
1

University of Toronto Department of Computer Science

© Easterbrook 2004 1

Lecture 2:
What are Requirements?

 Two basic principles of requirements engineering:
 Separate the problem from the solution
 Problems and solutions intertwine with one another

 Describing problems:
 Application Domains vs. Machine Domains
 Verification vs. Validation

 Systems Engineering
 Systems vs. software

 Patterns and Types of Problem
 Requirements patterns
 Problem Frames
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Separate the problem from the solution
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 A separate problem
description is useful:
 Most obvious problem might

not the right one to solve
 Problem statement can be

discussed with stakeholders
 Problem statement can be

used to evaluate design
choices

 Problem statement is a
source of good test cases

 Still need to check:
 Solution correctly solves the

stated problem
 Problem statement

corresponds to the needs of
the stakeholders

Problem
Situation
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Problem
Situation

But design changes the world…
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Intertwining of problems and solutions
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Some observations about RE
 RE is not necessarily a sequential process:

 Don’t have to write the problem statement before the solution statement
 (Re-)writing a problem statement can be useful at any stage of development

 RE activities continue throughout the development process

 The problem statement will be imperfect
 RE models are approximations of the world

 will contain inaccuracies and inconsistencies
 will omit some information.
 analysis should reduce the risk that these will cause serious problems…

 Perfecting a specification may not be cost-effective
 Requirements analysis has a cost
 For different projects, the cost-benefit balance will be different

 Problem statement should never be treated as fixed
 Change is inevitable, and therefore must be planned for
 There should be a way of incorporating changes periodically
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What vs. How
 Traditionally, should specify

‘what’ without specifying ‘how’
 But this is not always easy to

distinguish:
 What does a car do?
 What does a web browser do?
 What does an operating system do?

 The ‘how’ at one level of abstraction
forms the ‘what’ for the next level

 Also misses:
 ‘Why’ questions:

 Why is this system needed?
 Why should it behave that way?

 ‘Who’ questions:
 Whose problem is it?

 Etc.
…
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A problem to describe…
 E.g. “prevent unauthorized access to CSG machines”
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Application Domain Machine Domain

D - domain properties

R - requirements

C - computers

P - programs

What are requirements?

 Domain Properties:
 things in the application domain that are true whether or not we ever build the

proposed system

 Requirements:
 things in the application domain that we wish to be made true by delivering the

proposed system
Many of which will involve phenomena the machine has no access to

 A Specification:
  is a description of the behaviours that the program must have in order to meet the

requirements
Can only be written in terms of shared phenomena!
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Fitness for purpose?
 Two correctness (verification) criteria:

 The Program running on a particular Computer satisfies the Specification
 The Specification, in the context of the given domain properties, satisfies

the requirements

 Two completeness (validation) criteria:
We discovered all the important requirements
We discovered all the relevant domain properties

 Example:
 Requirement R:

 “Reverse thrust shall only be enabled when the aircraft is moving on the runway”
 Domain Properties D:

 Wheel pulses on if and only if wheels turning
 Wheels turning if and only if moving on runway

 Specification S:
 Reverse thrust enabled if and only if wheel pulses on

 Verification: S, D     R
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Another Example
 Requirement R:

 “The database shall only be accessible by authorized personnel”

 Domain Properties D:
 Authorized personnel have passwords
 Passwords are never shared with non-authorized personnel

 Specification S:
 Access to the database shall only be granted after the user types an

authorized password

 S + D entail R
 But what if the domain assumptions are wrong?
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But we can also move the boundaries…
 E.g. Elevator control system:

people waiting

people in the elevator

people wanting to go to
a particular floor 
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Control program
button lights

We can shift things around:
 E.g. Add some sensors to detect when people are waiting
 This changes the nature of the problem to be solved
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Systems vs. Software Engineering
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Example Problem Frames
 Required behaviour

 Problem: build a machine to control
part of the world in accordance with a
fixed set of control rules

 Likely Solution: an automated control
system

 Commanded Behaviour
 Problem: build a machine that allows

part of the world to be controlled by
an operator by issuing commands

 Likely Solution: a “human-in-the-loop”
control system.

 Information Display
 Problem: provide information about the

current state of part of the world, in
response to information requests

 Likely Solution: an information system.
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More problem frames
Simple workpieces frame

 Problem: keep track of the edits
performed on some workpiece, e.g a
text file or a graphical object

 Likely Solution: application software
(e.g. a word processor)

Transformation frame
 Problem: take input data in a certain

format, and provide a transformation
according to a certain set of rules

 Example Solutions: data processing
applications; compilers, etc.

 Connection frame
 Problem: maintain a correspondence

between domains that are otherwise
not connected

 Example Solutions: data entry system,
sensor network, etc.
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Summary
 Requirements Engineering is about describing problems

 It is useful to separate the problem from the solution
 Even thought this cannot be achieved entirely

 Problems evolve continuously:
 Delivering a solution changes the problem
 Describing the problem changes the problem

 Key distinctions:
 Application Domains vs. Machine Domains
 Verification vs. Validation
 Systems Engineering vs. Software Engineering

 Basic Problem Frames
 Give us a starting point for understanding the problem
 Tell us what subdomains we need to describe


