
1

University of Toronto Department of Computer Science

© Easterbrook 2004 1

Lecture 2:
What are Requirements?

 Two basic principles of requirements engineering:
 Separate the problem from the solution
 Problems and solutions intertwine with one another

 Describing problems:
 Application Domains vs. Machine Domains
 Verification vs. Validation

 Systems Engineering
 Systems vs. software

 Patterns and Types of Problem
 Requirements patterns
 Problem Frames

University of Toronto Department of Computer Science

© Easterbrook 2004 2

Separate the problem from the solution

Problem
Statement

Implementation
Statement

System

C
o

rr
es

p
o

n
d

en
ce

C
o

rr
ec

tn
es

s

V
al

id
at

io
n

V
er

if
ic

at
io

n

 A separate problem
description is useful:
 Most obvious problem might

not the right one to solve
 Problem statement can be

discussed with stakeholders
 Problem statement can be

used to evaluate design
choices

 Problem statement is a
source of good test cases

 Still need to check:
 Solution correctly solves the

stated problem
 Problem statement

corresponds to the needs of
the stakeholders

Problem
Situation

University of Toronto Department of Computer Science

© Easterbrook 2004 3

Problem
Situation

But design changes the world…

abstract
model of world

implementation
statement

problem
statement

change

System

University of Toronto Department of Computer Science

© Easterbrook 2004 4

Intertwining of problems and solutions

Implementation Dependence DependentIndependent

General

Detailed

Level
of

Detail

Implementation
Statement

Problem
Statement

Path of exploration

2

University of Toronto Department of Computer Science

© Easterbrook 2004 5

Some observations about RE
 RE is not necessarily a sequential process:

 Don’t have to write the problem statement before the solution statement
 (Re-)writing a problem statement can be useful at any stage of development

 RE activities continue throughout the development process

 The problem statement will be imperfect
 RE models are approximations of the world

 will contain inaccuracies and inconsistencies
 will omit some information.
 analysis should reduce the risk that these will cause serious problems…

 Perfecting a specification may not be cost-effective
 Requirements analysis has a cost
 For different projects, the cost-benefit balance will be different

 Problem statement should never be treated as fixed
 Change is inevitable, and therefore must be planned for
 There should be a way of incorporating changes periodically

University of Toronto Department of Computer Science

© Easterbrook 2004 6

What vs. How
 Traditionally, should specify

‘what’ without specifying ‘how’
 But this is not always easy to

distinguish:
 What does a car do?
 What does a web browser do?
 What does an operating system do?

 The ‘how’ at one level of abstraction
forms the ‘what’ for the next level

 Also misses:
 ‘Why’ questions:

 Why is this system needed?
 Why should it behave that way?

 ‘Who’ questions:
 Whose problem is it?

 Etc.
…

Require-
ments

Design

System

Design

Require-
ments

Sub-
system

Require-
ments

Unit

Design

What

How

What

How

What

How

University of Toronto Department of Computer Science

© Easterbrook 2004 7

A problem to describe…
 E.g. “prevent unauthorized access to CSG machines”

encryption algorithmsstudents

intruders

password
allocation
process

stickies with
passwords on

T-cards

sysadmins

signed
forms

passwords

usernames

typing at
keyboard

password files

memory management

cache contents

secure sockets

things the machine
cannot observe

things private
to the machine

shared
things

University of Toronto Department of Computer Science

© Easterbrook 2004 8

Application Domain Machine Domain

D - domain properties

R - requirements

C - computers

P - programs

What are requirements?

 Domain Properties:
 things in the application domain that are true whether or not we ever build the

proposed system

 Requirements:
 things in the application domain that we wish to be made true by delivering the

proposed system
Many of which will involve phenomena the machine has no access to

 A Specification:
 is a description of the behaviours that the program must have in order to meet the

requirements
Can only be written in terms of shared phenomena!

3

University of Toronto Department of Computer Science

© Easterbrook 2004 9

Fitness for purpose?
 Two correctness (verification) criteria:

 The Program running on a particular Computer satisfies the Specification
 The Specification, in the context of the given domain properties, satisfies

the requirements

 Two completeness (validation) criteria:
We discovered all the important requirements
We discovered all the relevant domain properties

 Example:
 Requirement R:

 “Reverse thrust shall only be enabled when the aircraft is moving on the runway”
 Domain Properties D:

 Wheel pulses on if and only if wheels turning
 Wheels turning if and only if moving on runway

 Specification S:
 Reverse thrust enabled if and only if wheel pulses on

 Verification: S, D R

University of Toronto Department of Computer Science

© Easterbrook 2004 10

Another Example
 Requirement R:

 “The database shall only be accessible by authorized personnel”

 Domain Properties D:
 Authorized personnel have passwords
 Passwords are never shared with non-authorized personnel

 Specification S:
 Access to the database shall only be granted after the user types an

authorized password

 S + D entail R
 But what if the domain assumptions are wrong?

University of Toronto Department of Computer Science

© Easterbrook 2004 11

But we can also move the boundaries…
 E.g. Elevator control system:

people waiting

people in the elevator

people wanting to go to
a particular floor

Elevator motors

Elevator call buttons

Floor request buttons

Current floor indicators

Scheduling algorithm

Safety rules

Motor on/off

Door open/close

Control program
button lights

We can shift things around:
 E.g. Add some sensors to detect when people are waiting
 This changes the nature of the problem to be solved

University of Toronto Department of Computer Science

© Easterbrook 2004 12

Systems vs. Software Engineering

input
devices

output
devices

software
Monitored

 Variables

environ-
ment

System

input

data
items

data
items

output Controlled

 Variables

IN
(Properties of the input device)

SOFT
(properties of the software)

OUT
(properties of the output device)

REQ (the requirements - relationships between monitored and controlled
variables that the system is required to establish or maintain)

NAT (natural relationships between monitored and controlled variables that
are part of the domain)

environ-
ment

4

University of Toronto Department of Computer Science

© Easterbrook 2004 13

Example Problem Frames
 Required behaviour

 Problem: build a machine to control
part of the world in accordance with a
fixed set of control rules

 Likely Solution: an automated control
system

 Commanded Behaviour
 Problem: build a machine that allows

part of the world to be controlled by
an operator by issuing commands

 Likely Solution: a “human-in-the-loop”
control system.

 Information Display
 Problem: provide information about the

current state of part of the world, in
response to information requests

 Likely Solution: an information system.

Controller
Desired

Behavior
Controlled

Domain

Controller
Desired

Behavior
Controlled

Domain

User

Information
Requests

Real World

Information
system

Information
function

Information
Outputs

University of Toronto Department of Computer Science

© Easterbrook 2004 14

More problem frames
Simple workpieces frame

 Problem: keep track of the edits
performed on some workpiece, e.g a
text file or a graphical object

 Likely Solution: application software
(e.g. a word processor)

Transformation frame
 Problem: take input data in a certain

format, and provide a transformation
according to a certain set of rules

 Example Solutions: data processing
applications; compilers, etc.

 Connection frame
 Problem: maintain a correspondence

between domains that are otherwise
not connected

 Example Solutions: data entry system,
sensor network, etc.

machine
Operation
properties

workpiece

Operation
Requests

machine
Mapping

Rules
Output

Data

Input
Data

SystemReal World

Connection

Achievable
correspondence

SCCR

University of Toronto Department of Computer Science

© Easterbrook 2004 15

Summary
 Requirements Engineering is about describing problems

 It is useful to separate the problem from the solution
 Even thought this cannot be achieved entirely

 Problems evolve continuously:
 Delivering a solution changes the problem
 Describing the problem changes the problem

 Key distinctions:
 Application Domains vs. Machine Domains
 Verification vs. Validation
 Systems Engineering vs. Software Engineering

 Basic Problem Frames
 Give us a starting point for understanding the problem
 Tell us what subdomains we need to describe

