤ increased margin on sales
 ➤ more effective use of staff time
 ➤ Intangible benefits
 ➤ Difficult to quantify
 ➤ But maybe more important
 ➤ business analysts help estimate $ values
 ➤ Examples:
 ➤ increased flexibility of operation
 ➤ higher quality products/services
 ➤ lower information-reach
 ➤ improved staff morale

→ Development costs (OTO)
 ➤ Development and purchasing costs:
 ➤ Cost of development team
 ➤ Consultant fees
 ➤ software used (buy or build?)
 ➤ hardware (what to buy, buy/lease?)
 ➤ facilities (site, communications, power,...)
 ➤ Installation and conversion costs:
 ➤ Installing the system,
 ➤ training personnel,
 ➤ file conversion,...

→ Operational costs (on-going)
 ➤ System Maintenance:
 ➤ hardware (repairs, lease, supplies, ...)
 ➤ software (licenses and contracts),
 ➤ facilities
 ➤ Personnel:
 ➤ for operation (data entry, backups, ...)
 ➤ for support (user support, hardware and software maintenance, supplies, ...)
 ➤ On-going training costs
Example: costs for small Client-Server project

<table>
<thead>
<tr>
<th>Department</th>
<th>Description</th>
<th>2004 Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td>Development Analyst (18 months 25% time)</td>
<td>$20,000</td>
</tr>
<tr>
<td></td>
<td>Technical Writer (8 months 25% time)</td>
<td>$30,000</td>
</tr>
<tr>
<td></td>
<td>Hardware Specialist (12 months 25% time)</td>
<td>$2,700</td>
</tr>
<tr>
<td></td>
<td>Support Staff (3 months 25% time)</td>
<td>$3,200</td>
</tr>
<tr>
<td></td>
<td>Secretarial & Administrative Support</td>
<td>$5,400</td>
</tr>
</tbody>
</table>

Total Development Costs: $51,194

PROJECTED ANNUAL OPERATING COSTS

<table>
<thead>
<tr>
<th>Department</th>
<th>Description</th>
<th>2004 Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td>Support Staff (15 hours/ea $35.00/hr)</td>
<td>$600</td>
</tr>
<tr>
<td></td>
<td>System Analyst (15 hours/ea $45.00/hr)</td>
<td>$6,750</td>
</tr>
<tr>
<td></td>
<td>Systems Architect (50 hours/ea $45.00/hr)</td>
<td>$2,250</td>
</tr>
<tr>
<td></td>
<td>Application Specialist (250 hours/ea $25.00/hr)</td>
<td>$6,250</td>
</tr>
<tr>
<td></td>
<td>Programmer/Analysts (400 hours/ea $35.00/hr)</td>
<td>$11,000</td>
</tr>
</tbody>
</table>

Total Operating Costs: $23,544

Calculating Present Value

A dollar today is worth more than a dollar tomorrow... Your analysis should be normalized to "current year" dollar values.

The discount rate
- measures opportunity cost
 - Money invested in this project means money not available for other things
 - Benefits expected in future years are more prone to risk
- This number is company- and industry-specific

Present Value:
- "current year" dollar value for costs/benefits n years into the future
 - ... for a given discount rate i

\[
\text{Present Value}(n) = \frac{1}{(1 + i)^n}
\]

E.g. if the discount rate is 12%, then
- \(\text{Present Value}(1) = \frac{1}{1 + 0.12} = 0.893\)
- \(\text{Present Value}(2) = \frac{1}{(1 + 0.12)^2} = 0.797\)

Analyzing Costs vs. Benefits

- Identify costs and benefits
 - Tangible and intangible, one-time and recurring
 - Assign values to costs and benefits
- Determine Cash Flow
 - Project costs and benefits over time, e.g. 3-5 years
 - Calculate Net Present Value for all future costs/benefits
 - determines future costs/benefits of the project in terms of today’s dollar values
 - A dollar earned today is worth more than a potential dollar earned next year
- Do cost/benefit analysis
 - Calculate Return on Investment:
 - Allows comparison of lifetime profitability of alternative solutions.
 \[
 \text{ROI} = \frac{\text{Lifetime benefits} - \text{Lifetime costs}}{\text{Lifetime costs}}
 \]
 - Calculate Break-Even point:
 - How long will it take (in years) to pay back the accrued costs:
 - Accrued Cost (initial + incremental) = Accrued Benefits

Net Present Value

Measures the total value of the investment
- with all figures adjusted to present dollar values

\[
\text{NPV} = \sum \text{Cumulative PV of all benefits} - \sum \text{Cumulative PV of all costs}
\]

Net Costs/Benefits
- \(\text{Net Costs/Benefits} = \text{Total Development Costs} - \text{Total Operating Costs} = \$51,194 - \$23,544 = \$27,650\)
Computing the payback period

→ Can compute the break-even point:
 % when does lifetime benefits overtake lifetime costs?
 % Determine the fraction of a year when payback actually occurs:
 \[
 \begin{array}{l}
 \text{endYear amount} = \text{beginningYear amount} \\
 \text{beginningYear amount} + \text{endYear amount} \\
 \text{Therefore, the payback period is 3.42 years}
 \end{array}
 \]

Return on Investment (ROI) analysis

→ For comparing overall profitability
 % Which alternative is the best investment?
 % ROI measures the ratio of the value of an investment to its cost.

→ ROI is calculated as follows:
 \[
 \text{ROI} = \frac{\text{Estimated lifetime benefits} - \text{Estimated lifetime costs}}{\text{Estimated lifetime costs}}
 \]
 or:
 \[
 \text{ROI} = \frac{\text{Net Present value} / \text{Estimated lifetime costs}}{}
 \]
 % For our example
 \[
 \begin{array}{l}
 \text{ROI} = \frac{(795,440 - 488,692)}{488,692} = 62.76\% \\
 \text{or} \quad \text{ROI} = \frac{305,748}{488,692} = 62.76\%
 \end{array}
 \]

→ Solution with the highest ROI is the best alternative
 % But need to know payback period too to get the full picture
 % E.g. a lower ROI with earlier payback may be preferable in some circumstances

Schedule Feasibility

→ How long will it take to get the technical expertise?
 % We may have the technology, but that doesn’t mean we have the skills required to properly apply that technology.
 % May need to hire new people
 % Or re-train existing systems staff
 % Whether hiring or training, it will impact the schedule.

→ Assess the schedule risk:
 % Given our technical expertise, are the project deadlines reasonable?
 % If there are specific deadlines, are they mandatory or desirable?
 % If the deadlines are not mandatory, the analyst can propose several alternative schedules.

→ What are the real constraints on project deadlines?
 % If the project overruns, what are the consequences?
 % Deliver a poorly functioning information system two months late...
 % ...or deliver an error-prone, useless information system on time?
 % Missed schedules are bad, but inadequate systems are worse!
Operational Feasibility

- How do end-users and managers feel about...
 - the problem you identified?
 - the alternative solutions you are exploring?

- You must evaluate:
 - Not just whether a system can work...
 - but also whether a system will work.

- Any solution might meet with resistance:
 - Does management support the project?
 - How do the end users feel about their role in the new system?
 - Which users or managers may resist (or not use) the system?
 - Can or will end users and management adapt to the change?

Comparing Alternatives

- How do we compare alternatives?
 - When there are multiple selection criteria?
 - When none of the alternatives is superior across the board?

- Use a Feasibility Analysis Matrix
 - The columns correspond to the candidate solutions;
 - The rows correspond to the feasibility criteria;
 - The cells contain the feasibility assessment notes for each candidate;
 - Each row can be assigned a rank or score for each criterion
 - e.g., for operational feasibility, candidates can be ranked 1, 2, 3, etc.
 - A final ranking or score is recorded in the last row.

- Other evaluation criteria to include in the matrix
 - Quality of output
 - Ease of use
 - Vendor support
 - Cost of maintenance
 - Load on system

Feasibility Study Contents

1. Purpose & scope of the study
 - Objectives (of the study)
 - who commissioned it & who did it,
 - sources of information,
 - process used for the study,
 - how long did it take,

2. Description of present situation
 - organizational setting, current system(s),
 - Related factors and constraints.

3. Problems and requirements
 - What’s wrong with the present situation?
 - What changes are needed?

4. Objectives of the new system
 - Goals and relationships between them

5. Possible alternatives
 - including ‘do nothing’.

6. Criteria for comparison
 - definition of the criteria

7. Analysis of alternatives
 - description of each alternative
 - evaluation with respect to criteria
 - cost/benefit analysis and special implications.

8. Recommendations
 - what is recommended and implications
 - what to do next:
 - e.g., may recommend an interim solution and a permanent solution

9. Appendices
 - to include any supporting material.

Example matrix

<table>
<thead>
<tr>
<th>Description</th>
<th>Candidate 1 Name</th>
<th>Candidate 2 Name</th>
<th>Candidate 3 Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational Feasibility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Feasibility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schedule Feasibility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economic Feasibility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ranking</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Feasibility Criteria

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Weight</th>
<th>Candidate 1</th>
<th>Candidate 2</th>
<th>Candidate 3</th>
<th>Candidate 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational Feasibility</td>
<td>30%</td>
<td>Score: 60</td>
<td>Score: 100</td>
<td>Score: 100</td>
<td>Score: 100</td>
</tr>
<tr>
<td>Technical Feasibility</td>
<td>30%</td>
<td>Score: 50</td>
<td>Score: 95</td>
<td>Score: 90</td>
<td>Score: 85</td>
</tr>
<tr>
<td>Economic Feasibility</td>
<td>30%</td>
<td>Score: 65</td>
<td>Score: 82</td>
<td>Score: 85</td>
<td>Score: 85</td>
</tr>
</tbody>
</table>

Operational Feasibility
- **Score**: 60
 - **Candidate 1**: Meets all necessary requirements.

Technical Feasibility
- **Score**: 50
 - **Candidate 1**: Meets all necessary requirements.

Economic Feasibility
- **Score**: 65
 - **Candidate 1**: Meets all necessary requirements.

Schedule Feasibility
- **Score**: 95
 - **Candidate 1**: Meets all necessary requirements.

Ranking
- **Score**: 100
 - **Candidate 1**: Meets all necessary requirements.