? University of Toronto Department of Computer Science

Lecture 2:
What are Requirements?

- Two basic principles of requirements engineering:
% Separate the problem from the solution
% Problems and solutions intertwine with one another

- Describing problems:
% Application Domains vs. Machine Domains
% Verification vs. Validation

- Systems Engineering
% Systems vs. software

- Patterns and Types of Problem
% Requirements patterns
% Problem Frames

v Separate the problem from the solution

? University of Toronto Department of Computer Science

- A separate problem

© Easterbrook 2004 1
o University of Toronto Department of Computer Science

But design changes the world...

Problem
Situation

[7
O

implementation
statement

\ problem

statement

abstract
model of world

© Easterbrook 2004 3

TS 3
description is useful:
% Most obvious problem might
not the right one to solve
% Problem statement can be
discussed with stakeholders o Problem c E
% Problem statement can be g " Statement S g
used to evaluate design % o)] °
choices I= 2 A 3} ©
. o = >
% Problem statement is a g]V 'g
source of good test cases g ‘.6' >
= q
- Still need to check: g ° Implementation
) Statement
% Solution correctly solves the vy
stated problem .
% Problem statement
corresponds fo the needs of /7
the stakeholders
System
© Easterbrook 2004 2
? University of Toronto Department of Computer Science
Intertwining of problems and solutions
Independent Implementation Dependence Dependent
General
Path of exploration
Level
of
Detail
il Problem Implementation
Detailed Statement Statement
© Easterbrook 2004 4

? University of Toronto Department of Computer Science

o University of Toronto

Department of Computer Science
Some observations about RE v What vs. How

- Traditionally, should specify

- RE is not necessarily a sequential process:

% Don't have to write the problem statement before the solution statement

‘what’ without specifying ‘how’ System

> (Re-)writing a problem statement can be useful at any stage of development ® Bf" Aﬂ"iSA is not always easy to Require- | What

& RE activities continue throughout the development process distinguish: I
> What does a car do? Sub
. . > What does a web browser do? ub-
- The problem statement will be imperfect > What does an operafing system do? syste & How| Design

% RE models are approximations of the world % The 'how' at one level of abstraction

> will contain inaccuracies and inconsistencies

> will omit some information.

Require- rﬁ
forms the ‘what' for the next level

ments
> analysis should reduce the risk that these will cause serious problems... - Also misses: Unit E
% 'Why' questions: i
- Perfecting a specification may not be cost-effective > Why is this system needed? WL
5 . > Why should it behave that way?
% Requirements analysis has a cost % 'Who' questions:
% For different projects, the cost-benefit balance will be different > Whose problem is it? g
. % Ete.
- Problem statement should never be treated as fixed
% Change is inevitable, and therefore must be planned for
% There should be a way of incorporating changes periodically
© Easterbrook 2004 5 © Easterbrook 2004 6
? University of Toronto Department of Computer Science o University of Toronto Department of Computer Science
A problem to describe... What are requirements?
v . .) Applicati i i i
- E.g. “prevent unauthorized access to €56 machines" pplication Domain Machine Domain
i Macy;, -
in C| C - computers
ww‘““ h"'e % D - domain propertie! P
o ‘ \\, A - -
QQ“‘O students ... encryption algorithms K R - requirements ¥l progrmims
v intruders T-cards >
N password files
sysadmins passwords 4
password

- Domain Properties:
allocation ~ signed

! memory management
usernames |

'l
process forms

% things in the application domain that are true whether or not we ever build the

proposed system
bl at / cache contents

keyboard
2

stickies with
passwords on

- Requirements:
secure sockets

% things in the application domain that we wish to be made true by delivering the
-

proposed system

>Many of which will involve phenomena the machine has no access to

- A Specification:
things private

things the machine
cannot observe

shared

% is a description of the behaviours that the program must have in order to meet the
things to the machine requirements
© Easterbrook 2004

>Can only be written in terms of shared p
7 © Easterbrook 2004

? University of Toronto Department of Computer Science
v Fitness for purpose?

- Two correctness (verification) criteria:
% The Program running on a particular Computer satisfies the Specification
% The Specification, in the context of the given domain properties, satisfies
the requirements

- Two completeness (validation) criteria:
% We discovered all the important requirements
% We discovered all the relevant domain properties

- Example:
% Requirement R:
> “Reverse thrust shall only be enabled when the aircraft is moving on the runway”
% Domain Properties D:
> Wheel pulses on if and only if wheels turning
> Wheels turning if and only if moving on runway
% Specification S:
> Reverse thrust enabled if and only if wheel pulses on
% Verification: S, D = R

? University of Toronto Department of Computer Science

v Another Example

- Requirement R:

% “The database shall only be accessible by authorized personnel”

- Domain Properties D:
% Authorized personnel have passwords
% Passwords are never shared with non-authorized personnel

- Specification S:
% Access to the database shall only be granted after the user types an
authorized password

- S + D entail R

% But what if the domain assumptions are wrong?

© Easterbrook 2004 9
o University of Toronto Department of Computer Science
£

But we can also move the boundaries...

- E.g. Elevator control system:

people waiting it
— evator call buttons™. Scheduling algorithm
people in the elevator Floor request buttons >,
\
4

people wanting to go to button lights \
a particular floor Current floor indicators |
7

Motor on/off o

Control program

Elevator motors
Door open/close
i

Safety rules =

- We can shift things around:
% E.g. Add some sensors to detect when people are waiting
% This changes the nature of the problem to be solved

11

© Easterbrook 2004

© Easterbrook 2004 10
o University of Toronto Department of Computer Science

v Systems vs. Software Engineering

System

\ J N J
Y
IN out

(Properties of the input device) (properties of the output device)

SOFT
N

(properties of the software) /
\/
REQ (the requirements - relationships between monitored and controlled
variables that the system is required to establish or maintain)

NAT (natural relationships between monitored and controlled variables that

are part of the domain)

‘environ-\vonitored input output Controlled(€nViron-
ment). [software OUt_pUt ’_*g et
Variables | \d data ata \devicesg/ |Variables
items items

© Easterbrook 2004

12

L4 University of Toronto

v

Example Problem Frames

- Required behaviour
% Problem: build a machine to control Controlled
part of the world in accordance with a Controller Domain <
fixed set of control rules

% Likely Solution: an automated control
system

- Commanded Behaviour
% Problem: build a machine that allows
part of the world to be controlled by
an operator by issuing commands
% Likely Solution: a “human-in-the-loop”
control system.

Vg

- Information Display
% Problem: provide information about the
current state of part of the world, in
response to information requests
% Likely Solution: an information system.

Information
system

.
Information |47
Outputs

Desired
Behavior
~
- N
Informatlon|_ _ (Information
Requests function

Department of Computer Science

© Easterbrook 2004

L4 University of Toronto

v

Department of Computer Science
More problem frames

- Simple workpieces frame
% Problem: keep track of the edits
performed on some workpiece, e.g a
text file or a graphical object
% Likely Solution: application software
(e.g. a word processor)

Operation
Requests

workpiece

Operati
properties

machine

- Transformation frame
% Problem: take input data in a certain
format, and provide a transformation
according to a certain set of rules
& Example Solutions: data processing
applications; compilers, etfc.

- Connection frame
% Problem: maintain a correspondence
between domains that are otherwise
not connected
% Example Solutions: data entry system,
sensor network, etc.

© Easterbrook 2004

o University of Toronto
]

v

Summary

- Requirements Engineering is about describing problems
% It is useful to separate the problem from the solution
» Even thought this cannot be achieved entirely
% Problems evolve continuously:
> Delivering a solution changes the problem
> Describing the problem changes the problem

- Key distinctions:
% Application Domains vs. Machine Domains
% Verification vs. Validation
% Systems Engineering vs. Software Engineering

- Basic Problem Frames
% Give us a starting point for understanding the problem
% Tell us what subdomains we need to describe

Department of Computer Science

© Easterbrook 2004

15

